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Complexity Dips’in Random Infinite Binary Sequences* 

Howe P. KATSEFF 

Computer Science Division, Department of Electrical Engineering and Computer Sciences 
and the Electronics Research Laboratory, Unitierss?y of California, Berkeley, California 94720 

Given any function f with C,“,, 2-f(“’ divergent, it is shown that every finite 
binary sequence x has an infinite numb& of initial segments, xn, with K(x”) < 
n -f(n). 

I. INTRODUCTION 

Martin-LBf (1965) has shown that for all functionsf with C,“=, 2-f(n) divergent 
and for all infinite binary sequences x, there are an infinite number of integers n 
where 

K(x”) < n -f(n). 

In a later paper (Martin-LGf, 1971) a special case of this theorem is presented. 
This paper presents a proof of Martin-Laf’s original theorem which is motivated 
by an easy proof of another special case of the theorem. 

II. DEFINITIONS 

Throughout this paper x and y denote infinite binary sequences and all other 
variables denotes denote either natural numbers or (finite) binary strings. 
Natural numbers and strings beginning with 1 are used interchangeably, making 
use of the usual binary representation of numbers. We also make use of the 
following definitions: 

j s 1 = the length of s; 

x”srn = the nth through mth bits of x where xl.1 is the first bit of the 
string x; 

x” = +m. 
> 

s^t = s catenated to t; 

b> = Lb&a; 
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Card(S) = number  of elements in set S; 

K(s) ~- the Kolmogorov complexity (Kolmogorov, 1968) of s: the length 
of a shortest program in an optimal programming language 
(Schnorr, 1974) to output s. 

I I I .  COMPLEXITY DIPS 

The  proofs in this paper  make use o f a  simple technique to encode strings. 
The  first theorem illustrates its use. 

THEOREM 1. (3c)(Vx)(3~n)[K(x n) <.~ n - -  l(n) -~ c]. 

Proof. T o  prove the theorem, we show that any sequence x has an infinite 
number  of initial segments with short programs. The  programs represent an 
algorithm together with a string s which is used by the algorithm. The  algorithm 
simply outputs all but  the first bit of I s I, followed by s itself. To  see that x 
has an infinite number  of initial segments which are output by a program of this 
type, note that for all n / >  1, the initial segment x ~+<1^~") is output by the program 
containing the string x ~+1,~+(1^~"). 

By examining the decoding algorithm, one can see that K(x '~+t(~)) <~ n q- d 
for each x and infinitely many  n, where d is the length of the description of the 
decoding algorithm. Define r(n) = n q- l(n), so this statement is equivalent to 
K(x r(")) ~ r(n) -- l(n) q- d. I t  is easy to see that l(n) >~ l(n q- l(n)) - -  I, so 
K(x  r{~)) ~ r(n) --  l(r(n)) q- d + 1 which proves the theorem. | 

We now present a proof of Mar t in -L6f ' s  original theorem which states that  
for all functions f with ~ - o  2-I(~) divergent, K(x n) ~ n -- f in)  for infinitely 
many n. This  proof  is similar in spirit to the proof of Theorem 1. Again, we use 
a decoding algorithm which, on input s, outputs S preeeded by some function of 
Is  !, which we refer to as g(] s I). Given any such f ,  we show that there is a 
function g satisfying both: 

(Vk)[[ g(k)] = f(k)] ,  

(Vx)(3*k)[g(k) is an initial segment of x]. 

Following the example of  Theorem 1, we could use a decoding algorithm which, 
on input s, outputs g([ s l)"s. Note that g is defined so that each x has infinitely 
many  n where g(n) is an initial segment of x. Thus,  given any such n, the 
algorithm, on input xlgC~)l+l.lg(n)l+~, outputs xlgt~)l+~ demonstrating that 
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This statement appears to be weaker than the theorem we wish to prove in two 
ways: The first is the presence of the constant c. We will see that this problem is 
easily taken care of. The second is more serious as this statement appears to be 
weaker than 

(~c)(3~°n)[K(x n) ~ n - - f ( n )  -~ c]. (1) 

We use a different idea to solve this second problem. Suppose that f has the 
property that there are never two different n with the same value of n - - f ( n ) .  
Then we use a decoding algorithm which, on input s, finds the n satisfying 
n --  f ( n )  = [ s I and if such an n exists, outputs g(n)^s. I t  is not hard to see that 
(1) can be proved by using this algorithm to provide the short programs. 

In general, functions f do not have this property and thus the decoding 
algorithm chooses a particular n for each value of n --  f (n) ,  and outputs g(n)^s 
for this chosen n. I t  remains to be shown that, for our particular method of 
choosing n, this algorithm generates infinitely many initial segments of every 
sequence. 

We now proceed with a formal proof of the theorem, beginning with a number 
of lemmas concerning functions with ~°= o 2 -1~nl divergent. We will find it 
easier to consider a slightly more general class of functions which we now 
define. 

DEFINITION. An extended natural number is a natural number or the special 
symbol ~o. 

DEFINITION. 2 -c° ~ 0. 
Thus, it appears that co has properties similar to that of infinity. However, it is 

better to think of oJ as meaning undefined. 

DEFINITION. f is an extended function i f f f  maps the natural numbers to the 
extended natural numbers. 

We first show that given any function f with ~ 0  2 - ~  divergent, there is 
a function, identical t o f  except for being undefined at some values, which has a 
number of useful properties. 

LEMMA 1. For any recursive extended function f with Z~=0 2-Ic~ divergent, 
there is a recursive extended function f '  satisfying: 

(Vn)[f'(n) v& oo =~ i f (n )  = f ( n ) ] ,  (2) 

~ 2-I"~n) diverges, (3) 
~=0 

(gn)[f '(n) =/= oJ :=> f ' ( n )  <~ n], (4) 

(Vh)[Card{n [ n - - i f ( n )  = k} ~< 1]. (5) 
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Remark. L e m m a  1 states that given any function f ,  there is a function f ' ,  
identical t o f  except tha t f ' (n )  = oJ for some n, which has the properties that when 
f ' (n)  =/= o~, f ' (n)  never exceeds n and for each k, the function m = f ' (n)  never 
intersects the line m = n - -  k more than once. The  construction o f f '  is illus- 
trated in Fig. 1. 

6 m= 
-~ • m = f ( n ]  / 

m ~ O m=f'(n, / 

0 2 4 

FIGURE 1 

n-I n-2 n-3 n-4 

/ 

/ 
s 20 n 

Note t h a t f '  cannot be set to co on too many inputs since ~2~=0 2-I"(n) is required 
to diverge. 

Proof. Given f ,  de f ine f '  as follows: 

I f (n)  if f (n )  ~ n and (gin < n)[n - - f ( n )  ~ m - - f ( m ) ]  f'(n) otherwise. 

I t  should be clear from its definition that f '  satisfies (2), (4), and (5). The  fact 
that ~n~0 2-f'c~) diverges may be verified with the following facts: 

(i) T h e  values of f where f (n)  >/ n contributes not more than 1 to 

(ii) For each diagonal line in Fig. 1, consider all the points o f f  which lie 
on this line. We retain only the smallest for inclusion in f ' .  Thus,  the points 
on the line not included i n f '  contribute no more to ~.~--0 2-1(n) than the retained 
point. | 

L e m m a  2 states that, given a list of numbers  with sufficient measure, there 
exist strings whose lengths are specified by these numbers such that at least one 
of these strings is an initial segment of every infinite sequence. 

LEMMA 2. Given a finite list N = (nl ,  n 2 ,..., ne} of numbers satisfying 
2 -~ effectively find a set of k strings {sl, s~ ..... ~n=l ~ 1, one can sk} satisfying 

(v i  < k)[I s, ] = n,], (6) 
(Vx)(3i ~ k) [s, is an initial segment of x]. (7) 
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Proof. Sort N to obtain {nh, n¢, ,..., n¢~} with n h ~ nj~ ~ ".. ~< nj~. The  
strings si are defined inductively starting with s¢: 

s h = "Find  the set of strings, s, of length n h such that the number  
of strings sh ,  s h ,..., sh_ 1 which are initial segments of s is 
minimum.  Let  s h be the lexicographically least of these strings." 

The  fact that (6) is satisfied is clear from the definition of s i . The  proof  of (7) is 
by contradiction. Suppose that no si is an initial segment of x. Then,  by the 
definition of the s i , they form a finite prefix-free set which contains no initial 
segment of x, so ~2~=12-8~ < 1, a contradiction. | 

Given a sufficiently slowly growing function, we now show that there is a list 
of strings whose lengths are determined by the function such that an infinite 
number  of the strings are an initial segment of every infinite sequence. 

L E M M A  3 .  

there exists a recursive g satisfying 

(Vk withf(k)  ~ o))[I g(k)l = f(h)],  

(Vx)(3~k)[g(k) is an initial segment of x]. 

Pro@ T h e  recursive function g is constructed in 
m = 0 at stage O: 

Stage i: 

For any recursive extended function f with ~n~=o 2 -s(n) divergent, 

(8) 

(9) 

stages, starting with 

n 
"F ind  the smallest number  n satisfying ~k=m 21~k) >/ 1. Use L e m m a  2 
with the non-o) elements of {f(m), f (m  + 1),..., f(n)} to define values 
of {g(m), g(m + 1),..., g(n)} which satisfy 

(Vk E [m, n] with f (k )  va oJ)[[ g(h)l = f(k)] ,  

(Vx)(3k ~ [m, n])[g(k) is an initial segment of x]. 

S e t  m ~ n .  

Go to stage i + 1." 

I t  should be clear that (8) is satisfied. T o  verify (9), note that  for each x, some 
initial segment of x is assigned to the range of g in every stage. | 

' L e m m a  4 shows that, given a sufficiently slowly growing function, we can 
Obtain complexity dips whose magnitudes are specified by the function. 
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LEMMA 4. (V recursive extended function f with 5Z,7=0 2 -~(< divergent): 

(3c)(Vx)(B~n with f (n )  =/= ~o)[K(x ~) <~ n - -  f (n )  + c]. 

Proof. Let a recursive extended function f be given. Use Lemma 3 to find 
a recursive g satisfying (8) and (9) and assume without loss of generality that f 
satisfies (4) and (5) by Lemma 1. The  algorithm to do the decoding, on input s, 
finds the n satisfying n --  f (n )  = 1 s ] and if such an n exists, outputs g(n)^s. 

To  see that this algorithm encodes infinitely many initial segments of x, note 
that for each of the infinitely many k where g(k) is an initial segment of x, 
xlg<14[+l~-l(~) = x ~ is output by the algorithm with input xl~(k)[+ldg(~)I+~-f(k) = 
xlg<e)l+l,~. Thus,  we have shown that 

(?c)(B°~n)[K(x '~) <~ n - - f ( n )  4- c]. | 

We finally prove Mar t in-L6f ' s  original theorem. 

THEOREM 2. (V recursive f with ~ o  2-sial divergent): 

(gx)(3~°n)[K(x '*) <~ n - -  f(n)]. 

Proof. Mart in-L6f  (1971) shows that for all recursive f with ~ = 0  2-f<n) 
divergent, there is a recursive f '  with ~2~=0 2-I'~m divergent and 

(Vc)(V°°n)[f'(n) >~ f (n )  4- c]. 

Apply Lemma 4 t o f '  to prove this theorem. | 
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