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a b s t r a c t

The smallest number of vertices that have to be deleted from a graph G to obtain a bipartite
subgraph is called the bipartite vertex frustration of G and denoted by ψ(G). In this paper,
some extremal properties of this graph invariant are presented. Moreover, we present an
exact formula for the bipartite vertex frustration of the corona product of graphs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be a graph on n vertices. The vertex and edge sets of G are denoted by V (G) and E(G), respectively. Molecular graphs
represent the constitution of molecules. They are generated using the following rule: vertices stand for atoms and edges for
bonds. It is clear that the degree of each vertex in a molecular graph is at most four.

A topological index is a numeric quantity derived from the structure of a graph which is invariant under automorphisms
of the considered graph. The smallest number of edges that have to be deleted from a graph to obtain a bipartite spanning
subgraph is called the bipartite edge frustration of G and denoted by ϕ(G). This topological index has important applications
in computing stability of fullerenes [1,2]. Because of this success it is natural to study its vertex version.

The first result regarding the large bipartite spanning subgraphs of a given non-bipartite graph published in a paper by
Erdös [3] and Edwards [4]. They proved that every graph G contains a bipartite subgraph with at least |E(G)|

2 +
|V (G)|−1

4 edges.
After publishing the mentioned paper, some authors presented better lower bounds for various classes of graphs; see [5–7]
for details. To investigate the large bipartite subgraphs of a given graph G, it is possible to find a smallest set of edges that
must be deleted from G in order to make the remaining graph bipartite. The cardinality of such small set of edges is called
the bipartite edge frustration of G and denoted by ϕ(G). In [1,8,9], some mathematical properties of this new graph invariant
was obtained. In [10], the authors computed the bipartite edge frustration index for some classes of nanotubes.

The bipartite vertex frustration of G, ψ(G) is defined as the minimum number of vertices that have to be deleted from G
to obtain a bipartite subgraph H of G. Obviously, if G is not bipartite then H is not a spanning subgraph of G and so, H is not
in general a large bipartite subgraph of G. It seems that it is possible to find an algorithm for constructing a large bipartite
spanning subgraph from H .

Suppose G is a graph. A subset A ⊆ V (G) such that G − A is bipartite is called a vertex bipartization for G. The vertex
bipartization problem for the graph G is to find the minimum number of vertices whose removal makes the graph bipartite
which is equivalent to the problem of computing ψ(G). Similar to the edge version, the vertex bipartization problem has a
rich history. The problemhas numerous applications, for instance, in computational biology [11], and register allocation [12].

Given a graph G, a matchingM in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex.
We say that a vertex is matched if it is incident to an edge in the matching. Otherwise the vertex is unmatched. The line
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Fig. 1. The graph G.

graph, L(G), is the graph whose vertices are the edges of G and two edges of G are adjacent in L(G) if and only if they are
incident to the same vertex.

All graphs in this paper are assumed to be finite, simple and connected. For terms and concepts not defined here, we refer
the reader to any of several standard monographs such as, e.g., [13,14].

2. Main results

It is clear that G is bipartite if and only if ϕ(G) = ψ(G) = 0. Since the quantity ψ(G) is, in general, difficult to compute;
it makes sense to search for classes of graphs that allow its efficient computation. It is also worthwhile to investigate how
the bipartite vertex frustration of some composite graphs is related to the bipartite vertex frustrations of their components.
The aim of this section is to study this problem for suspension and corona product of graphs which will be defined later.

Let Kn, Cn and Wn denote the complete, cycle and wheel on n vertices. Then ψ(Kn) = n − 2, ψ(Cn) =
0 2 | n
1 2 - n and ψ(Wn) =


2 2 | n
1 2 - n .

Lemma 1. Let G be a graph with components G1,G2, . . . ,Gn. Then ψ(G) =
∑n

i=1 ψ(Gi).

Proof. The proof is straightforward. �

To compute the bipartite vertex frustration under graph operations, it is enough to consider connected graphs and then
apply Lemma 1. From now on, all graphs are assumed to be connected.

Lemma 2. ψ(G) ≤ ϕ(G). Moreover, if ψ(G) = ϕ(G) then every minimal edge bipartization of G is a matching.

Proof. SupposeM = {e1, . . . , eϕ(G)} is a subset of E(G) such that G−M is bipartite. IfM is a matching of G then we define A
to be a set of vertices such that each vertex of A is incident to one and only one edge ofM . Since G−A is a subgraph of G−M ,
it is bipartite and so ψ(G) ≤ ϕ(G). If M is not a matching of G then there are two edges e and f of M containing a common
vertex v. Therefore, e, f ∉ E(G− v) and we can find a set of vertices, say B, such that G− B is bipartite and |B| < ϕ(G). Thus
ψ(G) ≤ |B| < ϕ(G), as desired.

We now assume that ψ(G) = ϕ(G) and choose M ⊆ E(G) such that G − M is bipartite and |M| = ϕ(G). We claim that
M is a matching of G. Otherwise, there are edges e, f ∈ M with a common vertex v. Choose v and one vertex of each edge
ofM − {e, f }. Then we obtain a subset X of V (G) of size less than |M| such that G − X is bipartite, contradicts by equality of
ψ(G) and ϕ(G). �

The converse of Lemma 2 is not generally correct. To do this, we consider the graph G depicted in Fig. 1. Then ϕ(G) =

3, ψ(G) = 2 and each minimal bipartization of G is a matching.

Lemma 3. Suppose G is a non-empty graph. Then for each minimal vertex bipartization F of G,G − F is non-empty.

Proof. Suppose F = {v1, . . . , vψ(G)} is a vertex bipartization of G such that G − F is an empty graph. Choose a vertex vi ∈ F
and construct a maximal subgraph T of G with the vertex set (G − F) ∪ {vi} such that vi is incident to all edges of T . This
shows that by choosing Fi = F − {vi},G − Fi is also bipartite, which is impossible. �

The suspension of a graph G is the graph obtained from G by adding a new vertex and connecting this vertex to each
vertex of G. In the next theorem, the bipartite vertex frustration of the suspension of a graph G is computed.

Theorem 4. ψ(∇G) is equal to zero if G is empty and ψ(G)+ 1 otherwise.

Proof. Suppose G has exactly n vertices. If G is empty then ∇G ∼= Sn+1, the star graph on n + 1 vertices. So, ∇G is bipartite,
as desired. Suppose G is not empty and V (∇G)−V (G) = {v}. Define F to be a minimal set of vertices that have to be deleted
from G to obtain a bipartite subgraph H of G. It is clear that H is a subgraph of ∇G and ∇G − (F ∪ {v}) is bipartite. Thus,

ψ(∇G) ≤ ψ(G)+ 1. (1)

We claim that each minimal vertex bipartization of ∇G is containing the vertex v. If so, then the other vertices of a
minimal vertex bipartization of ∇G will be a vertex bipartization of G, which completes our argument. To prove our claim,
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Fig. 2. The Corona product G ◦ H .

weassume thatψ(∇G) = k+l, where k is the number of vertices that have to be deleted fromG and l = 0, 1. This implies that
ψ(G) ≤ k. We first assume thatψ(G) < k. Thenψ(G)+ 1 ≤ k ≤ k+ l = ψ(∇G). Therefore, by Eq. (1),ψ(G)+ 1 = ψ(∇G),
as desired. Next we suppose thatψ(G) = k and F is a set of vertices of size k such that G− F is bipartite. By Lemma 3, G− F
is non-empty and so it has at least one edge e. Thus we have at least one triangle ∆ in ∇G such that v ∈ V (∆). This shows
that for vertex bipartization of ∇G, the vertex v must be deleted, i.e. l = 1. Therefore, ψ(∇G) = k + l = ψ(G) + 1, which
completes our proof. �

Corollary 5. Let G be an n-vertex graph, S = {v1, . . . , vk} ⊆ V (G) such that deg(vi) = n − 1, 1 ≤ i ≤ k, and G − S is
non-empty. Then ψ(G) = k + ψ(G − S).

Proof. Since deg(v1) = n − 1,G = ∇(G − {v1}), and since degG−{v1}
(v2) = n − 2,G − v1 = ∇(G − {v1, v2}). Therefore,

G = ∇(G − {v1})

= ∇(∇(G − {v1, v2}))

=
...

= ∇(∇(· · · ∇(G − {v1, v2, . . . , vk}) · · ·)).

Now, by applying Theorem 4, we have

ψ(G) = ψ(∇(G − {v1})) = ψ(G − {v1})+ 1
= ψ(∇(∇(G − {v1, v2}))) = ψ(G − {v1, v2})+ 2

=
...

= ψ(∇(∇(· · · ∇(G − {v1, v2, . . . , vk}) · · ·))) = ψ(G − {v1, . . . , vk})+ k.

This completes the proof. �

Corollary 6. Suppose G is an n-vertex graph. Then 0 ≤ ψ(G) ≤ n − 2 with the left equality if and only G is bipartite, with the
right equality if and only G ∼= Kn.

Proof. It is enough to prove that if G is an n-vertex graph such that ψ(G) = n − 2 then G ∼= Kn. On the contrary, we
assume that there exists an n-vertex graph G such that G � Kn and ψ(G) = n − 2. Choose an edge e of G such that
Kn−1 ≤ G ≤ Kn − {e}. Since ψ is an order preserving function between the set of n-vertex graphs and natural numbers,
n − 3 = ψ(Kn−1) ≤ ψ(G) ≤ ψ(Kn − {e}) ≤ n − 3. So, ψ(G) = n − 3, a contradiction. �

Theorem 7. Suppose G is an n-vertex graph. Then
(a) ψ(G) = n − 3 if and only if G ∼= Kn − {e1, . . . , ek} such that 1 ≤ k ≤ n − 1 and {e1, . . . , ek} is a star in G.
(b) ψ(G) = 1 if and only if all odd cycles of G have a common vertex.

Proof. (a) Suppose G is an n-vertex graph and ψ(G) = n − 3. By Corollary 6, G � Kn and so there are edges e1, . . . , ek such
that G = Kn −{e1, . . . , ek}. We claim that these edges constitute a star in G. On the contrary, we assume that there are edges
ei = uivi and ej = ujvj without common vertices. Consider the induced subgraph H generated by X = {ui, vi, uj, vj}. Clearly,
H is bipartite and by deleting n − 4 vertices of V (G)− X the subgraph H is obtained. Thus ψ(G) ≤ n − 4, a contradiction.

To prove (b), we assume that ψ(G) = 1. If G have two odd cycles O1 and O2 without a common vertex then for vertex
bipartization of G, we must at least delete two vertices of G, contradicts by our assumption. �
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Let G andH be two graphs. Their corona product GoH is defined as the graph obtained by taking one copy of G and joining
the ith vertex of G to every vertex in ith copy of H . An example is shown in Fig. 2.

Theorem 8. ψ(GoH) =


|V (G)|(ψ(H)+ 1) H is non-empty
ψ(G) Otherwise .

Proof. If H is empty then from Fig. 1, one can easily seen that ψ(GoH) = ψ(G). Suppose H is non-empty. Then ψ(GoH) =∑|V (G)|
i=1 ψ(∇H) =

∑|V (G)|
i=1 (ψ(H)+ 1) = |V (G)|(ψ(H)+ 1). �

The bipartite vertex frustration of line graphs can be computed from the following theorem:

Theorem 9. ψ(L(G)) =


2(|E(G)| − |V (G)|) G is not an odd Cycle
1 Otherwise .

Proof. If G is an odd cycle then L(G)will be an odd cycle of the same length. So,ψ(L(G)) = 1.We assume that G is not an odd
cycle. From the definition of the line graph, L(G) is not an odd cycle. By [14, Theorem 7.1.16], L(G) decomposes into complete
subgraphs, with each vertex of G appearing in at most two of these complete subgraphs. By this theorem, for each vi ∈ V (G)
of degree di = degG(vi) we have a complete subgraph Kdi in L(G). Since ψ(Kdi) = di − 2, ψ(L(G)) =

∑|V (G)|
i=1 ψ(Kdi) =∑|V (G)|

i=1 (di − 2) = 2(|E(G)| − |V (G)|). �
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