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Emerging evidence indicates that NKX2-1, a homeobox-containing transcription factor also known as TTF-1,
plays a role as a ‘‘lineage-survival’’ oncogene in lung adenocarcinomas. In T cell acute lymphoblastic
leukemia, gene rearrangements lead to aberrant expression of NKX2-1/TTF-1. Despite accumulating
evidence supporting its oncogenic role, it has become apparent that NKX2-1/TTF-1 expression also has
biological and clinical functions in the opposite direction that act against tumor progression. Herein, we
review recent findings showing these enigmatic double-edged characteristics, with special attention given
to the roles of NKX2-1/TTF-1 in lung development and carcinogenesis.
Oncogenic Involvement of NKX2-1/TTF-1
Emerging evidence suggests that ‘‘lineage-specific addiction’’ to

survival mechanisms that are programmed for developmental

roles in normal progenitor cells of particular lineages may exist

in cancer cells. The transcription factor MITF in melanoma is

considered to be an archetypal prototype (Garraway and Sellers,

2006), whereas survival of lung cancers with neuroendocrine

(NE) features such as small-cell lung cancer (SCLC) is dependent

on continued expression of ASH1, a transcription factor indis-

pensable for pulmonary NE cell development (Nishikawa et al.,

2011; Osada et al., 2005, 2008). Thyroid transcription factor 1

(TTF-1), also known as NKX2-1, is a homeobox-containing tran-

scription factor essential for the development of the lung and

thyroid as well as a restricted part of the brain (Stanfel et al.,

2005), and a series of peripheral lung cells defined as the terminal

respiratory unit (TRU) is under the control of this master regu-

lator. About 70% of adenocarcinomas express NKX2-1/TTF-1

independent of disease stage and retain features of the TRU to

a certain extent (Yatabe et al., 2002). These TRU-type adenocar-

cinomas exhibit a distinctively higher prevalence of EGFR

mutations, disproportionately high occurrence in females and

nonsmokers, and characteristic expression profiles; in fact,

p53 and KRAS mutations are inversely associated with NKX2-

1/TTF-1 expression (Takeuchi et al., 2006; Yatabe et al., 2005).

We and others have previously found that NKX2-1/TTF-1-posi-

tive lung adenocarcinomas are dependent on sustained expres-

sion of NKX2-1/TTF-1 and sometimes even exhibit focal copy-

number increases (Figure 1; Table 1) (Kendall et al., 2007; Kwei

et al., 2008; Tanaka et al., 2007; Weir et al., 2007). Intriguingly,

Nkx2-1/Ttf-1 transgenic mice exhibit hyperplasia of type II alve-

olar cells (Wert et al., 2002). In addition, NKX2-1/TTF-1 is prom-

inently expressed in lung epithelial cells undergoing regeneration

(Stahlman et al., 1996). Furthermore, haploinsufficiency of Nkx2-

1/Ttf-1was recently reported to reduce tumor formation in trans-

genic mice expressing mutant EGFR (Maeda et al., 2012).

Several lines of evidence suggest possible oncogenic involve-

ment of NKX2-1/TTF-1 in other types of cancers. In addition to
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the lung, the thyroid is another organ that expresses NKX2-1/

TTF-1. A germline missense mutation of NKX2-1/TTF-1 that

results in a valine substitution for alanine at codon 339 has

been identified in families affected by multinodular goiter and

papillary thyroid carcinoma (Ngan et al., 2009). It is of note

that the SNP rs944289, which maps close to NKX2-1/TTF-1,

was shown to be significantly associated with increased risk of

thyroid cancer (Gudmundsson et al., 2009), although the mech-

anistic link remains to be elucidated. Rearrangements of

NKX2-1/TTF-1 with T cell receptor or immunoglobulin heavy-

chain loci were recently identified in T cell acute lymphoblastic

leukemia (T-ALL), suggesting a role in the pathogenesis of

hematopoietic malignancies (Homminga et al., 2011). Rear-

rangements and ectopic expression of NKX2-2 and NKX2-5,

both homeobox-containing transcription factors closely related

to NKX2-1/TTF-1, have also been reported in a subset of

T-ALL (Homminga et al., 2011; Nagel et al., 2003). These data

strongly suggest an oncogenic role for NKX2-1/TTF-1 as well

as other members of the NK2 family, not only in lung and thyroid

cancers but also in hematopoietic malignancies. On the other

hand, NKX2-8, residing in close proximity to NKX2-1, exhibits

loss of heterozygosity and reduced expression in lung squa-

mous cell carcinomas (Harris et al., 2011), suggesting distinct

modes of involvement.

Enigma Surrounding NKX2-1/TTF-1 in Tumor Biology
Despite its role as a lineage-survival oncogene in lung adenocar-

cinomas, NKX2-1/TTF-1 expression is also known to be associ-

ated with favorable prognosis in affected patients (Anagnostou

et al., 2009). Evidence to explain this paradox has recently

emerged (Figure 2). For example, we found that MYBPH is

directly transactivated by NKX2-1/TTF-1 and inhibits phosphor-

ylation of the myosin regulatory light chain via direct interaction

with ROCK1, which is a prerequisite process for acquisition of

assembly competence (Hosono et al., 2012b). In addition,

MYBPH directly binds to and inhibits assembly of nonmuscle

myosin heavy chain IIA (Hosono et al., 2012a), thereby conferring
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Figure 1. Double-Edged Characteristic of NKX2-1/TTF-1
NKX2-1/TTF-1 has shown both oncogenic and inhibitory activities in cancer
development and progression.
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firm inhibition of actomyosin assembly by two distinct mecha-

nisms and consequently reducing cell motility, invasion, and

metastasis. These apparently deleterious effects in lung adeno-

carcinoma progression appear to be negated by frequent pro-

moter DNA methylation of MYBPH. The epithelial tight-junction

protein OCLN as well as two other epithelial tight-junction pro-

teins, CLDN1 and CLDN18, were also shown to be transcription-

ally activated by NKX2-1/TTF-1 (Niimi et al., 2001; Runkle et al.,

2012). These findings indicate that genes implicated in regulation

of cytoskeletal and cell-cell organization are prime transcrip-

tional targets of TTF-1, which negatively affects cell motility, in-

vasion, and metastasis and is also conceivably involved in lung

morphogenesis and regeneration after lung injury. In addition,

downregulation ofNkx2-1/Ttf-1 has been shown to lead to even-

tual derepression of Hmga2 and acquisition of metastatic ability

in a mouse model of lung adenocarcinoma with conditionally

activated Kras and loss-of-function p53 mutant alleles (Snyder

et al., 2013; Winslow et al., 2011). Interestingly, haploinsuffi-

ciency or conditional knockout of Nkx2-1/Ttf-1 was recently re-

ported to enhance development of invasive Kras-driven

mucinous lung adenocarcinoma (Maeda et al., 2012; Snyder

et al., 2013), in contrast to suppressing Egfr-driven lung tumori-

genesis (Maeda et al., 2012). Loss of Nkx2-1/Ttf-1 appears to

induce the mucin-producing phenotype through consequential

release of Foxa1/Foxa2, transcription factors known to physi-

cally interact and cooperate with Nkx2-1/Ttf-1, onto de novo
Table 1. Alterations of the NK2 Family in Human Cancers

NK2 Family Aberrations Organ Sites

NKX2-1 amplification lung

amplification lung

amplification lung

amplification lung

germline mutation thyroid

rearrangement hematopoietic

NKX2-2 rearrangement hematopoietic

NKX2-5 rearrangement hematopoietic

NKX2-8 loss of heterozygosity lung
binding sites near gastrointestinal differentiation-related genes

including Hnf4a, which critically regulates the differentiation pro-

gram (Snyder et al., 2013). Along this line, it is notable that human

invasive mucinous adenocarcinomas of the lung almost invari-

ably express HNF4a, and have exhibited a significant associa-

tion with negative TTF-1 expression and positive KRASmutation

status (Kunii et al., 2011). Although epithelial-to-mesenchymal

transition (EMT) is linked with cancer progression, NKX2-1/

TTF-1 represses TGF-b-induced EMT by alleviating TGF-

b-mediated induction of Snail and Slug, as well as by reducing

TGF-b production (Saito et al., 2009). Conversely, TGF-b re-

presses NKX2-1/TTF-1 by induction of miR-365 (Qi et al.,

2012). Thus, accumulated evidence points to the notion that

NKX2-1/TTF-1 plays a double-edged role in cancer.

NKX2-1/TTF-1-Mediated Lineage-Survival Signaling
Despite the requirement for sustained NKX2-1/TTF-1 expression

in the survival of lung adenocarcinoma cells, NKX2-1/TTF-1 itself

cannot be considered as a molecular target for treating this

devastating cancer because of its indispensable roles in normal

lung physiology, such as the production and secretion of surfac-

tant proteins. Thus, elucidation of how NKX2-1/TTF-1 mediates

survival signals has long been anticipated. In this regard, we

recently found that NKX2-1/TTF-1 directly transactivates the

receptor tyrosine kinase ROR1, which in turn sustains a favor-

able balance between prosurvival PI3K-AKT and proapoptotic

p38 signaling, in part through ROR1 kinase-dependent c-Src

activation as well as kinase activity-independent sustainment

of EGFR-ERBB3 association, ERBB3 phosphorylation, and

consequential PI3K activation (Yamaguchi et al., 2012). These

findings may underlie themolecular basis for the functional inter-

relationship between NKX2-1/TTF-1 and EGFR. Consistently,

NKX2-1/TTF-1 expression is significantly associated with

EGFR mutations in lung cancer tissues (Takeuchi et al., 2006;

Yatabe et al., 2005), and Nkx2-1/Ttf-1 haploinsufficiency re-

duces mutant Egfr-driven lung tumorigenesis (Maeda et al.,

2012). It is also of particular interest from a clinical point of

view that ROR1 inhibition appears to be effective for treatment

of lung adenocarcinomas carrying various gefitinib-resistance

mechanisms, such as secondary EGFR mutations and HGF

overexpression, because the existence of such diverse mecha-

nisms makes it difficult to predict which should be targeted

to prevent expansion of resistant clones. This molecule with

possible druggability, namely a cell-surface receptor with a
Cancer Types References

adenocarcinoma Tanaka et al., 2007

adenocarcinoma Kendall et al., 2007

adenocarcinoma Weir et al., 2007

adenocarcinoma Kwei et al., 2008

multinodular goiter, papillary

adenocarcinoma

Ngan et al., 2009

T cell acute lymphoblastic leukemia Homminga et al., 2011

T cell acute lymphoblastic leukemia Homminga et al., 2011

T cell acute lymphoblastic leukemia Nagel et al., 2003

squamous cell carcinoma Harris et al., 2011
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Figure 2. NKX2-1/TTF-1-Mediated
Transcriptional Regulation and
Consequences in Normal and Cancer Cells
of the Lung
NKX2-1/TTF-1 is required for maintenance of
physiological lung functions in addition to its
developmental roles. The oncogene plays a role as
a lineage-survival oncogene in lung adenocarci-
nomas, whereas it also inhibits invasion, metas-
tasis, and progression, paradoxically conferring
better prognosis. Solid and dashed lines represent
direct and indirect regulation, respectively.
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tyrosine kinase domain, may thus be considered to be an

‘‘Achilles’ heel’’ in lung adenocarcinomas, and future develop-

ment of therapeutic means is greatly anticipated to reduce the

intolerable death toll from currently ‘‘hard-to-cure’’ lung adeno-

carcinomas. In addition to ROR1, LMO3, a paralog of the

LMO1 and LMO2 oncogenes in T-ALL, was recently identified

as an additional direct transcriptional target for mediating sur-

vival signals (Watanabe et al., 2013). NKX2-1/TTF-1 appears to

cooperatively transactivate LMO3 together with FOXA1,

whereas LMO3 knockdown induced apoptosis in a lung adeno-

carcinoma cell line. However, ectopic overexpression of LMO3

failed to overcome NKX2-1/TTF-1 knockdown-induced apo-

ptosis, suggesting the existence of additional crucial targets

for lineage-survival signaling in lung adenocarcinoma cells.

Developmental Roles of NKX2-1/TTF-1 in Relation
to Cancer Biology
During embryonic lung development, temporal-spatial expres-

sion of NKX2-1/TTF-1 is tightly regulated. NKX2-1/TTF-1

expression is first detected in the ventral foregut endoderm dur-

ing a very early stage and then becomes abundantly expressed

in virtually all cells in the progenitor of the trachea arising from the

lung primordium. As subsequent branching morphogenesis pro-

ceeds, NKX2-1/TTF-1 expression is progressively restricted to

distal airway cells and finally confined to epithelial cells in the

TRU (Stahlman et al., 1996; Yatabe et al., 2002). A lung rudiment

in Nkx2-1/Ttf-1 knockout mice exhibited proximal, albeit

abnormal, airway characteristics, suggesting its dispensable

nature in specification of the lung primordium and proximal

lung morphogenesis (Minoo et al., 1999). In contrast, this onco-

gene was shown to be strictly required for distal lung morpho-
720 Cancer Cell 23, June 10, 2013 ª2013 Elsevier Inc.
genesis (Yuan et al., 2000). NKX2-1/

TTF-1 critically translates instructive mor-

phogenic signals from the surrounding

mesenchyme into transcriptional regula-

tion of its targets, which are mediated

by factors including fibroblast growth

factors, Sonic hedgehog, and bone

morphogenetic proteins. In humans,

NKX2-1/TTF-1 haploinsufficiency confers

the rare autosomal-dominant disorder

benign hereditary chorea as well as

brain-lung-thyroid syndrome, which is

manifested by chorea, hypothyroidism,

and infantile respiratory distress (Inzel-

berg et al., 2011). Human NKX2-1/TTF-1

haploinsufficiency might be associated
with lung tumorigenesis in context-dependent and subtype-

specific manners, as reported in mice (Maeda et al., 2012;

Snyder et al., 2013). Unfortunately, no comprehensive epidemi-

ologic data on the predisposition to lung cancers in affected

individuals have been presented.

In addition to lung adenocarcinoma, it is interesting to note

that NKX2-1/TTF-1 is frequently detected in SCLCs, which

usually arise in the proximal airway, a region that normally lacks

NKX2-1/TTF-1 expression. Because NKX2-1/TTF-1 expression

is seen in the lung primordium, this phenomenon may reflect

an atavistic, yet committed, state of SCLCs, which is consistent

with its lack of expression in small-cell carcinomas arising from

other organs, despite the similar characteristics of small and

round morphology and NE properties. Future study comparing

NKX2-1/TTF-1 target gene regulation between adenocarci-

nomas and those in small-cell carcinomas of various organs,

including the adult and developing fetal lungs, would likely

shed light on both similarities and distinctions with regard to its

functional roles.

Regulation of NKX2-1/TTF-1 and Context Dependence
The 42 kD major isoform is encoded by mRNAs harboring exons

2 and 3, whereas the 44 kDminor isoform is encoded by all three

exons (Figure 3). The proximal major promoter contains a TATA-

like element andbinding sites for FOXA1 (also knownasHNF-3a),

FOXA2 (HNF-3b), and GATA6, all of which are known to be

crucially involved in lung development (Costa et al., 2001). The

minor distal promoter is regulated by SP1 and SP3. NKX2-1/

TTF-1 directly transactivates multiple genes implicated to have

physiological lung functions, including SP-A, SP-B, SP-C,

CCSP (also known as CC10, uteroglobin, or secretoglobin),



Figure 3. Regulatory Mechanisms of NKX2-1/TTF-1
NKX2-1/TTF-1 is transcribed from two distinct promoters under the influence
of various transcription factors. Its transcriptional regulatory activities are
modulated in a context-dependent manner, possibly by cooperating tran-
scription factors as well as protein modifications. Ac, acetylation; P, phos-
phorylation.
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UGRP1, and ABCA3. NKX2-1/TTF-1 also transactivates the

functions of HOP, an HDAC-dependent negative regulator of

NKX2-1/TTF-1 (Yin et al., 2006), as well as T1a, a type I

pneumocyte-specific marker (Ramirez et al., 1997). CLDN18

and OCLN tight-junction proteins MYBPH, LMO3, and ROR1

have recently been identified as targets for their roles in cancer,

as discussed above. Transcription factors that interact and

cooperate with NKX2-1/TTF-1 include FOXA2 (Minoo et al.,

2007), FOXP2 (Zhou et al., 2008), GATA6 (Liu et al., 2002),

STAT3 (Yan et al., 2002), andRAR (Yan et al., 2001). Furthermore,

Smad3 and TAZ modulate the transcriptional activity of NKX2-1/

TTF-1 via their binding in a negative and positive manner,

respectively (Li et al., 2002; Park et al., 2004). Posttranslational

modifications are also important as a regulatory mechanism

of NKX2-1/TTF-1 functions. Multiple nuclear coactivators,

including ACTR, p160 steroid receptor coactivators, and p300/

CBP, acetylate NKX2-1/TTF-1 (Yang et al., 2004), whereas

NKX2-1/TTF-1 is also regulated through its phosphorylation,

positively by PKA (Yan and Whitsett, 1997) and negatively by

ERK (Missero et al., 2000). In addition, Smad3 physically inter-

acts with NKX2-1/TTF-1 and inhibits NKX2-1/TTF-1-mediated

transcription from the SP-B promoter lacking a Smad binding

site (Li et al., 2002).
Recent ChIP-seq and ChIP-chip analyses have revealed a

large number of additional potential transcriptional targets of

NKX2-1/TTF-1 (Maeda et al., 2012; Tagne et al., 2012;Watanabe

et al., 2013), with experimental validation of the induction of

LMO3, E2F3, and cyclins B1 and B2, as well as repression of

MUC5A, FGFR1, and MET. It is notable that NKX2-1/TTF-1

appears to be associated with and affect promoters via not

only its canonical binding sites but also by the AP-1, forkhead,

and nuclear hormone receptor-binding motifs. Therefore, down-

stream targets appear to be regulated by NKX2-1/TTF-1 in a

context-dependent manner, possibly reflecting the expression

of its cofactors.

Accumulating evidence, as noted above, implicates opposing

roles of NKX2-1/TTF-1 in lung cancer development, which may

also be the case in thyroid tumors and hematopoietic malig-

nancies. NKX2-1/TTF-1 expression is absolutely required for

peripheral lung development and differentiation, whereas its

level in lung adenocarcinoma is associated with but not deter-

ministic of differentiated morphologies (Takeuchi et al., 2006;

Yatabe et al., 2002). It would be interesting to investigate

whether any similarities and/or distinctions exist in the regulation

of downstream targets by this enigmatic oncogene in cancer

cells as well as in normal development, with special attention

given to context dependence.
Conclusions and Future Perspectives
NKX2-1/TTF-1 has long been a focus of research in the field of

lung and thyroid physiology, whereas emerging evidence has

called attention to its roles in cancer. This oncogene appears

to function as a double-edged sword in the pathogenesis of

lung adenocarcinoma and possibly in other tumors as well. A

future rigorous search for additional downstream molecules is

warranted to gain a more complete picture of NKX2-1/TTF-1-

centered regulatory networks in order to take advantage of its

Jekyll-and-Hyde characteristics. It should also be kept in mind

that current understanding of the regulatory web surrounding

this enigmatic transcription factor may be oversimplified, as

the same architecture may not exist in normal and cancerous

states, or even among individual tumors. For example, a sizable

fraction of NKX2-1/TTF-1-positive human lung adenocarci-

nomas are negative for surfactant proteins, which are authentic

targets for transcriptional activation in normal lungs, and/or

positive for HMGA2, a target for transcriptional repression.

Opposing effects of Nkx2-1/Ttf-1 haploinsufficiency in trans-

genic mice carrying mutant Kras and Egfr also suggest its multi-

faceted nature. Thus, the NKX2-1/TTF-1 regulatory networks

present in cells in both normal and cancerous conditions may

well be quite complex and context dependent, and likely require

a radically different approach to elucidate. Along this line, a

cancer systems biology approach with the aid of ever-increasing

computing power may help to reveal a path to resolve this chal-

lenge, ultimately allowing an opportunity to take advantage of

the double-edged characteristics of NKX2-1/TTF-1 in patients

affected by cancer.
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