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SUMMARY

Previous work has shown that some cancer cells are
highly dependent on serine/glycine uptake for pro-
liferation. Although serine and glycine can be inter-
converted and either might be used for nucleotide
synthesis and one-carbon metabolism, we show
that exogenous glycine cannot replace serine to sup-
port cancer cell proliferation. Cancer cells selectively
consumed exogenous serine, which was converted
to intracellular glycine and one-carbon units for
building nucleotides. Restriction of exogenous gly-
cine or depletion of the glycine cleavage system
did not impede proliferation. In the absence of serine,
uptake of exogenous glycine was unable to support
nucleotide synthesis. Indeed, higher concentrations
of glycine inhibited proliferation. Under these con-
ditions, glycine was converted to serine, a reaction
that would deplete the one-carbon pool. Providing
one-carbon units by adding formate rescued nucleo-
tide synthesis and growth of glycine-fed cells. We
conclude that nucleotide synthesis and cancer cell
proliferation are supported by serine—rather than
glycine—consumption.

INTRODUCTION

Malignant development is accompanied by genetic changes in

cancer cells that drive abnormal proliferation, growth, survival,

and invasion (Hanahan and Weinberg, 2011). Each of these phe-

notypes is supported by changes in cellular metabolism, and

several metabolic enzymes have been identified as oncogenes

or tumor suppressors (Shaw and Cantley, 2012). Although alter-

ations in glucose and glutamine metabolism are central to meta-

bolic transformation (Jones and Schulze, 2012), recent studies

have focused on the role of the nonessential amino acids serine

and glycine in supporting tumor growth (Locasale, 2013). In

addition to their role in protein synthesis, serine and glycine

contribute to anabolic pathways important for the generation

of glutathione, nucleotides, phospholipids, and other metabo-

lites (Locasale, 2013) (Figure S2). The requirement for intracel-

lular serine and glycine for the support of cell growth and division

is therefore clear. However, how cancer cells obtain these nutri-
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ents (uptake versus biosynthesis) and how they metabolize them

remains to be fully elucidated. Mechanistic insight into this ques-

tion will significantly enhance our ability to target serine/glycine

metabolism for therapeutic gain.

Amplification of PHGDH, the first enzyme of the de novo serine

synthesis pathway (SSP), has been found in breast cancers and

melanomas (Locasale et al., 2011; Possemato et al., 2011).Many

tumor cells, however, remain highly dependent on uptake of

exogenous serine (Jain et al., 2012; Maddocks et al., 2013), sug-

gesting that in these cells, de novo serine synthesis alone cannot

support the requirements for proliferation. A recent study

showed that glycine uptake is correlated with rapid proliferation

(Jain et al., 2012); this contrasts with other studies showing that

excess dietary glycine has an inhibitory effect on tumorigenesis

in multiple in vivo models (Rose et al., 1999a, 1999b). Our own

work suggests that cancer cells fail to consume glycine when

serine is plentiful (Maddocks et al., 2013).

The present lack of clarity is due, at least in part, to the com-

plexity of serine and glycine metabolism, which can be carried

out by mitochondrial and cytoplasmic pathways (Tibbetts and

Appling, 2010), both of which are upregulated in cancer (Jain

et al., 2012; Locasale et al., 2011; Possemato et al., 2011;

Snell, 1985; Zhang et al., 2012). Serine can be converted to

glycine by serine hydroxymethyl transferase (cytoplasmic,

SHMT1; mitochondrial, SHMT2), a reaction that yields one-

carbon units, which enter the tetrahydrofolate (THF) cycle

and are critical for nucleotide synthesis. Glycine can also be

cleaved by the mitochondrial glycine cleavage system to yield

one-carbon units that are transferred to the THF cycle (Tib-

betts and Appling, 2010) (Figure S2). Amplification of GLDC

(a component of the glycine cleavage system) in cancers

(Zhang et al., 2012) suggests that this pathway is an important

source of one-carbon units. In addition to cleavage, glycine

can also be converted into serine by SHMT1 and SHMT2.

Taken together, these reactions allow serine and glycine to

be metabolized into the same set of metabolic precursors,

suggesting that serine and glycine may be used interchange-

ably and may be equally effective in supporting proliferation

(Figure S2).

In this study we demonstrate that exogenous glycine

cannot substitute for serine for the support of cancer cell pro-

liferation. Tracking the intracellular fate of exogenous serine

and glycine showed that in the absence of exogenous serine,

glycine does not enter the one-carbon cycle, but is converted

into serine, a process that consumes rather than produces
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one-carbon units and prevents nucleotide synthesis. Consis-

tent with this, we show that the inability of cells to grow in

glycine could be rescued by addition of formate, which

directly supplements the one-carbon pool for nucleotide

synthesis.

RESULTS

Serine, but Not Glycine, Supports Maximal Proliferation
of Cancer Cells
To test the ability of either serine or glycine to independently sup-

port cancer cell proliferation, we formulated medium analogous

to Dulbecco’s modified Eagle’s medium (DMEM, which contains

0.4 mM serine and 0.4 mM glycine), but lacking serine and

glycine (assay medium; ‘‘No Ser/Gly’’). This medium could be

supplemented by increasing concentrations of serine or glycine,

allowing us to assess the effect of these nutrients—individually

or in combination—on cell proliferation. We tested multiple can-

cer cell lines and found a range in requirements for exogenous

serine and glycine. Some cell lines (e.g., MCF7 and MDA-MB-

231) showed complete growth inhibition in the absence of serine

and glycine, reflecting very low expression of enzymes for de

novo serine synthesis, as reported previously (Possemato

et al., 2011). However, most showed an intermediate phenotype,

with reduced proliferation without serine and glycine (Figures 1A

and S1A). In all seven cell lines, serine alone completely rescued

proliferation at 0.4–2 mM. In contrast, 0.4 mM glycine produced

a very modest improvement in proliferation (compared to no

serine or glycine), and higher concentrations of glycine (1–

2 mM) caused various degrees of proliferative inhibition. Glycine

alone had little effect on overall cell viability, suggesting this

effect was due to a proliferative defect rather than increased

cell death (Figure S1B).

Cancer Cells Consume Serine in Preference to Glycine,
and High Serine Uptake Correspondswith Glycine Efflux
To assess cellular uptake of exogenous serine and glycine, we

measured their levels over time in culture medium. Intriguingly,

under conditions where equimolar serine and glycine were pre-

sent, serine was rapidly depleted from the medium, whereas

glycine levels initially increased (Figures 1B and S1C). Extracel-

lular glycine levels did not start to fall until the medium was

depleted of serine (generally 0.1–0.2 mM) suggesting that these

cells (which are proliferating rapidly) switch to glycine con-

sumption when most of the available serine has been used.

Glycine was also released into the medium when cells were

fed serine only. However, when fed glycine only, cells showed

modest glycine uptake and did not release serine. The initial

rate (0–16 hr) of serine and glycine uptake and release were

quantified for each cell line and normalized to the cell number

(Figure 1C). Only A549 and MDA-MB-468 cell lines did not

consume serine during this initial period (but did consume

serine after 16 hr); all seven cell lines released glycine. MDA-

MB-468 cells have PHGDH amplification with enhanced SSP

activity (Possemato et al., 2011) and showed the highest

per-cell rates of glycine release, suggesting that in cells with

elevated SSP activity, glycine generated from de novo serine

is effluxed.
C

Exogenous Serine and Glycine Concentration Influence
but Do Not Dictate Their Intracellular Levels and Do Not
Alter SHMT1, SHMT2, and GLDC Expression
Labeled metabolites containing heavy carbon and nitrogen

atoms can be tracked by liquid chromatography-mass spec-

trometry (LC-MS) by virtue of their increased mass compared

to natural 12C and 14N. After feeding cells heavy isotope (13C3

and 15N1) labeled serine, we detected labeled glycine in the me-

dium, confirming the intracellular conversion of serine to glycine

followed by glycine efflux (Figure 2A). Analysis of intracellular

metabolite concentrations revealed higher glycine than serine

levels in fully fed (serine and glycine) cells and that glycine levels

were higher in these cells than those fed 0.4 mM glycine only

(Figure 2B). Appreciable glycine levels were also detected in

cells fed serine only, supporting the idea that exogenous serine

is converted to intracellular glycine. The higher levels of glycine

seen in the cells fed serine and glycine are likely to be promoted

by the higher extracellular glycine concentration under these

conditions (compared to cells fed serine only), raising the intra-

cellular concentration required for passive efflux. We assessed

the effects of these changes on the major enzymes for serine

and glycine interconversion and cleavage, SHMT1, SHMT2,

and GLDC (Figure S2), which are all expressed by HCT116 cells.

Interestingly, the changes in intracellular serine and glycine

levels did not cause significant variation in the protein expression

of these metabolic enzymes (Figure 2C).

Cells Fed Glycine without Serine Have Depleted
Nucleotide Pools
To assess the general metabolic effects of serine/glycine con-

sumption, we performed steady-state metabolomic analysis on

HCT116 and RKO cells (Figures 3 and S3). We reported previ-

ously that serine is an allosteric activator of PKM2 and that serine

deprivation causes PKM2 inhibition, resulting in accumulation

of glycolytic intermediates for diversion into the SSP (Chaneton

et al., 2012; Maddocks et al., 2013). Cells depleted of serine

and fed only glycine had low steady-state serine levels, with

elevated phosphoenolpyruvate (PEP) and decreased lactate,

indicative of a low level of PKM2 activity (Figures 3A and S3A).

Serine/glycine metabolism provides essential precursors for

the synthesis of reduced glutathione (GSH) and purine

nucleotides, both of which are important in proliferating cells.

Whereas GSH levels were maintained at relatively constant

levels under all conditions, purine nucleotide metabolites (AMP

and GMP) were markedly depleted in glycine- versus serine-

fed cells (Figures 3A, S3A, and S3B). Further analysis of the

purine biosynthesis pathway revealed an accumulation of glyci-

namide ribonucleotide (GAR), the metabolite generated after

incorporation of glycine, but a decrease in downstreammetabo-

lites that require the addition of one-carbon units from the THF

cycle (Figure 3B). In RKO cells, IMP levels were depleted in line

with AMP and GMP. However, although AMP and GMP also

fell in HCT116 cells, IMP levels remained relatively constant.

We noted that steady-state levels of IMP were particularly low

in these cells (�1 nmol/106 cells), suggesting that flux through

IMP may be too rapid to allow accumulation of steady-state

levels in the HCT116 cells. Taken together, the deficiency in

nucleotide synthesis in cells fed only glycine is intriguing given
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Figure 1. Serine Supports Rapid Proliferation and Cannot Be Substituted by Glycine, which Can Inhibit Proliferation

(A) Cancer cell lines were grown in the presence or absence of serine and/or glycine at the stated concentrations; cell numbers were counted over time. Data are

means of triplicate wells; bars represent SD; *p < 0.05; only ‘‘No Ser/Gly’’ versus ‘‘+Gly 2 mM’’ compared.

(B) HCT116 and RKO were grown in media containing serine and/or glycine; media were sampled at the stated time points and analyzed for extracellular nutrient

content by LC-MS. Data are means of triplicate wells; bars represent SD.

(C) Cells were grown inmedium containing 0.4mMserine and glycine; nutrient uptake and releasewas quantified for the first 16 hr using LC-MS and normalized to

cell number. Data are means of triplicate wells; bars represent SD.

See also Figure S1.
that glycine alone can theoretically provide all of the precursors

contributed by serine to support nucleotide synthesis (i.e., one-

carbon units and glycine, Figure S2).

Excess Glycine Drives Intracellular Glycine-to-Serine
Conversion and Inhibits Flux of Glycine to Purines
To assess how glycine is metabolized, we fed cells labeled
13C2

15N1 glycine. When fed glycine only, cells maintained incor-
1250 Cell Reports 7, 1248–1258, May 22, 2014 ª2014 The Authors
poration of glycine into GSH at levels similar to those seen in cells

fed serine and glycine. However, cells fed only glycine had no

detectable incorporation of glycine into purine nucleotides at

1–3 hr (AMP and GMP, Figure 4A). Further analysis of the purine

synthesis pathway confirmed that cells fed only glycine accumu-

lated glycine-labeled GAR, but that flux through to downstream

nucleotides (AMP, ADP, GMP, and GDP) was diminished (Fig-

ure S4A). These data suggest that glycine alone is unable feed



Figure 2. Extracellular Serine and Glycine Influence Intracellular

Levels

(A) HCT116 cells were fed medium containing 0.4mM labeled (13C3
15N1) serine

(without glycine), and nutrient uptake and release was measured by analyzing

media samples via LC-MS.

(B) HCT116 and RKO cells were grown in media with varying concentrations

of serine and glycine for 24 hr. The media were replaced, and after 3 hr

intracellular metabolites were extracted and analyzed via LC-MS. Data are

means of triplicate wells; bars represent SD.

(C) HCT116 cells were grown in media with or without varying concentrations

of serine and glycine for 24–48 hr. Expression of enzymes that directly

metabolize serine and glycine were determined by western blot.

See also Figure S2.

C

the one-carbon cycle needed to support nucleotide (but not

GSH) synthesis. This was unexpected, given that glycine can

be converted to methyl THF (Me-THF) derivatives in the mito-

chondria by the glycine cleavage system, a pathway amplified

in some cancers (Zhang et al., 2012). However, our results indi-

cate that glycine cleavage does not support one-carbon meta-

bolism for purine nucleotide synthesis in the cells tested here.

Stable knockdown of GLDC did not impede the proliferation of

HCT116 cells under fully fed, serine-fed, or glycine-fed condi-

tions (Figure S4B), although a slight increase in intracellular

glycine levels in the GLDC-depleted cells suggest that the

glycine cleavage system is somewhat functional in these cells

(Figure S4C). Importantly, however, GLDC depletion under fully

fed conditions did not prevent normal metabolic flux of glycine

into purine synthesis or deplete overall purine levels, supporting

the suggestion that glycine cleavage does not make an

appreciable contribution to purine synthesis in these cells.

(Figure S4C).

In light of these results, we sought to understandmore fully the

fate of glycine taken up into cells fed only glycine. We noted that

in cells fed both serine and glycine, some of the labeled glycine

was converted to serine, consistent with previous analyses

showing that glycine can be a significant source of serine (Kalhan

and Hanson, 2012). However, glycine contributed to only a small

proportion of the total serine pool, which was dominated by un-

labeled serine (taken up from medium and/or synthesized de

novo). By comparison, in cells fed only glycine, labeled serine

accumulation was barely detectable using standard conditions

with 13C2
15N1 glycine (Figure 4A). However, given the severely

diminished steady-state levels of serine in the glycine-fed cells,

we considered the possibility that our failure to detect newly syn-

thesized serine might reflect a rapid conversion of serine to other

metabolites (e.g., for protein and/or phospholipid synthesis). To

test this hypothesis, we developed a new method for measuring

metabolic flux that we have called ‘‘Pulse-Stop-Flux’’ analysis.

As cellular serine uptake is extremely rapid, adding a ‘‘pulse’’

of (unlabeled) serine into the medium very rapidly increases

the intracellular serine pool, allowing the measurable accumula-

tion of labeled serine at short time points after addition of the

pulse.

Remarkably, spiking 1 mM serine to the medium of cells pre-

viously fed only glycine caused intracellular serine levels to rise

to fully fed levels in just one minute (Figure 4B). Furthermore,

this pulse of unlabeled serine caused labeled serine (derived

from 13C2
15N1 glycine) to accumulate. Quantifying labeled serine

accumulation during this one-minute period allowed us to esti-

mate the rate per minute of glycine-to-serine conversion in these

cells (Figure 4C). Comparing these rates showed that increasing

the exogenous concentration of glycine led to a proportional

increase in the rate of glycine-to-serine conversion. These re-

sults showed that excessive intracellular glycine levels promote

the conversion of glycine into serine, a process that consumes

one-carbon units (thus competing with purine synthesis for

one-carbon units), explaining the inhibition of purine synthesis

caused by excess glycine. Furthermore, we noted here (and in

all other experiments using labeled glycine) that fully labeled

(i.e., 13C3
15N1) serine was not detected. Instead, only partially

labeled (13C2
15N1 including one unlabeled 12C) serine was found,
ell Reports 7, 1248–1258, May 22, 2014 ª2014 The Authors 1251
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indicating that the one-carbon unit used to synthesis serine from

glycine was not derived from glycine cleavage. This provides

further evidence that glycine cleavage does not appreciably

contribute to the one-carbon pool in the cells tested here.

Formate Rescues Glycine-Induced Inhibition of
Proliferation
Given that conversion of glycine to serine requires donation of a

one-carbon unit from the THF cycle (Figure S2), we considered

the possibility that the glycine-to-serine conversion detected

in glycine-fed cells could prevent flux of one-carbon units into

purine synthesis. To test this hypothesis, we replenished the

one-carbon pool directly by adding formate to the media of

glycine-fed cells. Formate contains a single carbon atom and re-

acts directly with THF, making formyl-THF a one-carbon donor

for purine synthesis (Tibbetts and Appling, 2010). Although

formate alone (i.e., in the absence of glycine) was unable to sup-

port proliferation, it completely rescued growth when given with

either 1 mM or 2 mM glycine (Figures 5A and S5A). In glycine-fed

cells, we confirmed that flux of glycine into purine synthesis was

restored by formate. Whereas glycine-fed cells had low steady-

state levels of purines, accumulation of GAR and low flux of

glycine into purine synthesis (Figures 4A, 5B, and S4A), cells

fed glycine and formate showed release of GAR accumulation,

restoration of flux to purines, and steady-state levels of purines

comparable to cells fed serine and glycine (Figures 5B and S5B).

Using the Pulse-Stop-Flux technique, we assessed whether

the rescue seen following formate addition enhanced the rate

of glycine-to-serine conversion. These analyses showed that

formate did not increase the rate at which serine was synthe-

sized from glycine, which actually showed a slight decrease (Fig-

ure 5C). This suggested that formate-induced rescue was the

result of direct incorporation of formate into nucleotide synthesis

via formyl-THF, and not the result of increased glycine-to-serine

conversion.

To test this model and further analyze the use of serine,

glycine, and one-carbon metabolites for purine synthesis, we

used a range of different labeled metabolites and tracked their

incorporation into GAR, AMP, ADP, GMP, and GDP using LC-

MS. We were unable to reliably measure labeled IMP (which is

close to the threshold of detection) in this experiment. Cells

fed labeled serine (13C3
15N1) accumulated purines containing

predominantly m+5 and m+2 isotopomers, indicating that

exogenous serine alone provides both the one-carbon and

glycine components necessary for purine synthesis (Figures

6 and S6). As expected, cells fed labeled glycine (13C2
15N1)

showed accumulation of glycine in GAR but low levels of label

incorporation in downstream metabolites, with m+3 (derived

directly from a complete molecule of glycine) being the major

isotopomer. This further supported the suggestion that glycine
Figure 3. Exogenous Glycine Fails to Support Nucleotide Synthesis

(A) HCT116 cells were grown in media with varying concentrations (conc.) of seri

levels of intracellular metabolites were analyzed via LC-MS. Data are means of

tricarboxylic acid cycle; SSP, serine synthesis pathway.

(B) Purine nucleotide levels in HCT116 and RKO cells were analyzed as described

one-carbon unit.

See also Figure S3.

C

cleavage does not provide enough one-carbon units for nucle-

otide synthesis in these cells; if glycine cleavage had contrib-

uted significantly to purine synthesis, labeled one-carbon units

would have been generated from cleaved glycine. If this were

the case, m+1, m+2, and m+5 peaks would have been

detected, producing a labeling pattern similar to that of

serine. However, this labeling pattern was not detected. In

contrast, adding unlabeled formate greatly increased incorpo-

ration of labeled glycine into purines (m+3), further con-

firming that a lack of one-carbon units for purine synthesis un-

derlies the growth inhibition of glycine-fed cells. Furthermore,

labeled (13C1) formate (when fed with unlabeled glycine) was

detected in m+1 and m+2 isotopomers, confirming that the

formate is incorporated as one-carbon units for nucleotide

synthesis.

DISCUSSION

Although cancer cells are clearly dependent on the availability

of numerous extracellular nutrients, some of these—such as

essential amino acids, glucose, and glutamine—are difficult

to limit in vivo. In contrast, we have shown in mice that serum

serine and glycine can be significantly depleted by manipulation

of diet (Maddocks et al., 2013) and that depletion of these

nonessential amino acids can inhibit tumor growth without

significantly impairing health. Serine and/or glycine depletion is

therefore a potentially attractive therapeutic approach for cancer

treatment, but before this approach can be fully realized it is crit-

ical to establish the true nature of serine, glycine, and one-car-

bon metabolism at a cellular level.

It is becoming clear that cancer cells use different mecha-

nisms to achieve the metabolic changes that are required for

the support of transformation (Cantor and Sabatini, 2012). Main-

taining adequate flux through the one-carbon cycle and support-

ing nucleotide synthesis is emerging as a critical pathway in

allowing malignant transformation, but this pathway can be fed

by different mechanisms: some cancers amplify the endogenous

SSP (Locasale et al., 2011; Possemato et al., 2011), whereas

others cannot adequately activate the SSP and remain highly

dependent on uptake of exogenous serine to support growth.

The interconnection of serine and glycine metabolism suggests

that serine and glycine may be equally effective in supporting

cancer cell proliferation. In theory, all the precursors for nucleo-

tide synthesis could be provided by serine or glycine alone.

Indeed, the ability of some cancer cells to cleave glycine has

been demonstrated in studies showing that overexpression of

GLDC supports tumor initiation of non-small cell lung cancers

(Zhang et al., 2012). This pathway is capable of generating

one-carbon units for the THF cycle and, assuming that one-car-

bon units generated in mitochondria can be accessed for
ne and glycine for 24 hr. The media were replaced, and after 3 hr, steady-state

triplicate wells; bars represent SD. PPP, pentose phosphate pathway; TCA,

in (A). The data shown for AMP andGMP in RKO cells are also shown in (A). 1-C,
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Figure 4. Cells Fed Only Glycine Have Enhanced Glycine-to-Serine Conversion

(A) HCT116 cells were grown inmedia with serine and glycine or glycine only for 24 hr. Themedia were replacedwithmatchedmedia containing labeled (13C2
15N1)

glycine, and after 1 hr and 3 hr, intracellular metabolites were extracted and analyzed via LC-MS. Data are means of triplicate wells; bars represent SD.

(B) HCT116 cells were grown in media with varying concentrations of serine and glycine for 24 hr. The media were then replaced with media containing labeled

(13C2
15N1) glycine. After 1 hr intracellular metabolites were extracted and analyzed via LC-MS. To allow the accumulation and measurement of labeled serine

(synthesized from labeled glycine), we added a pulse of exogenous serine (final concentration in media, 1 mM) to wells and lysed the cells after 1 min. Data are

means of triplicate wells; bars represent SD.

(C) The Pulse-Stop-Flux method demonstrated in (B) was used to calculate the net rates of labeled serine appearance (i.e., glycine-to-serine conversion) in

HCT116 cells under various glycine concentrations. Data are means of triplicate wells; bars represent SD.

See also Figure S4.
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Figure 5. Formate Rescues the Growth-

Inhibitory Effects of Glycine by Restoring

Purine Synthesis

(A) HCT116, RKO, A549, and SW480 cells were

grown in media containing 1 mM (or 2mM, Fig-

ure S4A) serine or glycine with or without formate

(For); cell numbers were counted over time. Data

are means of triplicate wells; bars represent SD.

(B) HCT116 cells were grown in media with

glycine only or glycine and formate for 24 hr. The

media were replaced with matched media con-

taining labeled (13C2
15N1) glycine; after 1 hr and

3 hr, intracellular metabolites were extracted and

analyzed via LC-MS. Data are means of triplicate

wells; bars represent SD.

(C) The Pulse-Stop-Flux method demonstrated in

Figure 4B was used to calculate the net rates of

labeled serine appearance (i.e., glycine-to-serine

conversion) in HCT116 cells under various glycine

concentrations, with or without formate. Data are

means of triplicate wells; bars represent SD.

See also Figures S2 and S5.
nucleotide synthesis, should be able to support cell growth using

only glycine.

However, our data show that in a variety of cancer cell lines,

the glycine cleavage system does not provide enough one-

carbon units to adequately support purine synthesis and
Cell Reports 7, 1248–12
proliferation using only glycine. This is

intriguing, given that global gene-expres-

sion data indicates that the cell lines

used in our study all show increased

GLDC expression compared to normal

tissue (Barretina et al., 2012). We show

in these cells that excess glycine is not

used to generate Me-THF for purine syn-

thesis, but is converted to serine through

a pathway that depletes rather than re-

plenishes Me-THF. These observations

explain why increasing glycine levels

progressively inhibit, rather than rescue,

cell growth. Our results suggest that in

a proportion of cancers, providing one-

carbon units for purine synthesis is abso-

lutely dependent on serine rather than

glycine uptake. We therefore suggest

that the acquisition of enhanced GLDC

activity may provide an advantage during

tumor initiation and/or growth in some

cancers for other reasons, possibly de-

grading excess glycine that might other-

wise accumulate and cause the growth-

inhibitory effects we have described.

Another relevant previous study showed

a clear correlation between glycine con-

sumption and proliferative rate, suggest-

ing that rapidly proliferating cancer cells

preferentially take up glycine (Jain et al.,
2012). Although our data also show that highly proliferative cells

consume glycine, the cells only switch to glycine consumption

once exogenous serine has been depleted. We suggest the pre-

viously reported correlation between glycine uptake and prolifer-

ation rate reflects the rapid depletion of exogenous serine, which
58, May 22, 2014 ª2014 The Authors 1255



Figure 6. Nucleotide Isotopomer Distribution

Confirms the Relative Contribution of Serine,

Glycine, and Formate to Purine Synthesis

HCT116 cells were grown in media with serine or

glycine and with or without formate (For) for 24 hr (all

nutrients were unlabeled for this period). After 24 hr,

media were replaced with matching media con-

taining labeled (13C3
15N1) serine only, labeled

(13C2
15N1) glycine only, labeled (13C2

15N1) glycine

with unlabeled formate, or unlabeled glycine with

(13C1) formate. After 3 hr, intracellular metabolites

were extracted and analyzed via LC-MS. Data are

means of triplicate wells; bars represent SD.
is limited in a closed cell-culture system, by rapidly proliferating

cells. We propose that glycine uptake is therefore a conse-

quence of rapid proliferation, rather than its cause. Analysis of

the primary data from this comprehensive study reveals that all

cell lines tested consumed more serine than glycine, and it

seems possible that the more-slowly proliferating cells did not

take up glycine because they had not depleted their culture me-

dium of serine over the course of the study.
1256 Cell Reports 7, 1248–1258, May 22, 2014 ª2014 The Authors
Interestingly, we noted that coincident

with maximal serine consumption, cells

released glycine. This phenomenon can

be explained by the specific precursor de-

mands of nucleotide synthesis. Synthesiz-

ing a complete set of DNA bases (ATGC)

requires (from serine/glycine metabolism)

five one-carbon units and two molecules

of glycine. Converting five molecules of

serine to glycine yields all five one-carbon

units required, but a three-molecule

excess of glycine. We propose that cells

release some of the excess glycine to limit

intracellular glycine accumulation and thus

facilitate further serine uptake and serine-

to-glycine conversion to maintain maximal

nucleotide synthesis and proliferation.

Furthermore, as discussed above, some

cells may also show enhanced glycine

cleavage as an alternative (or additional)

mechanism for limiting glycine

accumulation.

Metabolic flux (the rate of conversion of

one metabolite to another) is generally

considered the critical parameter in deter-

mining the activity of a given metabolic

pathway. Whereas transcriptional, proteo-

mic, and steady-state metabolic data is

now relatively easy to generate, eluci-

dating metabolic fluxes is more chal-

lenging. Isotope labeling is an essential

tool in probing metabolic fluxes, and anal-

ysis of the rate at which a nonlabeled

metabolite is replaced by a labeled form al-

lows estimation of metabolic flux. How-
ever, in highly active pathways where metabolite turnover is

extremely rapid and metabolite steady-state levels are very

low, the accumulation of labeled metabolite may not be de-

tected. This is particularly relevant during nutrient starvation,

wherein intracellular levels of a nutrient fall and the remaining

low levels are rapidly converted into downstream metabolites.

To overcome this issue, we developed a new technique involving

saturation of the produced metabolite, concurrent with flux of a



13C15N-labeled substrate, which we have termed ‘‘Pulse-Stop-

Flux’’ analysis. This technique allowed us to detect increased

flux from glycine to serine under serine-starved, glycine-fed con-

ditions and will be more widely applicable to the analysis of other

pathways.

EXPERIMENTAL PROCEDURES

Cell Culture

HCT116 and RKO cells were a gift of Prof. Bert Vogelstein. SW480, A549,

MDA-MB-231, MDA-MB-468, and MCF7 cells were obtained from ATCC.

Cell-culture products were obtained from Gibco unless otherwise stated;

catalog numbers are shown in parentheses. Cells were grown in a humidified

atmosphere of 5% CO2 in air at 37�C. Stock cells were maintained in McCoy’s

5A medium (26600) supplemented with 10% fetal bovine serum (FBS; 10270)

and penicillin-streptomycin, or in DMEM (21969) supplemented with 10% FBS

(G10270), 2 mM L-glutamine, and penicillin-streptomycin. For starvation

experiments, ‘‘assay medium’’ lacking serine and glycine was formulated

with MEM (21090) supplemented with dialysed FBS (HyClone, Thermo Scien-

tific), 2 mM L-glutamine, D-glucose (Sigma-Aldrich; final concentration

17 mM), MEM vitamins (11120), and penicillin-streptomycin.

Proliferation Assays

Cells were seeded in complete McCoy’s 5A/DMEM medium at 1 3 104 – 3 3

104 cells per well in 24-well plates and allowed to adhere for 20–40 hr. Before

adding assay media, cells were washed briefly in PBS. Media were formulated

by adding serine/glycine/formic acid (all Sigma) at the stated concentrations to

the assay medium described above. Formic acid was used at 0.5–0.25 mM

(1:50,000–1:100,000 dilution in media). Triplicate wells were seeded for each

experimental condition, and replicate plates were seeded for counting at

the specified time points, including ‘‘time zero’’ so that relative cell numbers

could be calculated. Cells were trypsinized, resuspended in PBS-EDTA, and

counted with a CASY Model TT Cell Counter (Innovatis, Roche Applied Sci-

ence). For ease of comparison, proliferation curves for fully fed (‘‘+Ser & Gly

0.4mM’’ and starved ‘‘No Ser/Gly’’ conditions) are replicated on the left and

right panels in Figure 1A; all curves displayed on the same axes were gener-

ated in the same experiment.

Cell Viability Assay

Cells were seeded in 24-well plates and grown in the stated concentrations

of serine and glycine as described above. Cells were trypsinized and counted

for trypan-blue exclusion using a hemocytometer.

Western Blot

Whole-cell protein lysates were prepared in radioimmunoprecipitation assay

(RIPA) buffer with complete protease inhibitors (Roche), separated using

precast NuPAGE gels (Invitrogen, Life Technologies) and transferred to nitro-

cellulose membranes. Proteins were detected and quantified using a LI-COR

Odyssey Infrared scanner and software (LI-COR Biosciences). Primary anti-

bodies used were as follows: anti-GLDC (Sigma HPA002318), anti-SHMT1

(Sigma HPA023314), anti-SHMT2 (Santa Cruz sc-25064), and anti-Actin

(Millipore MAB1501). Secondary antibodies for the relevant species were

IRDye680LT and IRDye800CW conjugated (LI-COR Biosciences).

GLDC Silencing

Plasmids for stable knockdown of GLDC and control small hairpin RNA

(shRNA) were purchased from QIAGEN (SureSilencing shRNA plasmid

puromycin Human GLDC KH12731P, catalog no. 336314). HCT116 cells

were transfected and selected according to the manufacturer’s instructions.

Stable clones were selected based on knockdown assessed by western

blot. GLDC shRNA sequences were as follows: 1, ctagcagctatcatgattaca; 2,

cgtctgaactcgcacctatca; control shRNA, ggaatctcattcgatgcatac.

Liquid Chromatography-Mass Spectrometry

LC-MS analysis was performed broadly as described previously (Maddocks

et al., 2013). Cells (3–4 3 105/well) were seeded in complete medium in tripli-
C

cate wells of 6-well plates; duplicate plates were seeded for cell counting. After

24–48 hr (if cells were grown for 48 hr prior to assay, medium was refreshed

after 24 hr), cells were washed with PBS, and 2 ml assay medium (with or

without serine, glycine, or formate) was added for 24 hr. After 24 hr growth

in the stated conditions, media were replaced with matched media for 1–

3 hr before metabolites were extracted. For isotopomer distribution assays,

the fresh media contained 13C2
15N1 glycine/

13C3
15N1 serine/

13C1 formate. Me-

tabolites were extracted by lysing cells in ice-cold methanol/acetonitrile/H2O

(50:30:20). Samples were shaken at 4�C for 10 min, then centrifuged for

15 min at 16,000 3 g, and the supernatant was collected and analyzed by

LC-MS. Analytes were separated using hydrophilic interaction liquid chroma-

tography with a SeQuant ZIC-pHILIC column (2.1 3 150 mm, 5 mm) (Merck)

and detected with high-resolution, accurate-mass mass spectrometry using

an Orbitrap Exactive in line with an Accela autosampler and an Accela 600

pump (Thermo Scientific). The elution buffers were acetonitrile for buffer A

and 20 mM (NH4)2CO3 and 0.1% NH4OH in H2O for buffer B. A linear gradient

was programed starting from 80% buffer A and ending at 20% buffer A after

20 min, followed by wash (20% buffer A) and re-equilibration (80% buffer A)

steps with a flow rate of 100 ml/min. The mass spectrometer was fitted with

an electrospray-ionization probe and operated in full-scan and polar-switching

mode with the positive voltage at 4.5 kV and negative voltage at 3.5 kV. Serine

and glycine levels were quantified using five-point calibration curves spiked in

cell lysates andmedia. Metabolite identification and data analysis were carried

out using LCQUAN software (Thermo Scientific). For ease of comparison, spe-

cific data for some metabolite levels (e.g., AMP and GMP) are replicated in the

main and supplemental figures, as stated in the figure legends.

Pulse-Stop-Flux Analysis

HCT116 cells were seeded and grown in triplicate wells of 6-well plates as

described above. Cells were fed the stated media (containing 0.1 mM–1 mM

glycine or 1 mM glycine plus 0.5 mM formate) for 24 hr; these media were then

replaced with matched media wherein glycine was substituted with 13C2
15N1

glycine. After 1 hr, cells were either lysed and metabolites extracted, or they

received a one-minute pulse of 80 mM serine added to the medium and mixed

by gentle shaking (final concentration, 1 mM) before being lysed and analyzed

by LC-MS as described above. The levels of 13C2
15N1 serine deriving from

13C2
15N1 glycine in pulsed conditions were subtracted from that in nonpulsed

conditions to find the net amount of 13C2
15N1 serine synthesized in one minute.

Data were plotted as the net serine synthesis at nmol/13 106 cells/hr.

Serine and Glycine Uptake and Release

Cells were seeded in 6-well plates (at appropriate seeding density to be�90%

confluent by the end of the assay) in complete medium and allowed to grow

for 48 hr (medium was refreshed after 24 hr). At the start of the assay, cells

were washed with PBS and received 1.5 ml per well of assay medium supple-

mented with both serine and glycine (0.4 mM) or serine or glycine only

(0.4 mM). At the stated time points, 10 ml of medium was removed and added

to 490 ml ice-cold methanol/acetonitrile/H2O (50:30:20). These samples were

prepared for LC-MS in the same way as cell extracts (described above).

Nutrient uptake and release data were plotted on curved-line scatter plots (us-

ing the mean of triplicate wells ± SD) with Microsoft Excel (v.12.3.6). For each

cell line, the initial uptake/release for serine and glycine was calculated by

measuring the change in metabolite levels from 0–16 hr and normalizing for

cell number. Cell number was determined by performing a cell count at 8 hr

and using this as an estimate of the average cell number from 0–16 hr.

Statistical Analysis

Comparisons of proliferation rates (Figure 1A, performed for ‘‘No Ser/Gly’’

versus glycine 2mM only) and AMP and GMP levels (Figure S3B) were per-

formed with TTEST (paired, two tails) using Microsoft Excel (v.12.3.6); p <

0.05 was considered statistically significant and is denoted with an asterisk.
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