
Science of Computer Programming 50 (2004) 161–187
www.elsevier.com/locate/scico

Register allocation by proof transformation

Atsushi Ohori1
School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi,

Ishikawa 923-1292, Japan

Received 5 July 2003; received in revised form 14 November 2003; accepted 11 December 2003

Abstract

This paper presents a proof-theoretical framework that accounts for the entire process of reg-
ister allocation—liveness analysis is proof reconstruction (similar to type inference), and register
allocation is proof transformation from a proof system with unrestricted variable accesses to a
proof system with restricted variable access. In our framework, the set of registers acts as a
“working set” of the live variables at each instruction step, which changes during the execution
of the code. This eliminates the ad hoc notion of “spilling”. Memory–register moves are sys-
tematically incorporated in our proof transformation process. Its correctness is a direct corollary
of our construction; the resulting proof is equivalent to the proof of the original code modulo
treatment of structural rules. The framework serves as a basis for reasoning about formal prop-
erties of register allocation process, and it also yields a clean and systematic register allocation
algorithm. The algorithm has been implemented, demonstrating the feasibility of the framework.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Register allocation; Liveness analysis; Proof transformation; Structural rules

1. Introduction

Register allocation is a process to convert an intermediate language to another
language closer to machine code. It should ideally be presented as a language transfor-
mation system that preserves the meaning of a program—both its static and dynamic
semantics. Such results will not only yield robust and systematic compiler implemen-
tation but also serve as a basis for reasoning about formal properties of register al-
location process, which will complement recent results on verifying low-level code,

1 Partially supported by Grant-in-aid for scienti>c research on priority area “informatics” A01-08, Grant
No:14019403.

E-mail address: ohori@jaist.ac.jp (A. Ohori).

0167-6423/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.01.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82820737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ohori@jaist.ac.jp

162 A. Ohori / Science of Computer Programming 50 (2004) 161–187

e.g. [18,10,11,13]. If register allocation is formalized as meaning preserving program
transformation, then one can factor out architecture-dependent register allocation pro-
cess in code veri>cation. Unfortunately, however, it appear to be diHcult to establish
such results for existing methods of register allocation.
The most widely used register allocation method is graph coloring [3,2]. It >rst

performs liveness analysis of a given code and constructs an interference graph. It then
solves the problem by “spilling” some nodes from the graph and >nding a “coloring”
of the remaining subgraph. Although it is eIective and practically feasible, there seems
to be no easy and natural way to show type and semantics preservation of this process.
There are also some other methods such as linear scan [16], but we do not know any
attempt to establish a framework for reasoning about register allocation process.
The goal of this work is to develop a novel framework for reasoning about register

allocation process, and for developing a practical register allocation algorithm. Our
strategy is to present register allocation as a series of proof transformations among
proof systems for code languages with diIerent variable usage. In an earlier work [13],
the author has shown that a low-level code language can be regarded as a sequent-style
proof system in the sense of Curry–Howard isomorphism [4,9]. In that work, a proof
system deduces typing properties of a code. However, it should also be possible to
regard each “live range” of a variable as a type, and to develop a proof system to
deduce properties of variable usage of a given code. Proofs in such a proof system
should contain enough information to perform register allocation.
A sequent-style proof system must admit structural rules, e.g. those of contraction,

weakening and exchange, to rearrange assumptions. The key idea underlying the present
work is to regard those structural rules as register manipulation instructions and to
represent a register allocation process as a proof transformation from a proof system
with implicit structural rules to one with explicit structural rules. In this paradigm,
liveness analysis is done by proof reconstruction similarly to type inference. DiIerent
from ordinary type inference, however, it always succeeds for any code and returns a
proof, which is a code annotated with variable liveness information. The reconstructed
proof is then transformed to another proof where allocation and deallocation of registers,
and memory–register moves are explicitly inserted. The target machine code is extracted
mechanically from the transformed proof.
Based on this idea, we have worked out the details of proof transformations for

all the stages of register allocation, and have developed a register allocation algorithm.
Fig. 1 gives the transformation steps of our algorithm. The correctness of the algorithm
is an obvious corollary of this construction itself. Since structural rules only rearrange
assumptions and do not change the computational meaning of a program, the resulting
proof is equivalent to the original proof representing the given source code. Moreover,
as being a proof system, our framework can be readily combined with a static type
system of low-level code.
The primary motivation of this work is to provide a framework for reasoning about

register allocation process. However, we also believe that the framework can be used
to develop a practical register allocation algorithm. Compared with the conventional
approaches based on graph coloring, our framework is more general in that it uni-
formly integrates liveness analysis and register–memory moves. This will allows us to

A. Ohori / Science of Computer Programming 50 (2004) 161–187 163

A code language with unbounded variables

⇓ proof reconstruction

A proof system for variable liveness : SSC

⇓ live range optimization by rearranging weakening rules

A proof system with explicit weakening : SSC(W)

⇓ restricting the length of active contexts by inserting exchange rules

A proof system with explicit exchange : SSC(WE; k)

⇓ allocating registers to liveness types in active contexts

A proof system with register number annotations : SSC(WEA; k)

⇓ code emission

A machine code language

Fig. 1. The structure of register allocation by proof transformation.

develop a register allocation algorithm more systematically. In order to demonstrate its
practical feasibility, we have implemented the proposed method. Although the current
prototype is a “toy implementation” and does not incorporate any heuristics, our limited
experimentation con>rms the eIectiveness of our framework.
The major source of our inspiration is various studies on proof systems in sub-

structural logic [15] and linear logic [6]. (See also [14,19] for tutorials on the related
subjects.) They have attracted much attention as logical foundations for “resource man-
agement”. To the author’s knowledge, however, there does not seem to exist any at-
tempt to develop a register allocation method using proof theoretical or type-theoretical
frameworks.
The rest of the paper is organized as follows. Section 2 de>nes a simple source

language and develops a proof system SSC for variable liveness. Section 3 gives a
proof reconstruction algorithm. Section 4 de>nes a proof system SSC(W) with explicit
weakening rules, and presents an optimization method for live ranges of variables
by proof transformation from SSC to SSC(W) and proof normalization in SSC(W).
Section 5 presents a proof transformation to a proof system SSC(WE; k) for a language
with a >xed number of active variables. Section 6 gives a proof transformation to a
proof system SSC(WEA; k) for machine code. Section 7 discusses some properties of
the method and concludes the paper.

2. A proof system for variable liveness

To present our method, we de>ne a simple code language. Let x; y; : : : range over
a given countably in>nite set of variables and let c range over a given set of atomic
constants. We consider the following instructions (ranged over by I), basic blocks

164 A. Ohori / Science of Computer Programming 50 (2004) 161–187

(ranged over by B), and programs (ranged over by P):

I ::= x = y | x = c | x = y + z
B ::= return x | goto l | if x goto l; goto l | I ;B
P ::= {l : B; : : : ; l : B}

Here, we only include operation +. There is no diHculty in adding various other
primitives. It is also a routine practice to transform a conventional intermediate language
into this representation by introducing necessary labels.
A basic block ends with branching instructions. In this source language, conditional

branch must be followed by a branch instruction to form a combined statement of the
form “if x goto l; goto l”. This restriction is needed for proof reconstruction. In
the subsequent proof transformation we shall de>ne in Section 4, we need to relax this
restriction and consider the above as a sequence of two instructions so that we can
insert a pseudo-instruction for discarding variable x if it is no longer live after this
usage.
We base our development on a proof-theoretical interpretation of low-level code [13]

where each instruction I is interpreted as an inference rule of the form

�′ . B : �

� . I ;B : �

indicating the fact that I changes machine state � to �′ and continues execution of
the block B. Note that a rule forms a bigger code from a smaller one, so the direction
of execution is from the bottom to the top. If the above rule is the last inference step,
then I is the >rst instruction to execute. The “return” instruction corresponds to an
initial sequent (an axiom in the proof system) of the form

�; x : � . return x : �

which returns the value of x to the caller. All the sequents in a proof has the same
result type determined by this rule.
Under this interpretation, each basic block becomes a proof in a sequent-style proof

system. A branching instruction is interpreted as a meta-level rule referring to an exist-
ing proof through a label. To account for this feature, we introduce a label environment
(ranged over by L) of the form {l1 :�1 . �1; : : : ; ln :�n . �n} specifying the assumption
that a block of label li is a proof of the form �i . Bi : �i, and de>ne a proof system
relative to a given label environment. We regard L as a function and write L(li) for
the li’s entry in L.
To apply this framework to register allocation, we make the following two re>ne-

ments. First, we regard a type not as a property of values (such as being an integer)
but as a property of variable usage, and introduce a liveness type variable for each
live range of a variable. A live range corresponds to a set of occurrences of a variable
holding the same value generated by an assignment. Since we consider global register
allocation, a live range in general spans multiple basic blocks. Occurrences of the same
variable with diIerent liveness type variables imply that the variable has multiple live

A. Ohori / Science of Computer Programming 50 (2004) 161–187 165

ranges due to multiple assignments. Second, we regard structural rules in a sequent-
style proof system as (pseudo) instructions for allocation and de-allocation of variables
(registers). The left-weakening rule corresponds (in the sense of Curry–Howard iso-
morphism) to the rule for discarding a register:

� . �0

�; � . �0
=⇒

�; x : nil . B : �0

�; x : � . discard x;B : �0

where x : nil indicates that x is not live at this point. Assuming that � is a true formula
(inhabited type), the following valid variant of the left-contraction rule corresponds to
the rule for allocating a new register.

�; � . �0

� . �0
=⇒

�; x : � . B : �0

�; x : nil . alloc x;B : �0

Later, we shall see that exchange rules represent register–memory moves.
We let t range over liveness type variables. A type � is either t or nil (which is

introduced to make type inference easier.) A context � is a mapping from a >nite
set of variables to types. For contexts, we used the following notations. �|V is the
restriction of � to a set of variables V , and �| PV is the context obtained from � by
removing the assumptions of variables in V . For contexts � and �′, we write �⊆�′

if � is included in �′ as sets ignoring entries of the form “x : nil”, i.e. for each
x∈dom(�) if �(x) �= nil then x∈dom(�′) and �′(x)=�(x).
Fig. 2 gives the proof system for liveness. This is relative to a given label environ-

ment L. We call this proof system SSC. 2 We let � range over proofs of blocks. We
write L	SSC � if � is derivable in SSC under L. A proof of a program is of the form
{l1 :�1; : : : ; ln : �n}. Let the end-sequent of �i be of the form �i . Bi : �i. A proof of
a program {l1 :�1; : : : ; ln :�n} is derivable in SSC, written 	SSC {l1 :�1; : : : ; ln :�n}, if,
for each 16i6n, {l1 :�1 . �1; : : : ; ln :�n . �n} 	SSC �i. This mechanism is the same as
the typing rule for mutually recursive function de>nitions. 3

In our informal explanation above, we have pointed out that (a variant) of left-
contraction corresponds to alloc pseudo-instruction for allocating a new variable. In
an actual code language, the only point where a new live range is introduced is an
assignment statement. So, in the de>nition of SSC above, alloc is implicitly included
in the rules for assignment. Furthermore, if the target variable of an assignment is
one of its operands, then the assignment rule also includes discard. For example, an
inference step for x = x + y discards the old usage of variable x and allocates a new
usage for x. This is reQected by the diIerent type variables for x in the upper sequent
and the lower sequent of the rule.

2 The proof system for low-level code in [13] is called the sequential sequent calculus; hence the name.
3 A program in general forms a cyclic graph, and therefore as a logical system it is inconsistent. It should

be regarded as a type system of a recursive program, but we continue to use the term proof system.

166 A. Ohori / Science of Computer Programming 50 (2004) 161–187

�; x : t . return x : t
�; x : nil . B : t0

�; x : t . discard x;B : t0

�; x : t . B : t0

�; x : nil . x = c;B : t0

�; x : t1; y : t2 . B : t0

�; x : nil ; y : t2 . x = y;B : t0

�; x : t1; y : t2; z : t3 . B : t0

�; x : nil ; y : t2; z : t3 . x = y + z;B : t0

�; x : t1; y : t2 . B : t0

�; x : t3; y : t2 . x = x + y;B : t0
(similarly for x = y + x)

�; x : t . B : t0

�; x : t . if x goto l;B : t0
(if L(l) = �′ . t0 such that �′ ⊆�; x : t.)

� . goto l : t (if L(l) = �′ . t such that �′ ⊆ �.)

Fig. 2. A proof system for variable liveness: SSC.

3. Liveness analysis through proof reconstruction

The >rst step in register allocation is liveness analysis, which determines live ranges
of variables. In our formalism, this is done by reconstructing a proof in SSC for a
given raw code.
We develop a proof reconstruction algorithm by inferring a proof scheme using

uni>cation, similarly to type inference. For this purpose, we introduce context variables
(denoted by �) and consider context schemes as follows:

� ::= � | � · �

We write dom(�) for the set of variables in �, i.e., dom(� · �)=dom(�). We also
write �∪ � to denote the context obtained from � by adding �, i.e., if �=�′ then
�∪ �=�∪�′ and if �= � · �′ then �∪ �= � · (�∪�′).
A substitution S is a >nite function which maps context variables to contexts

and type variables to types. A substitution S is extended to the function S ′ on the
set of all type variables and context variables by setting S ′(t)= t (t =∈dom(S)) and
S ′(�)= � (� =∈dom(S)). The result of applying a substitution to a context is de>ned
as

S(�) =
{ {x : S ′(�(x)) | x ∈ dom(�)} if � = �;
S(�) ∪ S ′(�) if � = � · �:

A. Ohori / Science of Computer Programming 50 (2004) 161–187 167

CUNIFY(� · �1; � · �2) = UNIFY({(�1(x); �2(x)) | x ∈ dom(�1)∩dom(�2)})
CUNIFY(�1 · �1; �2 · �2)=

let �′
1 =�2|dom(�1)
�′
2 =�1|dom(�2)
� fresh
S =UNIFY({(�1(x); �2(x)) | x∈dom(�1)∩dom(�2)})

in S ∪ [� · S(�′
1)=�1; � · S(�′

2)=�2]

CUNIFY(�1; �2)= if dom(�1) �=dom(�2) then failure
else UNIFY({(�1(x); �2(x)) | x∈dom(�1)∩dom(�2)})

CUNIFY(� · �1; �2)= if dom(�1) �⊆dom(�2) then failure
else let S =UNIFY({(�1(x); �2(x)) | x∈dom(�1)})

in S ∪ [S(�2|dom(�1))=�]
CUNIFY(�1; � · �2)= CUNIFY(� · �2; �1)

Fig. 3. Context uni>cation algorithm.

A substitution is then extended uniquely to any syntactic structures containing type
variables and context variables. In what follows, we identify a substitution with its
extension. The composition of substitutions S1; S2, denoted by S1 ◦ S2, is de>ned as
S1 ◦ S2(x)= S1(S2(x)). We write [v1=x1; : : : ; vn=xn] for a substitution that maps each xi
to vi. We sometimes regard substitutions as sets of pairs and write S1 ∪ S2 for the union
of substitutions S1 and S2 provided that dom(S1)∩dom(S2)= ∅.
Let UNIFY be a standard uni>cation algorithm for types. Using UNIFY, we de>ne a

uni>cation algorithm for contexts. Although context terms are similar to record types,
we do not need any special machinery for record uni>cation such as [17,12] due to
restricted nature of our code language. We say that a set A of contexts is well sorted if
whenever � ·�1 and � ·�2 appear in A, then dom(�1)=dom(�2). We say that a substitu-
tion S is admissible for a set A of contexts if for any �·�∈A, dom(S(�))∩dom(�)= ∅,
and the set of context variables in the range of S is disjoint from the set of context
variables in A. To infer a proof for our code language, we have only to consider
well-sorted proof schemes and admissible substitutions for them.
Well-sortedness is preserved by admissible substitutions. The following property fol-

lows from the de>nitions.

Lemma 1. If a set A of contexts is well sorted and S is an admissible substitution
for A then S(A) is also well sorted.

Fig. 3 gives a uni>cation algorithm for well-sorted pairs of contexts. The following
property can be easily shown.

168 A. Ohori / Science of Computer Programming 50 (2004) 161–187

Lemma 2. Let (�1; �2) be a well-sorted pair of contexts. If CUNIFY(�1; �2)= S then S
is admissible for �1 and �2 and S(�1)= S(�2). Conversely, if there is an admissible
substitution S for �1 and �2 such that S(�1)= S(�2) then CUNIFY(�1; �2)= S ′ such that
S = S ′′ ◦ S ′ for some S ′′.

Using CUNIFY and UNIFY, we de>ne a proof reconstruction algorithm INFER. To present
the algorithm, we >rst de>ne some notations. In writing a proof tree, we only include, at
each inference step, the instruction that is introduced (i.e. the >rst instruction of the sub-
block). We write �(� . I : �) if � is a proof whose end sequent (i.e. the last statement
in the proof) is � . I : � (i.e. I is the instruction introduce by the last inference step.) If
� is a context containing x, �{x : �} is the context obtained from � by replacing the value
of x with �. We also write Px and x : � for a sequence of variables and a sequence of
typed variables.
The proof reconstruction algorithm we shall de>ne computes a proof scheme for

a basic block together with a set of constraints imposed by branching instructions.
An entry constraint is a sentence of the form l� � . �. An inclusion constraint is
a sentence of the form � . �� �′ . �′. We say that a substitution S satis>es a set S
of inclusion constraints if for each (� . �� �′ . �′)∈S, S(�)⊆ S(�′) and S(�)= S(�′).
Let L be a label environment. We say that C is a set of entry constraints for L
if all the labels mentioned in C are de>ned in L. If C is a set of entry constraints
for L then L(C) is the set of inclusion constraints obtained from C by replacing
each l appearing in C with L(l). We say that (L; S) is a solution of C if L does
not contain context variable, C is a set of entry constraints for L and S satis>es
L(C).
The algorithm INFER is given in Fig. 4, which uses sub-algorithms SOLVE and INFBLK

(given in Fig. 5.) The main algorithm takes a labeled set of basic blocks {l1 :B1; : : : ;
ln :Bn} and returns a labeled set of proofs. It >rst uses INFBLK to infer for each Bi its
proof scheme �i (i.e. a proof containing context variables) together with a set Ci of
entry constraints. INFBLK proceeds by induction on the structure of Bi, i.e. it traverses
Bi backward from the last instruction (return or goto). When it encounters a new
variable, it introduces a fresh type variable for a new live range of the variable. When
it encounters an assignment to x, it inserts discard x, and changes the type of x to
nil, and continues toward the entry point of the code block. It generates an entry
constraint of l for each branching instruction (goto l or if x goto l.) After having
inferred proof schemes for blocks, the main algorithm gathers the set L(C1 ∪ · · · ∪Cn)
of inclusion constraints, and solves it by >xed point computation, where each iteration
step picks one sentence �′ · �′ . t′ � � ·� . t such that �′ �⊆� or t �= t′, and generates
a minimal substitution S such that S(� ·�)= �′′ ·�′′, S(�′)⊆�′′ and S(t′)= S(t). Fi-
nally, INFER instantiates all the context variables with the empty set to obtain a ground
proof.
We establish the soundness of INFER by showing the correctness of each sub-algorithm

used.
The following property is necessary to show that the set of entry constraints has a

solution.

A. Ohori / Science of Computer Programming 50 (2004) 161–187 169

INFER({l1 : B1; : : : ; ln : Bn})=
let (Ci; �i(�i . �i)) = INFBLK(Bi) (16i6n)

L= {l1 : �1 . �1; : : : ; ln : �n . �n}
S =SOLVE(L(C1 ∪ · · · ∪Cn))
P= S({l1 :�1; : : : ; ln :�n})
{�1; : : : ; �k}=FreeContextVars(P)

in [∅=�1; : : : ; ∅=�k](P)

SOLVE(S)=
if for each (�1 . �1; �2 . �2)∈S, �1 ⊆ �2 and �1 = �2
then ∅
else if there is some (�1 · �1 . �1 � �2 · �2 . �2)∈S s.t.

�2(x)= nil and �1(x) �= nil for some x
then failure
else

let S1 = UNIFY({(�1(x); �2(x)) | x ∈ dom(�1)∩dom(�1)}∪ {(�1; �2))})
�3 = {x :�1(x) | x∈ (dom(�1)\dom(�2)); �1(x) �= nil}
S2 = [�3 · S1(�3)=�2]∪ S1 (�3 fresh)
S3 = SOLVE(S2(S))

in S3 ◦ S2

Fig. 4. The proof reconstruction algorithm for programs.

Lemma 3. If INFBLK(B)= (C; �) then both C and � are well sorted, and � appearing
in C does not contain entries of the form x : nil.

Proof. The >rst property is shown by simple induction using Lemma 1 and the fact
that any context variables introduce by CUNIFY and INFBLK are fresh. For the second
property, we note that any conditional branch instruction in B is followed by goto
statement. The property can then be show by induction on B.

We de>ne the type erasure of a proof � to be the raw code obtained from �
by erasing types and discard instructions. The following is the main lemma for the
soundness of the proof inference algorithm.

Lemma 4. Let B be a basic block. If INFBLK(B)= (C; �) then erasure(�)=B, and
for any solution (L; S) of C, L	SSC S(�).

Proof. The property of erasure(�)=B is shown by straightforward induction on the
structure of B.
We show the second property by induction on B.
Case B= return x. By the typing rule, for any S, L	SSC S(�){x : S(t)} .

return x : S(t).

170 A. Ohori / Science of Computer Programming 50 (2004) 161–187

INFBLK(return x)= (∅; � · x : t . return x : t) (t; � fresh)

INFBLK(goto l)= ({l� � . t}; � . goto l : t) (t; � fresh)

INFBLK(if x then l;B)=
let (C1; �0(�0 . I0 : t0))= INFBLK(B)

S =CUNIFY((�0; �1 · {x : t1})) (�1; t1 fresh)

in
(
S(C1)∪{l� S(�0) . S(t0)}; S(�0)

S(�0) . if x goto l : S(t0)

)

INFBLK(x = v;B)=
let (C1; �0(�0 . I0 : t0))= INFBLK(B)

S =CUNIFY(�0; �1 · y : t2) (Py=FV (v)∪{x}; and�1; t2 fresh)
{y1; : : : ; yk}= {y′ | (y′ : nil)∈ S(�0); y′ ∈ Py}
�1(�1 . �1)= S(�0)

�i+1(�i+1 . �i+1)=
�i

�i{yi : t′i} . discard yi : �i
(t′i fresh, 16i6k)

in if x ∈ FV (v) then
(
S(C1);

�k+1

�k+1{x : tk+1} . x=v : S(t0)

)
(tk+1 fresh)

else
(
S(C1);

�k+1

�k+1{x : nil} . x=v : S(t0)

)

Fig. 5. The proof reconstruction algorithm for blocks.

Case B= goto l. Let (L; S) be a solution of {l� � . t}. Then L(l)=� . t′ such
that �⊆ S(�) and t′ = S(t), and therefore, by the typing rule, L	SSC S(�) . goto l :
S(t).
Case B= if x goto l;B. Let (L; S0) be a solution of S(C1)∪{l� S(�0) . S(t0)}.

Then (L; S0 ◦ S) is a solution of C1. By the induction hypothesis, L	SSC S0(S(�0)).
By Lemmas 1 and 2, x∈dom(S(�0)) and S(�0)(x) �= nil. Then, since (L; S0) is a
solution of {l� S(�0) . S(t0)}, L(l)=� . t such that �⊆ S0(S(�0)) and t= S0(S(t0)),
and therefore by the typing rule,

L	SSC S0(S(�0))
S0(S(�0)) . if x goto l : S0(S(t0))

:

Case B= x = v;B. Let (L; S0) be a solution of S(C1). Then (L; S0 ◦ S) is a solu-
tion of C1. By the induction hypothesis, L	SSC S0(S(�0)). By the rule for discard,
L	SSC S0(�i) for each 16i6k + 1. Moreover, for each y∈FV (v), y : t ∈ �k+1 for
some t. Then by the typing rules for assignment, if x∈FV (v), then

L	SSC S(�k+1)
S(�k+1{x : tk+1}) . x = v : S(t0)

:

A. Ohori / Science of Computer Programming 50 (2004) 161–187 171

If x =∈FV (v), then

L	SSC S(�k+1)
S(�k+1{x : nil}) . x = v : S(t0)

:

Lemma 5. If SOLVE(S) terminates with S and {�1; : : : ; �k} is the set of free context
variables in S(S) then [∅=�1; : : : ; ∅=�k] ◦ S satis7es S.

Proof. This is shown by induction on the length of computation (i.e. the number of
recursive calls of SOLVE.) The basis is trivial. Suppose there is some (�1 ·�1 . �1 � �2 ·
�2 . �2)∈S s.t. �1 �⊆�2 or �1 �= �2. By the property of UNIFY and the construction of S2,
S2(�1 ·�1)⊆ S2(�2 ·�2). Therefore, if S3 satis>es S2(S) then S2 ◦ S2 satis>es S. By the
induction hypothesis, [∅=�1; : : : ; ∅=�k] ◦ S3 satis>es S2(S). Hence [∅=�1; : : : ; ∅=�k] ◦ S3 ◦
S2 satis>es S.

DiIerent from usual type inference algorithms, this proof reconstruction algorithm
always succeeds for any given raw code and return a proof, which is a liveness-
annotated code, as shown in the following.

Lemma 6. For any program P, INFER(P) always succeeds.

Proof. Since there is only one type constant, UNIFY always succeeds. So does CUNIFY

for any well-sorted pairs. Thus INFBLK(B) always succeeds. From Lemmas 1 and 3,
the call of SOLVE in INFER does not return failure. So we have only to show that
SOLVE terminates on all the inputs. This is shown by observing the fact that the set of
variables appearing in a given set of inclusion constraints is >nite.

For a proof {l1 :�1; : : : ; ln :�n} of a program, its type erasure is {l1 : erase(�1); : : : ;
ln : erase(�n)}. Using these lemmas, we can show the following soundness
theorem.

Theorem 7. For any raw program P, INFER(P) succeeds with a proof P such that the
erasure of P is P and 	SSC P.

Proof. The >rst property is by Lemma 6. Let S, Ci, L be those mentioned in the algo-
rithm, S ′ = [∅=�1; : : : ; ∅=�k] ◦ S, and L0 = S ′(L). We note that for two sets of inclusion
constraints S1;S2, if S1 ⊆S2 and (L0; S ′) is a solution of S2 then (L0; S ′) is also a
solution of S1. By Lemma 5, S ′ satis>es L(Ci), i.e. (L0; S ′) is a solution of Ci. The
result then follows from Lemma 4.

As we shall see in the next section, however, the type inference algorithm does not
compute “most general proof” or “minimal proof”.

172 A. Ohori / Science of Computer Programming 50 (2004) 161–187

(1) An example source code
i = 1
s = 0

loop c = i > n
if c goto finish
s = s + i
i = i + 1
goto loop

finish return s

(2) The source program obtained by
decomposing it into basic blocks

{l1: i = 1; s = 0; goto l2,
l2: c = i > n; if c goto l4; goto l3,
l3: s = s + i; i = i + 1; goto l2,
l4: return s}

(3) The inferred proof schemes of blocks, and the associated constraints

l1:

�1{i : t2; s : t3} . goto l2 : t1
�1{i : t2; s : nil} . s=0 : t1
�1{i : nil; s : nil} . i=1 : t1 l3:

�3{i : t9; s : t10} . goto l2 : t8
�3{i : t11; s : t10} . i=i+1 : t8
�3{i : t11; s : t12} . s=s+i : t8

l2:

�2{c : t5; i : t6; n : t7} . goto l3 : t4
�2{c : t5; i : t6; n : t7} . if c goto l4 : t4

�2{c : nil; i : t6; n : t7} . c=i>n : t4

l4 : �4{s : t13} . return s : t13

l2 � �1{i : t2; s : t3} . t1 l2 � �3{i : t9; s : t10} . t8
l3 � �2{c : t5; i : t6; n : t7} . t4 l4 � �2{c : t5; i : t6; n : t7} . t4

(4) The reconstructed liveness proof of the program after constraint solving

l1:

{i : t2; n : t3; s : t1} . goto l2 : t1
{i : t2; n : t3} . s=0 : t1

{n : t3} . i=1 : t1 l3:

{i : t2; n : t3; s : t1} . goto l2 : t1
{i : t2; n : t3; s : t1} . i=i+1 : t1
{i : t2; n : t3; s : t1} . s=s+i : t1

l2:

{c : t4; i : t2; n : t3; s : t1} . goto l3 : t1
{c : t4; i : t2; n : t3; s : t1} . if c goto l4 : t1

{i : t2; n : t3; s : t1} . c=i>n : t1

l4 : {s : t1} . return s : t1

Fig. 6. Example code and the reconstructed liveness proof.

Fig. 6 shows an example of proof reconstruction. It lists (1) a sample source code
in an informal notation, (2) the source program obtained by decomposing the given
source code into a set of basic blocks, (3) the inferred proof schemes of the basic
blocks and the associated set of constraints, and (4) the reconstructed liveness proof
after constraint resolution.

A. Ohori / Science of Computer Programming 50 (2004) 161–187 173

We will use the sample source code (1) in Fig. 6 as our running example and will
show examples of the proof transformation steps that follow (4) in Fig. 6. The examples
above and those shown later are (reformatted) actual outputs of our prototype system.

4. Optimizing live ranges by inserting weakening rules

The proof system SSC implicitly includes weakening rules (discard instruction) in
the initial sequents (rules for return and goto). Our proof reconstruction algorithm
inserts weakening only when required by assignments; all the other weakening rules
are included in goto and return instructions. As a consequence, reconstructed proofs
are not optimal with respect to live ranges. The next step in our register allocation
method is to transform the inferred proof so that all the weakening rules are explicit,
and to optimize the places of these rules by proof normalization.
We de>ne a new proof system, which we call SSC(W), by re>ning SSC as

follows.

• Empty entries of the form x : nil are eliminated from each context since they are
no longer needed after proof reconstruction. All the proof rules that mention nil
are changed accordingly. For example, the rule for discard becomes

� .B : t0

�; x : t . discard x;B : t0

as in the standard weakening rule in the Gentzen’s sequent calculus.
• The rules for initial sequents (rules for return and goto) are changed to the fol-
lowing

{x : t} . return x : t � . goto l : � (if L(l) = � . �)

so that they do not contain redundant assumptions.

In this proof system, only those variables that are used by the continuation of a basic
block are live at the end of the block. All the other variables must be discarded
explicitly before the branch instruction which terminates the basic block.
The resulting proof system SSC(W) still has the freedom in terms of the places

where discard instructions are inserted. Let I be an instruction of either of the forms:
“x = v” or “if x goto l”. We de>ne the set RefVars(I;L) of variables referenced
by I under L as follows:

RefVars(x = v;L) = FV (v) ∪ {x};
RefVars(if x goto l;L) = dom(�) ∪ {x};

where � . � = L(l).
The Qexibility of places of discard instructions is characterized as commutative con-

version of proofs. If x =∈RefVars(I;L), then SSC(W) admits the following

174 A. Ohori / Science of Computer Programming 50 (2004) 161–187

conversion:

...
� .B : �0

�; x : � . discard x;B : �0
�′; x : � . I ; discard x;B : �0

⇐⇒

...
� .B : �0
�′ . I ;B : �0

�′; x : � . discard x; I ;B : �0

Since the order of consecutive discard instructions are irrelevant, we consider proofs
module reordering of consecutive discard instructions. We de>ne a reduction
relation on proofs, L	� −→ �′, as the above conversion relation restricted to the
left-to-right direction, and write L	� ∗−→ �′ for its reQexive transitive
closure.
The next step in our register allocation process is to optimize live ranges by the

combination of the following:

(1) Proof transformation from SSC to SSC(W): A reconstructed proof in SSC is
transformed to one in SSC(W) by restricting the domain of the assumption set �
at the return and goto to those actually live at the target code, and inserting
discard instructions for the rest of variables immediately before these branching
instructions.

(2) Proof normalization in SSC(W): The explicitly inserted discard instructions at
the above step are moved toward the root of the proof tree (i.e. toward the entry
point of the code) by applying the reduction de>ned above so that variables are
discarded as early as possible.

The optimization algorithm WEAKEN is given in Fig. 7, which performs the above two
step simultaneously using sub-algorithms ADDWEAKEN and WK.

The observant reader may have noticed that if � is a proof reconstructed by INFER and
WK(�(� . :))=�′(�′ . :) then �=�′, and therefore the call of ADDWEAKEN(�i;
�′
i) in WEAKEN is redundant. This step is there to make the algorithm general. As we

see in the proof of correctness of the algorithm (Lemma 8 below) this generality is
also needed.
If � is a proof in SSC, we write W(�) for the proof in SSC(W) obtained from

� by eliminating entries of the form x : nil, changing all the initial sequents so that
they conform to the rules of SSC(W), and, for each initial sequent, inserting im-
mediately after the initial sequent an inference step of discard x for each vari-
able x that is eliminated from the context of the original sequent. We show the
following.

Lemma 8. For any proof �(� . :) in SSC under L, if WK(�)=�′ then L	W

(�) ∗−→ ADDWEAKEN(�; �′).

Proof. This is proved by induction on the structure of �. We distinguish cases in term
of the last inference step in �.

A. Ohori / Science of Computer Programming 50 (2004) 161–187 175

WEAKEN({l1 : �1(�1 . :); : : : ; ln : �n(�n . :)}) =
let E = {l1 : dom(�1); : : : ; ln : dom(�n)}
in {l1 : ADDWEAKEN(�1;WK(�1)); : : : ; ln : ADDWEAKEN(�n;WK(�n))}

ADDWEAKEN(�; �0(�0 . : t)) =
let {x1 : t1; : : : ; xk : tk} = �|dom(�0)

�i(�i . : t) =
�i−1

�i−1{xi : ti} . discard xi : t
(16i6k)

in �k

In the following de>nition, E is globally de>ned in WEAKEN above.

WK(� . return x : t) = {x : �(x)} . return x : t

WK(� . goto l : t) = �|E(l) . goto l : t

WK
(

�
� . if x goto l : t

)
=

let �′
0(�

′
0 . :) = WK(�)

{x1; : : : ; xn} = (E(l) ∪ {x}) \ dom(�′
0)

�′
i(�

′
i . :) =

�′
i−1

�′
i−1{xi : �(xi)} . discard xi : t

(16i6n)

in
�′
n

�′
n . if x goto l : t

WK
(
�(�1 . :)
�2 . x = v : t

)
=

let �′
0(�

′
0 . I0 : t) = WK(�)

{x1; : : : ; xn} = FV (v) \ dom(�′
0)

�′
i(�

′
i . :) =

�′
i−1

�′
i−1{xi : �1(xi)} . discard xi : t

(16i6n)

in if x∈FV (v) then
�′
n

�′
n {x : �2(x)} . x = v : t

else
�′
n

�′
n | Px . x = v : t

WK
(

�
� . discard x : �

)
= WK(�)

Fig. 7. Weakening (discard pseudo-instruction) insertion algorithm for blocks.

Case �=� . return x : t: WK(�)= {x : t} . return x : t. Then by de>nition
W(�)=ADDWEAKEN(�; {x : t} . return x : t). The case for goto l is similar.

Case

�=
�0(�0 . :)

� . if x goto l : t
:

176 A. Ohori / Science of Computer Programming 50 (2004) 161–187

Suppose�′
0(�

′
0 . :)=WK(�0). Let {x1; : : : ; xn}=(E(l)∪{x})\dom(�′

0), and {y1; : : : ;
yk}=dom(�)\(dom(�′

0)∪{x1; : : : ; xn}. By the induction hypothesis,

L 	 W(�0)
∗−→ ADDWEAKEN(�0; �′

0) =

�′
0

�x1 . discard x1 : t
...

�xn . discard xn : t
�y1 . discard y1 : t

...
�yk . discard yk : t

Since �yk = �0 = �, we have

L 	 W

(
�0

� . if x goto l : t

)
∗−→

�′
0

�x1 . discard x1 : t
...

�xn . discard xn : t
�y1 . discard y1 : t

...
�yk . discard yk : t
� . if x goto l : t

Since yi =∈RefVars(if x goto l;L), we have

L 	

�′
0

�x1 . discard x1 : t
...

�xn . discard xn : t
�y1 . discard y1 : t

...
�yk . discard yk : t
� . if x goto l : t

∗−→

�′
0

�x1 . discard x1 : t
...

�xn . discard xn : t
�xn . if x goto l : t
�y1 . discard y1 : t

...
�yk . discard yk : t

= �′

By the de>nition of the algorithm, �′ =ADDWEAKEN(�; �).
The case for

�0(�0 . :)
� . x = v : t

is shown similarly to the above.
The case for

�0(�0 . :)
� . discard x : t

is trivial.

A. Ohori / Science of Computer Programming 50 (2004) 161–187 177

l1:

{i : t2; n : t3; s : t1} . goto l2 : t1
{i : t2; n : t3} . s=0 : t1

{n : t3} . i=1 : t1 l3:

{i : t2; n : t3; s : t1} . goto l2 : t1
{i : t2; n : t3; s : t1} . i=i+1 : t1
{i : t2; n : t3; s : t1} . s=s+i : t1

l2:

{i : t2; n : t3; s : t1} . goto l3 : t1
{c : t4; i : t2; n : t3; s : t1} . discard c : t1

{c : t4; i : t2; n : t3; s : t1} . if c goto l4 : t1
{i : t2; n : t3; s : t1} . c=i>n : t1

l4 : {s : t1} . return s : t1

Fig. 8. The result of weakening insertion optimization for the example in Fig. 6.

Fig. 8 shows the optimized proof of our running example in Fig. 6.
Let us review the results so far obtained. The labeled set of proofs obtained from a

given program (a labeled set of basic blocks) by the combination of proof inference
(INFER) and optimization (WEAKEN) is a code annotated with liveness information at
each instruction step. The annotated liveness information is at least as precise as the
one obtained by the conventional method. This is seen by observing the following
property. If � contains a inference step � . I : � then all the variables in � are live
at I and the interference graph of P must contain a completely connected subgraph
of the length of �. Signi>cant additional bene>t of our liveness analysis is that it is
presented as a typing annotation to the original program. This enables us to change
the set of the target variables for register allocation dynamically, to which we now
turn.

5. Limiting the length of active contexts

We have so far considered a language with unbounded number of variables.
A conventional approach to register allocation selects a subset of variables for the
target of register allocation, and “spills” the others out. The treatment of spilled vari-
ables is ad hoc in conventional frameworks. Our framework provides a systematic
approach to this problem using the liveness annotated code itself. We consider the set
of registers as a “working set” of the live variables at each instruction step, and main-
tain this working set. For this purpose, we de>ne a new proof system whose sequents
are of the form

) | *.k B : �:

where * is a register context whose length is bounded by the number k of available
registers, and) is a memory context of unbounded length. We assume that k is no
less than the number of variables needed by each instruction. In our case, instructions
have at most 2 operands and therefore k¿2. Each logical rule (instruction) can only

178 A. Ohori / Science of Computer Programming 50 (2004) 161–187

access assumptions in *. To assess), we introduce instructions load and store to
move assumptions between) and *.
For a register context * to represent the exact set of live variables at each instruction

step, we eliminate explicit discard x instructions and implicitly combine them with
other instruction. This is necessary since x is not live at discard x;B. For example,
a code of the form

x = y + z; discard z;B

is converted to

x = y + z;B

which has the following derivation:

...
) | *; x : t1; y : t2; .k B : t

) | *; y : t2; z : t3; .k x = y + z;B : t

In this derivation, the inference step for x = y + z implicitly discards z.
We call the new proof system SSC(WE; k). As before, the proof rules are relative to

a given label environment L. In SSC(WE; k), a label environment L assigns each label
l, typing of the form)l | *l .k t such that |*l|6k. We write) | *.k ��)′ | *′ .k �
if)⊆)′ and *⊆*′. Fig. 9 gives the set of proof rules. We write L	SSC(WE; k) � if
� is a proof in SSC(WE; k) under L. The de>nition of a proof of a program is the
same as before.
In the rules for assignments, x can be equal to y or z. In that case x : t1 does not

appear in the upper sequent. The rules for conditional jump and assignment poten-
tially contain discard, which is expressed by the associated inclusion condition. For
example, *′ ⊆ x : t1; y : t2; z : t3 in the rule for x = y + z indicates that some of x; y; z
can be discarded at this step. Note that x can also be discarded immediately after its
de>nition. This happens if x is assigned but is never used. We shall comment on this
issue when we describe machine code emission in Section 6.
In a proof-theoretical perspective, the previous proof system SSC(W) implicitly ad-

mits unrestricted exchange so that any assumptions in � are freely available, while the
new proof system SSC(WE; k) requires explicit use of the exchange rules to access
some part of the assumptions. The next step of our register allocation method is to
transform a proof obtained in the previous step into a proof in this new system. Since
each inference rule only uses no more than k assumptions, the following is obvious.

Proposition 9. There is an algorithm EXCHANGE such that, for any provable pro-
gram P in SSC(W), EXCHANGE(k; P) is a program in SSC(WE; k), and if we ig-
nore the distinction between) and *, and erase load and store, then it is equal
to P.

EXCHANGE traverses the code block, and whenever it detects an instruction whose
operands are not in *, it exchanges the necessary operands in) with some variables

A. Ohori / Science of Computer Programming 50 (2004) 161–187 179

) | *; x : t .k return x : t (if |* ∪ {x : t}|6k)

) | *.k goto l : t0 (if L(l) =) | * .k t0)

) | *;*′ .k I : t0

) | *; x : t .k if x goto l : t0
(if L(l) �) | *; x : t .k t0; *′ ⊆ {x : t}; |*; x : t|6k)

) | *;*′ .k I : t0

) | *.k x = c : t0
(if *′ ⊆ {x : t})

) | *;*′ .k I : t0

) | *; y : t2 .k y = x : t0
(*′ ⊆ {x : t1; y : t2}; |*; y : t2|6k)

) | *;*′ .k I : t0

) | *; y : t2; z : t3 .k x = y + z : t0
(*′ ⊆ {x : t1; y : t2; z : t3}; |*; y : t2; z : t3|6k)

) | *; x : t1 .k I : t

); x : t1 | *.k load x : t0

); x : t1 | *.k I : t0

) | *; x : t1 .k store x : t0
(if |* ∪ {x : t1}|6k)

A label environment L for this proof system must satisfy the following property: for
all l∈dom(L), L(l) is of the form)l | *l .k t such that |*l|6k.

Fig. 9. A proof system with explicit exchange: SSC(WE; k).

in *, which are selected according to some strategy. The algorithm is straightfor-
ward except for this strategy of selecting variables to be saved. With the existence of
branches, developing an optimal strategy is a diHcult problem. Our proof-theoretical
framework is only to represent various strategies, and it does not itself oIer any eH-
cient strategy.
In our prototype system, we adopt a simple lookahead strategy: it selects one control

Qow and traverses the instructions (up to a >xed number) to form an ordered list of
variables that are more likely to be used in near future, and select those variables that
are not appearing in the beginning of this list. We write USEORDER(V; �) for the reversal
of the ordered list of variables V obtained by traversing �. Figs. 10 and 11 give an
example of the exchange insertion algorithm based on this simple strategy. In practice,
we need more sophisticated heuristics, which is outside of the scope of this paper.

180 A. Ohori / Science of Computer Programming 50 (2004) 161–187

EXCHANGE(k; {l1 : �1(�1 . I1 : t1); : : : ; ln : �n(�n . In : tn)}) =
let ki be k − 1 if li is a target of some conditional branch otherwise k

Vi be the >rst (at most) ki elements in USEORDER(FV (Bi); �i)
*i be the restriction of �i on Vi
)i be �i *i

E = {l1 : ()1; *1); : : : ; ln : ()n;*n)}
in {l1 : EX()1; *1; �1); : : : ; ln : EX()n;*n; �n)}

E is made globally available in the de>nition of EX function.

Fig. 10. Exchange insertion algorithm for program.

Fig. 12 shows the result of exchange insertion for the optimized proof shown in
Fig. 7.

6. Assigning register numbers

The >nal stage of our development is to assign a register number to each type
variable in * at each instruction step. We do this by de>ning yet another proof system
where a type variable in * has an attribute of a register number (ranged over by p),
so that * is of the form {x1 : t1[p1]; : : : ; xn : tn[pn]}. A label environment L is also
re>ned to be a function that maps labels to typings of the form) | *.k t where * is
of the above form. The set of instructions in this >nal proof system is as follows:

I ::= x = y | x = c | x = x + x | if x goto l
| load (p,x) | store (p; x) | move x[pi → pj]

load (p; x) moves variable x from) to * and loads register p with the content of x.
store (p; x) is its converse. move x[pi → pj] is an auxiliary instruction that changes
the registers allocated to x, which corresponds to register–register copy instruction.
Note that we assign a register number not to a variable but to each liveness type

variable t. Therefore, variables x; y; : : : in this code language do not contain register
numbers. They appear in a proof as additional type attributes.
Fig. 13 gives a proof system with register number attributes, which we call

SSC(WEA; k). As in SSC(WE; k), in the rules for assignments, x can be the same
as y or z. In that case x : t1[p1] does not appear in the upper sequent. We write
L	SSC(WEA; k) � if � is a proof of this proof system under L.
Register number assignment is done by transforming a proof in SSC(WE; k) to

SSC(WEA; k). Since the length of each register context * in a proof is limited to
k, it is obvious that there is a proof transformation. Within a block, it is straightfor-
wardly done by a simple tail recursive algorithm (starting from the entry point) that
keeps track of the current register assignment of * and a set of free registers, and up-
dates them every time when * is changed due to assignment, load or store instructions.
An extra work is needed to adjust register assignment before a branching instruction

A. Ohori / Science of Computer Programming 50 (2004) 161–187 181

In the following de>nition, E is de>ned globally by the main algorithm.

EX();*; � . return x : t) = if x∈dom(*) then ∅ | {x : *(x)} .k return x : t

else
∅ | {x : *(x)} .k return x : t
{x :)(x)} | ∅ .k load x : t

EX();*; � . goto l : t) =
let ()0; *0) = E(l)

{x1; : : : ; xm} = dom(*0) \ dom(*)
{y1; : : : ; yn} = dom()0) \ dom())
�0 =)0 | *0 .k goto l : t
�i()i | *i .k :) =

�i−1

)i−1{xi : *i−1(xi)} | *i−1|{xi} .k load xi : t
(16i6m)

�m+j()m+j | *m+j .k :) =
�m+j−1

)m+j−1|{yj} | *m+j−1{yj : *m+j−1(yj)} .k store yj : t
(16j6n)

in �m+n

EX
(
);*;

�
� . x = v : t

)
=

let {x1; : : : ; xm} = FV (v) \ dom(*)
n = m+ (length of *)− k
y1; : : : ; yn be the last n variables in USEORDER(dom(*) \ {x1; : : : ; xm}; �)
)0 =)|{x1 ;:::; xm}{y1 : *(y1); : : : ; yn : *(yn)}
*0 = *|{y1 ;:::;yn}{x1 :)(x1); : : : ; xm :)(xm)}
)′ = if x∈dom(*) then)0 else)0|{x}
′ = if x∈dom() then *0 else *0{x :)(x)}
�0 =

EX()′; *′; �)
)0 | *0 .k x = v : t

�i()i | *i .k :) =
�i−1

)i−1{xi : *i−1(xi)} | *i−1|{xi} .k load xi : t
(16i6m)

�m+j()m+j | *m+j .k :) =
�m+j−1

)m+j−1|{yj} | *m+j−1{yj : *m+j−1(yj)} .k store yj : t
(16j6n)

in �m+n

EX
(
);*;

�
� . discard x : t

)
= EX();*| Px; �)

The case for if x goto l is de>ned similarly to that for goto l.

Fig. 11. Exchange insertion algorithm for blocks.

182 A. Ohori / Science of Computer Programming 50 (2004) 161–187

l1:

∅ | {i : t2; n : t3; s : t1} .3 goto l2 : t1
∅ | {i : t2; n : t3} .3 s=0 : t1

∅ | {n : t3} .3 i=1 : t1

l3:

∅ | {i : t2; n : t3; s : t1} .3 goto l2 : t1
∅ | {i : t2; n : t3; s : t1} .3 i=i+1 : t1
∅ | {i : t2; n : t3; s : t1} .3 s=s+i : t1
{s : t1} | {i : t2; n : t3} .3 load s : t1

l2:

{s : t1} | {i : t2; n : t3} .3 goto l3 : t1
{s : t1} | {c : t4; i : t2; n : t3} .3 if c goto l4 : t1

{s : t1} | {i : t2; n : t3} .3 c=i>n : t1
∅ | {i : t2; n : t3; s : t1} .3 store s : t1

l4:
∅ | {s : t1} .3 return s : t1
{s : t1} | ∅ .3 load s : t1

Fig. 12. The result of exchange insertion for the running example.

) | *; x : t[p] .k return x : t (if |* ∪ {x : t[p]}6k|)
) | *.k goto l : t0 (if L(l) =) | * .k t0)

) | *′ .k I : t0

) | *; x : t[p] .k if x goto l : t0
(if L(l) �) | *; x : t[p] .k t; *′ ⊆ *; x : t[p])

) | *; x : t[p] .k I : t0

); x : t | *.k load (p; x) : t0

); x : t | *.k I : t0

) | *; x : t[p] .k store (p; x) : t0
(if |* ∪ {x : t[p]}|6k, p =∈*)

) | *; x : t[p2] .k I : t0

) | *; x : t[p1] .k move x[p1 → p2] : t0
(p1 =∈*)

The other rules are obtained from the corresponding rules of SSC(WE; k) by adding
to each t distinct register number attribute p.

Fig. 13. A proof system with register number annotations: SSC(WEA; k).

so that the assignment at the branching instruction agrees with that of the target block.
If the target block is not yet processed, then the algorithm can simply set the current
register assignment of * as the initial assignment for the block. If an assignment has

A. Ohori / Science of Computer Programming 50 (2004) 161–187 183

already been done for the target block and it does not agree on the current assignment,
then the algorithm needs to permutate some registers by inserting move instructions
using one temporary register. If there is no free register, it has to save one and then
load after the permutation.
Minimizing register–register moves at branching instructions is a diHcult problem,

for which our theoretical framework does not directly oIer any solution. In our current
prototype implementation, we adopt a simple strategy of trying to allocate the same
register to the same liveness type whenever possible by caching the past allocation.
It should be noted, however, that this problem is much simpler than the problem of
combining independently colored basic blocks. Our liveness analysis and the subsequent
decompositions of variables into) and * are done globally, and therefore the set *
of register contexts are guaranteed to agree when control Qows merge.
The remaining thing to be done is to extract machine code from a proof in

SSC(WEA; k). We consider the following target machine code:

I ::= return ri | goto l | ri = c | ri = rj | if ri goto l
| store (ri,x) | load (ri,x) | ri = rj + rk

ri is the register identi>ed by number i. store (ri,x) stores the register ri to the
memory location named x. load (ri,x) loads the register ri with the content of the
memory location x. Since in a proof of SSC(WEA; k), each occurrence of variable in
its register context * is associate with a register number, it is a mechanical matter
to extract the target machine code by traversing a proof and converting each variable
with the register number. If a variable is an r-value (to be referenced) then it is taken
from the lower sequent of the proof rule, and if it is an l-value (to be assigned) then
it is taken from the upper sequent of the proof rule. For example, for the proof

�() | *; x : t1[1]; y : t2[2]; .k I : t0)
) | *; x : t3[3]; y : t2[2] .k x = x + y : t0

we emit instruction “r1 = r3 + r2” and then continue to emit code for the proof �.
There is one minor subtle point in code emission. If a variable will never used after

assignment, then it is not appear in the context of its upper sequent. In that case, the
instruction is not used and we simply suppress emission of the code. This is a simple
case of dead code elimination, which we get for free in our proof transformation.
Fig. 14 shows the proof in SSC(WEA; k) and the machine code for our running

example, which are generated by our prototype implementation.

7. Conclusions and discussion

We have presented a proof-theoretical approach to register allocation. In our ap-
proach, liveness analysis is characterized as proof reconstruction in a sequent-style
proof system where a formula (or a type) represents a “live range” of a variable at
each instruction step in a given code. Register manipulation instructions such as load-
ing and storing registers are interpreted as structural rules in a proof system. Register

184 A. Ohori / Science of Computer Programming 50 (2004) 161–187

The proof with register number annotation.

l1:

∅ | {i : t2[r1]; n : t3[r0]; s : t1[r2]} .3 goto l2 : t1
∅ | {i : t2[r1]; n : t3[r0]} .3 s=0 : t1

∅ | {n : t3[r0]} .3 i=1 : t1

l2:

{s : t1} | {i : t2[r1]; n : t3[r0]} .3 goto l3 : t1
{s : t1} | {c : t4[r2]; i : t2[r1]; n : t3[r0]} .3 if c goto l4 : t1

{s : t1} | {i : t2[r1]; n : t3[r0]} .3 c=i>n : t1
∅ | {i : t2[r1]; n : t3[r0]; s : t1[r2]} .3 store s : t1

l3:

∅ | {i : t2[r1]; n : t3[r0]; s : t1[r2]} .3 goto l3 : t1
∅ | {i : t2[r1]; n : t3[r0]; s : t1[r2]} .3 i=i+1 : t1
∅ | {i : t2[r1]; n : t3[r0]; s : t1[r2]} .3 s=s+i : t1
{s : t1} | {i : t2[r1]; n : t3[r0]} .3 load s : t1

l4:
∅ | {s : t1[r0]} .3 return s : t1

{s : t1} | ∅ .3 load s : t1

The extracted machine code:
l1 : r1 = 1 l3: load r2,s

r2 = 0 r2 = r2 + r1
goto l2 r1 = r1 + 1

goto l2
l2: store r2,s

r2 = r1 > r0 l4: load r0,s
if r2 goto l4 return r0
goto l3

Fig. 14. Example of register number assignment and code emission.

allocation process is then regarded as a proof transformation from a proof system with
implicit structural rules to one with explicit structural rules. All these proof trans-
formation processes are eIectively done, yielding a register allocation algorithm. The
algorithm has been implemented, which demonstrates the practical feasibility of the
method.
This is the >rst step toward a proof theoretical framework for register allocation;

there remain a number of issues to be investigated, including detailed comparisons
with other approaches, relationship to other aspects of code generation such as instruc-
tion scheduling, robust implementation and evaluation etc. Below we include some
discussion and suggestions for further investigation.
Correctness and other formal properties: In our approach, register allocation is

presented as a series of proof transformations among proof systems that diIer in their

A. Ohori / Science of Computer Programming 50 (2004) 161–187 185

treatment of structural rules. Since structural rules only rearrange assumptions and do
not change the computational meaning of a program, the resulting proof is equivalent
to the original proof representing the given source code. Since our method is a form of
a type system, it can smoothly be integrated in a static type system of a code language
such as the one developed in [7]. By regarding our liveness types as attributes of types
of conventional notion, we immediately get a register allocation method for a typed
code language. Type-preservation is shown trivially by erasing liveness and register
attributes, and merging the memory and register contexts of each sequent. We also
believe that our method can be combined with other static veri>cation systems for
low-level code such as a static type system for access control [8].
Expressiveness: Our formalism covers the entire process of register allocation, and

as a formalism, it appears to be more powerful than existing ones. We have seen that
liveness analysis is as strong as the conventional method using an interference graph.
Since our formalism transforms the liveness annotated code, it provides better treatment
for register–memory move than the conventional notion of “spilling”. Although we
have not incorporated various heuristics in our prototype implementation, our initial
experimentation using our prototype system found that our method properly deals with
the example of a “diamond” interference graph discussed in Ref. [1], for which the
conventional graph coloring based approach cannot >nd an optimal coloring. Fig. 15
shows one simple example.
Liveness analysis and SSA-style optimization: The main strength of our method is

the representation of properties of programs by types. Since we can freely de>ne types
and typing relations independent of variable names, this structure enables us to represent
various static information required for register allocation systematically and precisely.
For example, as far as liveness analysis is concerned, our system already contains the
eIect of SSA (static single assignment) transformation [5] without actually performing
the transformation. The eIect of renaming a variable at each assignment is achieved
by allocating a fresh type variable. The eIect of - function at control Qow merge is
achieved by uni>cation of the type variables assigned to the same variable in diIerent
blocks connected by a branch instruction. Thanks to these eIects, our liveness analysis
achieves the accuracy of those that perform SSA transformation without introducing the
complication of - functions. Moreover, we believe that this property also allows us to
combine various techniques of SSA-based optimization in our approach. For example,
since each live range has distinct type variables, it is easy to incorporate constant
propagation or dead code elimination. The detailed study on the precise relationship
with our type-based approach and SSA transformation is beyond the scope of the
current work, and we would like to report it elsewhere.
Optimization and heuristics: As we have commented early, our proof-theoretical

framework is only to oIer a high-level and systematic description of a register alloca-
tion algorithm as a series of proof transformation, and it does not itself provide any
particular eHcient proof transformation strategies. In order to develop an eHcient and
practical register allocation algorithm, one need to incorporate various optimization
and heuristics studied in literature. With these eIorts, we believe that the approach
presented here can serve as a framework for systematic development of a practical
register allocation system.

186 A. Ohori / Science of Computer Programming 50 (2004) 161–187

(1) The source program
L: a = d + c

b = a + d
c = a + b
d = b + c
goto L

(2) The optimized liveness proof:

L :

{c : t3; d : t2} . goto L : t1
{b : t4; c : t3; d : t2} . discard b : t1

{b : t4; c : t3} . d=b+c : t1
{a : t5; b : t4; c : t3} . discard a : t1

{a : t5; b : t4} . c=a+b : t1
{a : t5; b : t4; d : t2} . discard d : t1

{a : t5; d : t2} . b=a+d : t1
{a : t5; c : t3; d : t2} . discard c : t1

{c : t3; d : t2} . a=d+c : t1

(3) The proof without discard :

L :

{c : t3; d : t2} . goto L : t1
{b : t4; c : t3} . d=b+c : t1
{a : t5; b : t4} . c=a+b : t1
{a : t5; d : t2} . b=a+d : t1
{c : t3; d : t2} . a=d+c : t1

(4) The proof in SSC(WE; k) :

L :

∅ | {c : t3; d : t2} .2 goto L : t1
∅ | {b : t4; c : t3} .2 d=b+c : t1
∅ | {a : t5; b : t4} .2 c=a+b : t1
∅ | {a : t5; d : t2} .2 b=a+d : t1
∅ | {c : t3; d : t2} .2 a=d+c : t1

(5) The proof in SSC(WEA; k) :

L :

∅ | {c : t3[r0]; d : t2[r1]} .2 goto L : t1
∅ | {b : t4[r1]; c : t3[r0]} .2 d=b+c : t1
∅ | {a : t5[r0]; b : t4[r1]} .2 c=a+b : t1
∅ | {a : t5[r0]; d : t2[r1]} .2 b=a+d : t1
∅ | {c : t3[r0]; d : t2[r1]} .2 a=d+c : t1

(6) The machine code
L: r0 = r1 + r0

r1 = r0 + r1
r0 = r0 + r1
r1 = r1 + r0
goto L

Fig. 15. Example for a code whose interference graph forms a “diamond”

Acknowledgements

The author thanks Toshimasa Matsumoto for his help in implementing the prototype
system, and Sin-ya Katsumata for insightful discussion at early stage of this work while
the author was in Kyoto University.

References

[1] P. Briggs, K.D. Cooper, L. Torczon, Improvements to graph coloring register allocation, ACM Trans.
Programming Languages Systems 16 (3) (1994) 428–455.

[2] G.J. Chaitin, Register allocation & spilling via graph coloring. in: Proc. ACM Symp. Compiler
Construction, Boston, MA, 1982, pp. 98–105.

A. Ohori / Science of Computer Programming 50 (2004) 161–187 187

[3] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, P.W. Markstein, Register
allocation via coloring, Comput. Languages 6 (1) (1981) 47–57.

[4] H.B. Curry, R. Feys, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1968.
[5] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.K. Zadeck, EHciently computing static single

assignment form and the control dependence graph, ACM Trans. Programming Languages Systems 13
(4) (1991) 451–490.

[6] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1) (1987) 1–102.
[7] T. Higuchi, A. Ohori, Java bytecode as a typed term calculus, in: Proc. ACM Internat. Conf. Principles

and Practice of Declarative Programming, Pittsburgh, PA, 2002, pp. 201–211.
[8] T. Higuchi, A. Ohori, A static type system for JVM access control, in: Proc. ACM Internat. Conf.

Functional Programming, Uppsala, Sweden, 2003, pp. 227–237.
[9] W. Howard, The formulae-as-types notion of construction, in: J.P. Seldin, J.R. Hindley (Eds.), To H.B.

Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, Academic Press, New York,
1980, pp. 476–490.

[10] G. Morrisett, D. Walker, K. Crary, N. Glew, From system F to typed assembly language, in: Proc.
ACM Symp. Principles of Programming Languages, San Diego, CA, 1998.

[11] G. Necula, P. Lee, Proof-carrying code, in: Proc. ACM Symp. Principles of Programming Languages,
San Diego, CA, 1998, pp. 106–119.

[12] A. Ohori, A polymorphic record calculus and its compilation, ACM Trans. Programming Languages
Systems 17 (6) (1995) 844–895 (A preliminary summary appeared at ACM POPL, 1992 under the
title “A compilation method for ML-style polymorphic record calculi”).

[13] A. Ohori, The logical abstract machine: a Curry–Howard isomorphism for machine code, in: Proc.
Internat. Symp. Functional and Logic Programming, Tsukuba, Japan, 1999.

[14] H. Ono, Proof-theoretic methods in nonclassical logic, an introduction, in: M. Takahashi, M. Okada, M.
Dezani-Ciancaglini (Eds.), Theories of Types and Proofs, MSJ Memoirs, vol. 2, Mathematical Society
of Japan, Tokyo, 1998, pp. 207–254 (Chapter 6).

[15] H. Ono, Y. Komori, Logics without the contraction rule, J. Symbolic Logic 50 (1) (1985) 169–201.
[16] M. Poletto, V. Sarkar, Linear scan register allocation, ACM Trans. Programming Languages Systems

21 (5) (1999) 895–913.
[17] D. Remy, Typechecking records and variants in a natural extension of ML, in: Proc. ACM Symp.

Principles of Programming Languages, Austin, TX, 1989, pp. 242–249.
[18] R. Stata, M. Abadi, A type system for Java bytecode subroutines, in: Proc. ACM Symp. Principles of

Programming Languages, San Diego, CA, 1998, pp. 149–160.
[19] A.S. Troelstra, Lectures on Linear Logic, CSLI Lecture Notes, vol. 29, Center for the Study of Language

and Information, Stanford University, 1992.

	Register allocation by proof transformation
	Introduction
	A proof system for variable liveness
	Liveness analysis through proof reconstruction
	Optimizing live ranges by inserting weakening rules
	Limiting the length of active contexts
	Assigning register numbers
	Conclusions and discussion
	Acknowledgements
	References

