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A Formula for the General Solution of a
Constant-coefficient Difference Equation

D. A. WOLFRAM

Department of Computer Science, The Australian National University,
Canberra, ACT 0200, Australia

We give a formula for the general solution of a dth-order linear difference equation
with constant coefficients in terms of one of the solutions of its associated homogeneous
equation. The formula neither uses the roots of the characteristic equation nor their

multiplicities. It can be readily generalized to the case where the domain of the difference
equation is the real numbers, and the initial values are given by a function defined on the
interval [0, d). In both cases, we express the general solution of the difference equation in

terms of a single solution of its associated homogeneous equation at integer arguments.
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1. Constant-coefficient Difference Equations

Usually, a dth-order linear difference equation with constant coefficients is defined as an
equation of the form

f(n) = r(n) +
∑

1≤l≤d

ad−lf(n− l) (1.1)

where f : Z → C is an unknown function and ad−l is a given constant coefficient,
1 ≤ l ≤ d, and a0 6= 0. The function r : Z→ C is an arbitrary given function, and there
are d arbitrary initial values at consecutive arguments, such as f(0), f(1), . . . , f(d− 1).

2. Solution

We express f in terms of a function Fi on the integers whose initial values are

Fi(n) =
{ 0 if n 6= i

1 if n = i

where 0 ≤ i, n ≤ d− 1, and which satisfies the homogeneous form of equation (1.1):

f(n) =
∑

1≤l≤d

ad−lf(n− l) (2.1)

at integer arguments.

Theorem 2.1. Equation (2.2) below gives the general solution of equation (1.1) for all
n ∈ Z

f(n) =
{∑

0≤i<d f(i)Fi(n) +
∑

0≤i≤n−d r(n− i)Fd−1(d− 1 + i) if n ≥ 0∑
0≤i<d f(i)Fi(n)−

∑
1≤i≤−n r(n+ d+ i− 1)Fd−1(−i) if n ≤ 0. (2.2)

0747–7171/00/010079 + 04 $35.00/0 c© 2000 Academic Press



80 D. A. Wolfram

Proof. The sum
∑

0≤i<d f(i)Fi(n) is the complementary solution of equation (2.1).
This follows because the Fi are d linearly independent solutions of equation (2.1).

We can show that ∑
0≤i≤n−d

r(n− i)Fd−1(d− 1 + i)

is a particular solution of equation (1.1) when n ≥ 0. In this particular solution f(i) = 0
where 0 ≤ i < d. This convolution is the coefficient of the term in xn where n ≥ d of the
product of two generating functions:

G1(x) =
∑
n≥0

Fd−1(d− 1 + n)xn (2.3)

and
G2(x) =

∑
n≥d

r(n)xn. (2.4)

We can verify that ∑
n≥0

f(n)xn = G1(x)G2(x)

where f is this particular solution of equation (1.1) as required.
Similarly, we can show that −

∑
1≤i≤−n r(n+d+i−1)Fd−1(−i) is a particular solution

of equation (1.1) when n ≤ 0.
The result follows because it is the sum of the complementary solution and the par-

ticular solution when n ≥ 0, and when n ≤ 0. 2

The following lemma expresses the function Fi in terms of the single complementary
solution Fd−1.

Lemma 2.2.

Fi(n) =
∑

0≤j≤i

ai−jFd−1(n− j − 1). (2.5)

Proof. From equation (1.1), the ordinary generating function of Fi(n) is

G(Fi(n)) = xi

(
1 +

∑
0≤j≤i

ai−jx
d−i+j

1−
∑

1≤l≤d ad−lx
l

)
. (2.6)

In particular,

G(Fd−1(n)) =
xd−1

1−
∑

1≤l≤d ad−lx
l
. (2.7)

From equations (2.6) and (2.7), we have

G(Fi(n)) = xi +
∑

0≤j≤i

ai−jx
j+1G(Fd−1(n))

= xi +
∑

0≤j≤i

ai−jG(Fd−1(n− j − 1))−
∑

0≤j≤i

ai−j
∑

0≤l≤j

xlFd−1(l − j − 1)

=
∑

0≤j≤i

ai−jG(Fd−1(n− j − 1))
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as required. The last step uses

xi =
∑

0≤j≤i

ai−j
∑

0≤l≤j

xlFd−1(l − j − 1)

which can be shown by changing the order of summations on the right side and using
the definition of Fd−1. There is a similar proof for the case when n < 0. 2

Corollary 2.3.

F0(n) = a0Fd−1(n− 1).

We now use Lemma 2.2 and Corollary 2.3 to express the general solution of equa-
tion (1.1) in terms of F0, or Fd−1. Let

s1 =
∑

0≤i<d

f(i)
∑

0≤j≤i

ai−jF0(n− j)

and
s2 =

∑
0≤i<d

f(i)
∑

0≤j≤i

ai−jFd−1(n− j − 1).

We have

f(n) =

{
1
a0

(
s1 +

∑
0≤i≤n−d r(n− i)F0(d+ i)

)
if n ≥ 0

1
a0

(
s1 −

∑
1≤i≤−n r(n+ d+ i− 1)F0(1− i)

)
if n ≤ 0

(2.8)

and

f(n) =
{
s2 +

∑
0≤i≤n−d r(n− i)Fd−1(d− 1 + i) if n ≥ 0

s2 −
∑

1≤i≤−n r(n+ d+ i− 1)Fd−1(−i) if n ≤ 0. (2.9)

By using equations (2.8) and (2.9), we can find the value of f for any n ∈ Z merely
from the initial values, the function r, and the values of F0, or Fd−1 at integer arguments.
Any applicable method can be used to solve equation (2.1) for F0 or Fd−1.

If we use the method involving exponential generating functions and the Laplace trans-
form (Doetsch, 1974), the initial values of Fd−1 result in a simpler solution than for the
other Fi. The transform of the associated differential equation for Fd−1 is the reciprocal
of the characteristic polynomial of equation (2.1).

3. A Generalization

We consider the generalization of finding a formula for the function f : R→ C which
satisfies equation (1.1) for all x ∈ R. In this case, r : R→ C is an arbitrary given function,
and g : [0, d)→ C is a given initial function that is equal to f over this interval.

Given an initial function g whose domain is the interval [0, d), we can compute every
value of the function f(x) where x ∈ R. Equation (2.8) becomes

f(n+ ε) =

{
1
a0

(
s′1 +

∑
0≤i≤n−d r(n+ ε− i)F0(d+ i)

)
if n ≥ 0

1
a0

(
s′1 −

∑
1≤i≤−n r(n+ ε+ d+ i− 1)F0(1− i)

)
if n ≤ 0

(3.1)

where ε ∈ [0, 1) and s′1 =
∑

0≤i<d g(i+ ε)
∑

0≤j≤i ai−jF0(n− j).
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Similarly, equation (2.9) has the following generalization

f(n+ ε) =
{
s′2 +

∑
0≤i≤n−d r(n+ ε− i)Fd−1(d− 1 + i) if n ≥ 0

s′2 −
∑

1≤i≤−n r(n+ ε+ d+ i− 1)Fd−1(−i) if n ≤ 0 (3.2)

where ε ∈ [0, 1) and s′2 =
∑

0≤i<d g(i+ ε)
∑

0≤j≤i ai−jFd−1(n− j − 1).

3.1. related generalizations

Kuczma et al. (1990, Section 3.1) discuss finding continuous solutions of linear equa-
tions of order 1 in the general setting of iterative functional equations. The dth-order
linear equation is discussed in Section 6.7. They describe a method that can sometimes
reduce it to a system of d linear equations of order 1.

Milne-Thomson (1933, Section 13.1) presents a method for finding the general solution
of equation (1.1) when its domain is C and an initial function is not defined. This method
solves a different problem than the one we consider.

The method uses periodic functions, the roots of the characteristic equation associated
with equation (1.1), and their multiplicities. To apply it in our context, we would need to
find these three things first. Determining the periodic functions can be done by a method
that is closely related to one for finding the coefficients of the complementary solution in
the discrete case.

Instead, we have given a formula for the general solution of the difference equation (1.1)
when its domain is R. This formula uses an initial function directly, and does not use
periodic functions or the roots of the characteristic equation.
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