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Summary

The jaspamide/chondramide family of depsipeptides
are mixed PKS/NRPS natural products isolated from

marine sponges and a terrestrial myxobacterium that
potently affect the function of the actin cytoskeleton.

As a first step to improve production in heterologous
host cells and permit genetic approaches to novel an-

alogs, we have cloned and characterized the chondra-
mide biosynthetic genes from the myxobacterium

Chondromyces crocatus Cm c5. In addition to the

expected PKS and NRPS genes, the cluster encodes
a rare tyrosine aminomutase for b-tyrosine formation

and a previously unknown tryptophan-2-halogenase.
Conditions for gene transfer into C. crocatus Cm c5

were developed, and inactivation of several genes
corroborated their proposed function and served to

define the boundaries of the cluster. Biochemical
characterization of the final NRPS adenylation domain

confirmed the direct activation of b-tyrosine, and
fluorinated chondramides were produced through

precursor-directed biosynthesis.

Introduction

The analysis of natural product formation substantially
contributes to our understanding of novel biochemical
pathways in vitro and in vivo and consequently makes
available not only valuable drugs but also essential tools
for biochemistry and molecular cell biology [1, 2]. Ap-
proximately two thirds of drugs used to treat cancer or
infectious diseases are either natural products or have
been developed based on lead structures provided by
nature. Among the various sources of compounds for
the development of new drugs, microorganisms are of
particular significance [3].

Investigations of several species of myxobacteria
have resulted in the isolation of a number of interesting
secondary metabolites that possess antibiotic and
cytotoxic activities [4–6]. Myxobacteria contain a wide
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variety of secondary metabolic gene clusters, mostly
encoding polyketide synthases (PKSs), nonribosomal
peptide synthetases (NRPSs), or PKS/NRPS hybrids
[6–8]. Screening fermentations of the myxobacteria
Chondromyces crocatus Cm c5 for biologically active
metabolites resulted in the isolation of a number of ex-
citing secondary metabolites. Strain Cm c5 was found
to produce six entirely novel groups of metabolites,
including chondramides, crocacins, ajudazole, croca-
peptins, thuggacins, and chondrochlorens [9–13]. These
metabolites show potent and diverse activities; ajuda-
zols and crocacin A represent inhibitors of the eukary-
otic respiratory chain at different sites, while ajudazols
inhibit the electron transport at the site of complex I,
i.e., NADH:ubiquinone-oxidoreductase [11], crocacin A
interferes with the cytochrome bc1 segment and there-
fore is highly toxic for mammalian cells, fungi, and
yeasts [14, 15]. The extract of C. crocatus Cm c5 also
yielded a mixture of depsipeptides, the chondramides.
Chondramides (A–D) show a high cytostatic activity in
mammalian cell cultures (IC50 2–60 ng/ml) (Figures 1D
and 1E) and are active against some yeasts (MIC 25–
50 mg/ml) [9]. However, filamentous fungi and bacteria
are not inhibited in their growth.

Chondramides are a class of mixed peptide/polyke-
tide depsipeptides comprised of three amino acids
(alanine, N-methyltryptophan, plus the unusual amino
acid b-tyrosine or a-methoxy-b-tyrosine) and a poly-
ketide chain ([E]-7-hydroxy-2,4,6-trimethyloct-4-enoic
acid). These agents are strikingly similar to a family of
marine depsipeptides including the prototype jaspa-
mide [16–19], the geodiamolides [20–22], and neosipho-
niamolide A [23]. The major difference between the
chondramides and jaspamide is a putative acetyl versus
lactoyl starter unit for the polyketide moiety, respec-
tively (Figure 2).

Interestingly, about 10% of myxobacterial com-
pounds have been found to interact with the cytoskele-
ton of eukaryotic cells [4]. While epothilon, produced by
Sorangium cellulosum, interacts with tubulin [24], rhizo-
podin and chondramides interfere with the actin system,
as does the well-known phalloidin, a toxin from green
and white deathcap mushrooms [25, 26]. Chondramides
and the marine analogs appear to have the same binding
site on actin as phalloidin. In contrast to phalloidin, these
depsipeptides penetrate mammalian cells well [13] and
allow division of the nuclei but not cell cleavage. The dif-
ferent chondramides have similar activity, with chondra-
mide C having the lowest effective concentration [27].

Fermentation-based methods continue to be the pre-
ferred approach for large-scale production of soil and
aquatic microbe secondary metabolites [28]. However,
many of these organisms grow very slowly [29], and
the natural products they produce are often present
only in trace amounts. For example, the doubling time
of C. crocatus Cm c5 is approximately 7 hr at 30ºC and
the yields of chondramides are only about 4 mg/liter
[9], which does not make production in this organ-
ism economically feasible. The value of the chondra-
mides and related marine depsipeptides as probes of
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Figure 1. The Growth of C. crocatus Cm c5

and the Cytostatic Activity of Chondramides

against Cultivated Ptk2 Mammalian Potoroo

Cells

(A) Clumps in MD1 medium 7 days after in-

oculation.

(B and C) Swarming of colonies on Pol03

agar plates (B) after 3 days and (C) after 4

days.

(D) Actin filament and nuclei of the control

cells.

(E) Cells after incubation with chondramide

show severe shape malformation and re-

duced number of actin filaments as well as

a number of actin knots and clumps. Actin

was visualized via staining with Alexa488-

phalloidin, and the nuclei were stained with

DAPI [13].
actin-mediated cellular functions motivated us to iden-
tify the biosynthetic genes encoding their biosynthesis.
Furthermore, identification of the biosynthetic genes
and elucidation of the biosynthesis pathway is a prereq-
uisite for improving the production through expression
of the biosynthetic gene cluster in heterologous host or-
ganisms [28, 30, 31]. It is also the essential first step for
efforts to increase molecular diversity through combina-
torial biosynthesis. Here, we report the cloning of the
genes encoding chondramide biosynthesis and the
characterization of selected individual gene products.
We also describe a method for gene transfer into C. cro-
catus, which was used to inactivate the biosynthetic
gene cluster.

Results

Identification and Analysis of the Chondramide

Biosynthetic Gene Cluster
Based on the chemical structure of the chondramides,
we expected a mixed PKS/NRPS pathway also involving
a halogenase and a tyrosine aminomutase. To identify
the chondramide biosynthetic gene cluster, we em-
ployed a screening protocol with probes for PKS and/
or NRPS genes. Screening a 2300 clone C. crocatus
Cm c5 chromosomal library with PKS and NRPS probes
identified 40 cosmids that hybrized with both types of
probes. Based on the genome size of other myxobacte-
ria [41], this cosmid library represents at least a 10-fold
coverage of the genome. Unique hybridizing cosmids
were identified by restriction mapping. Cosmid-based
PCR amplification of internal NRPS A domain fragments
(A3–A10) identified six cosmids that yielded PCR frag-
ments approximately 1200 bp and 2300 bp in size, indi-
cating they carrying typical A domains (1200 bp) and
A domain(s) (w2300 bp) harboring an additional domain
inserted between these core motifs [34, 42]. Amino acid
residues involved in A domain substrate recognition
were defined in silico [36, 37] and used in BLAST
searches (http://www.tigr.org/jravel/nrps/blast/index2.
html) of an NRPS substrate specificity database. This
analysis revealed that cosmids B:O9, C:K13, and
C:O20 all carried A domains predicted to activate gly-
cine, tryptophan, and tyrosine. Moreover, the 2300 bp
A domain fragment predicted to activate tryptophan
also encodes a N-methyltransferase domain (45.7 kDa
in size) inserted between the core motifs A8 and A9.
The end sequences of the three cosmid inserts were
obtained, and restriction analysis of the cosmids as
well as hybridizations with the terminal fragments of
each cosmid as probes showed that these three cos-
mids harbored overlapping sequence. Cosmids C:K13
and B:O9, spanning 49 kb, were sequenced on both
strands, and the nucleotide sequence was deposited
at EMBO under the accession number AM179409. Se-
quence analysis revealed that the chondramide (cmd)
gene cluster was found on a contiguous stretch of
37,807 bp, and the overall GC content of the sequenced
region is 68.6%, which is characteristic for myxobacte-
ria [43]. The sequence was analyzed for the presense
of putative open-reading frames (orfs) with FramePlot
2.3.2 [44] and preliminary functional assignments of indi-
vidual orfs was made by comparison of the deduced
gene products with proteins of known functions in the
database. Thirteen complete orfs were identified, in-
cluding six likely structural genes for chondramide bio-
synthesis designated cmdA–cmdF (Table 1). Apart
from orf4 and orf7, all identified genes are transcribed

http://www.tigr.org/jravel/nrps/blast/index2.html
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Figure 2. Map and Organization of the Chondramide Biosynthetic Gene Cluster and Model for the Biosynthesis of Chondramide

(A) Map and organization of the chondramide biosynthetic gene cluster.

(B) Model for the biosynthesis of the chondramide skeleton. PKS domains are shown in light gray, and NRPS domains are depicted in dark

gray.
in the same direction (Figure 3) and (Table 1). Sequence
analysis of the encoded proteins identified typical PKS
and NRPS domains located in four orfs (cmdA–cmdD).
The genes cmdA and cmdB encode for PKSs, while
the cmdC and cmdD encode for NRPSs (Figure 2). Ac-
cording to the results from the inactivation experiments
of orf2 and orf3, the chondramide gene cluster begins
with cmdA, followed by cmdB and cmdC, which are
probably translationally coupled, based on their over-
lapping stop and start codons (4 bp each), suggesting
that they may form part of the same operon. A putative
halogenase gene, cmdE, is located immediately down-
stream of cmdD. No apparent transcriptional terminator
was identified in the intergenic region (52 bp) between
cmdD and cmdE, suggesting they also form an operon.
The next gene in the cluster, cmdF, encodes a putative
tyrosine aminomutase (TAM) and is separated from
cmdE by an intergenic region that contains an inverted
sequence repeat (ggcgcgcgtcccgggagcctctccctggacg
cgcgcc) located 63 bp downstream of the cmdE stop
codon. This finding indicates the presence of a transcrip-
tional terminator and independent transcription of the
downstream genes.

The genes adjacent to the presumed 50 end of the
cluster are transcribed in the same orientation and in-
clude partial sequence for a putative D-aminoacylase,
followed by orf1 representing a protein with no homol-
ogy to proteins in the databases and orf2, which may en-
code a phosphoenolpyruvate synthase. The presence of
an inverted repeat (cgtccttcacgacaggaggacg) in the in-
tergenic region (385 bp) between orf1 and orf2 probably
terminates transcription from orf1 and indicates the
presence of a putative promoter driving expression of
orf2. Sequence analysis of the short intergenic region
(14 bp) between orf2 and cmdA showed neither a tran-
scriptional terminator nor a promoter sequence in this
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Table 1. List of Chondramide Biosynthetic Proteins and orfs Encoded in the Adjacent Genomic Region

Cmd Orfs (A.A.)

Transcriptional Direction and

Putative Start Codon/RBS Proposed Function Identitity/Similarity to Protein/Origin

Orf1 (448) (+) GTG / GAAG Unknown No significant homology

Orf2 (563) (+) GTG / GGAG Unknown 31%, 49%: Phosphoenol pyruvate

synthase Desulfitobacterium

hafniense DCB-2

CmdA (4179) (+) ATG / GAGG PKS: ACP1 KS2 AT2a AT2b DH2

KR2 ACP2 KS3 AT3 DH3 KR3 ACP3

38%, 53%: MtaB Stigmatella aurantiaca

CmdB (2198) (+) GTG / GTGG PKS: KS4 AT4 DH4 ER4 KR4 ACP4 58%, 70%: EpoD Polyangium cellulosum

CmdC (1118) (+) ATG / GTGG NRPS: C5 A5 PCP5 42%, 60%: JamO Lyngbya majuscula

CmdD (3912) (+) ATG / GAAG NRPS: C6, A6, MT6, PCP6, E6,

C7, A7, PCP7, TE

40%, 57%: NRPS Brevibacillus brevis

CmdE (522) (+) ATG / GAAG Halogenase 38%, 55%: putative halogenase

Nocardia farcinica IFM 10152

CmdF (531) (+) GTG / GAAG Tyrosine aminomutase 45%, 63%: tyrosine amino-mutase

Streptomyces globisporus

Orf3 (292) (+) ATG / GAAG Unknown 36%, 53%: phosphoenol pyruvate

synthase Methanocaldococcus

jannaschii DSM 2661

Orf4 (492) (2) ATG / GGAG Unknown 41%, 59%: 50-nucleotidase/20,30-cyclic

phosphodiesterase Anabaena

variabilis ATCC 29413

Orf5 (329) (+) GTG / GGAG Unknown 26%, 39%: hypothetical protein

BpseS_01001321 in Burkholderia

pseudomallei S13

Orf6 (253) (+) ATG / GGAG Unknown 39%, 52%: cephalosporin hydroxylase

Mesorhizobium loti

Orf7 (783) (2) ATG / GGGA Unknown 46%, 65%: heavy metal translocating

P-type ATPase Methylococcus

capsulatus str. Bath
DNA region. Nevertheless, inactivation of orf2 had no ef-
fect on chondramide production (data not shown). In sil-
ico analysis (http://www.fruitfly.org/seq_tools/promoter.
html) of the DNA region upstream of cmdA identified
a probable promoter region for the chondramide gene
cluster that is located 51 bp upstream of the orf2 stop
codon (from nucleotide 1639–1689). The proposed re-
gion is not affected by inactivation of orf2 via integration
of pSR4.

Orf3 is located downstream of cmdF and the trans-
lated product shows significant similarity to phospho-
enolpyruvate synthases. Inactivation of this gene by
insertion of pSR5 into the genome did not change chon-
dramide production (data not shown). Orf4 is oriented in
the opposite direction and encodes a protein with high
similarities to 50-nucleotidase and 20,30-cyclic phospho-
diesterase from Anabaena variabilis. The product of orf5
shows similarities to a hypothetical protein from Bur-
kholderia pseudomallei S13, and orf6 encodes a protein
that resembles the cephalosporin hydroxylase of Meso-
rhizobium loti MAFF303099. Inactivation of this gene by
insertion of the plasmid pSR6 into the chromosome re-
sulted in no change in chondramide production com-
pared to the wild-type. A short intergenic sequence (12
bp) separates orf6 from orf5; therefore, they are pre-
sumed to be transcriptionally coupled. The deduced
amino acid sequence of orf7 is markedly similar to the
heavy metal translocating P-type ATPase of Methylo-
coccus capsulatus. This gene is oriented convergently
with the upstream gene, and in the final 612 bp region
is a partial sequence (338 bp) of an orf that encodes
for a protein with no significant homology to the proteins
in the databases.
Inactivation of the Chondramide Biosynthetic

Gene Cluster
To unambiguously show that the identified region repre-
sents the chondramide biosynthetic gene cluster, a
method for DNA transfer and gene inactivation was de-
veloped for C. crocatus Cm c5. This proved to be chal-
lenging due to the growth characteristics of the strain
and the fast swarming on agar plates (Figures 1B and
1C). Insertion of plasmid pSBO9 carrying an internal
fragment of the A5 occurred by single crossover after
DNA transfer by interspecies conjugation with E. coli
(Figure 3A). The results of Southern blot analysis (Fig-
ure 3B) and PCR (data not shown) confirmed the fidelity
of the mutation in the chromosome of C. crocatus
Mut.20. HPLC and HPLC-MS analysis of the mutant ex-
tract clearly showed the disappearance of chondra-
mides in the production spectrum in comparison to the
wild-type (Figures 3C and 3D).

Inactivation of the Halogenase Gene cmdE
Sequence analysis suggested cmdE encodes a halogen-
ase responsible for formation of the 2-chlorotryptophan
residues in chondramides B and D. Integration of the
halogenase inactivation plasmid pSHAL into the ge-
nome of the C. crocatus Cm c5 by single crossover
resulted in the inactivation of cmdE (Figure 4A). The re-
sulting mutant Cmc-Hal2 was confirmed by PCR analy-
sis, which generated a fragment of 1223 bp in the mutant
and no fragment in the wild-type (data not shown). To
determine if the inactivation of cmdE leads to a polar
effect influencing the expression of the downstream
gene, cmdF, Northern blot analysis of total RNA in the
cmdE mutant was performed. The results indicate that

http://www.fruitfly.org/seq_tools/promoter.html
http://www.fruitfly.org/seq_tools/promoter.html
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Figure 3. Inactivation of the Chondramide Biosynthetic Gene Cluster by Single Crossover Homologous Recombination Using the pSBO9

Inactivation Plasmid

(A) Schematic representation of pSB09 and the organization of the resulting mutant chromosome.

(B) Southern blot analysis of the C. crocatus Cm c5 (lane 1) and the Mut.20 chromosome (lanes 2 and 3) digested with BamHI and hybridized

with a DIG-labeled internal fragment of the module 5 adenylation domain from the chondramide gene cluster.

(C) HPLC analysis of the wild-type C. crocatus Cm c5 methanolic extract.

(D) Methanolic extract of C. crocatus Mut.20. Peaks corresponding to chondramides (1), chondrochloren (2), crocacin A (3a), and crocacin B

(3b) and ajudazol (4) are indicated.
transcription of cmdF is reduced in the mutant but not
abolished (Figure 4B). Subsequent HPLC-MS analysis
of the cmdE mutant culture showed that instead of the
normal chondramide mixture, only the nonchlorinated
chondramides A and C were present. However, the pro-
duction was 10-fold lower in the mutant compared to the
wild-type (Figures 4C and 4D).

Incorporation of 5-Fluorotryptophan into
Chondramides

An experiment to incorporate tryptophan analogs into
the chondramides was performed. Addition of 5-fluoro-
tryptophan to cultures of C. crocatus Cm c5, followed by
HPLC-MS/MS analysis, revealed the presence of new
peaks (Figure 5). The new compounds were shown to
correspond to fluorochondramide A (rt = 17.4 min; MW
665.4; [M+H]+) and fluorochondramide C (rt = 18.4 min;
MW 635.4 [M+H]+ and 657.3 [M+Na]+). However, fluori-
nated analogs of chondramides B and D were not found
in the extract.
Cloning, Expression, and Characterization

of the A7 Domain
Heterologous expression of the GST-tagged A7 domain,
approximately 89 kDa in size, was achieved by using
pGEX-Ad-7 in E. coli BL21. The fusion protein was found
in the soluble fraction after French press lysis of E. coli
cells, as judged by Coomassie blue-stained SDS-
PAGE. Purification by GST affinity column chromatogra-
phy and digestion with PreScission protease yielded the
purified A domain (62 kDa in size) (Figure 6B). The sub-
strate specificity of the A domain was investigated by
the ATP-PPi-exchange reaction [40]. Incubation with
various amino acids, including (R,S)-b-tyrosine, in the
presence of [32P]-pyrophosphate revealed the highest
activity with b-tyrosine (normalized to 100%; negative
controls without enzyme gave 0.1%–1% of this activity).
This result corresponds well with the position of A7

within the CmdD protein (Figure 2B). L-tyrosine was
found to be activated equally well (95%) as b-tyrosine
and L-phenylalanine was activated to a lesser extent
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Figure 4. Inactivation of the cmdE Gene by Single Crossover Homologous Recombination Using the pSHAL Inactivation Plasmid

(A) Schematic representation of pSHAL and the organization of the resulting mutant chromosome.

(B) Northern blot analysis of total RNA from C. crocatus Cm c5 (lane 1) and C. crocatus Cmc-Hal2 (lane 2) hybridized with a DIG-labeled

internal fragment of the cmdF gene.

(C) HPLC-MS analysis of C. crocatus Cm c5 methanolic extract.

(D) Identical analysis of C. crocatus Cmc-Hal2 showing the disappearance of both halogenated chondramides (B and D).
(30%). Both tryptophan and methionine gave rise to
background-level activity (Figure 6A).

Discussion

Chondramides A–D are depsipeptide antitumor and an-
tifungal antibiotics produced by C. crocatus Cm c5, dif-
fering structurally in modifications to the tryptophan and
b-tyrosine residues (Figure 2B). We set out to clone the
cmd biosynthetic gene cluster to better understand
the formation of these hybrid polyketide-peptide natural
products in myxobacteria and to subsequently help
facilitate the cloning of their marine counterparts, like
jaspamide. For this purpose, a C. crocatus Cm c5
gene library was constructed and screened by colony
hybridization with general NRPS and PKS probes ampli-
fied by PCR [8, 34]. Initially, we did not expect to be able
to perform chromosomal mutagenesis in C. crocatus
Cm c5 (see below) and therefore chose an alternative
approach to screen for the biosynthetic genes (see Ex-
perimental Procedures). A gene cluster containing PKS
and NRPS genes consistent in sequence and architec-
ture with that predicted to assemble the chondramide
structure was identified on two overlapping cosmids,
B:O9 and C:K13. While most C. crocatus strains only
grow in the presence of a companion bacterium, and
thus have to be fermented as mixed cultures [45], C. cro-
catus Cm c5 can grow in a pure culture. However, the
strain grows in the form of clumps and flakes (Figure 1A),
and no homogeneous cell suspensions are obtained.
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Normal plating of the strain does not yield single cell col-
onies, and the mixed colonies develop only very slowly
(7–10 days). Furthermore, selection of a single genotype
after plating on an agar surface is problematic. This is
due to sudden and fast swarming of the bacteria toward
neighbor clones (Figures 1B and 1C). In addition, the
bacteria exhibit resistance against almost all antibiotics

Figure 5. HPLC-MS Analysis of the Production of Fluorochondra-

mide Analogs

HPLC-MS analysis of chondramide production in C. crocatus Cm

c5 after growth in Pol0.3 medium (A) and in Pol0.3 supplemented

with 1 mM 5-fluorotryptophan (B). A, chondramide A; F-A, fluoro-

chondramide A; B, chondramide B; C, chondramide C; F-C, fluoro-

chondramide C; Na+-F-C, sodium peak of fluorochondramide C;

and D, chondramide D. (D) The mass spectra of (B) at 17.4 min

shows F-A (MW 665.4; M+H)+ and chondramide B [MW 681.3;

M+H]+, and the same analysis with sample (A) is given in (C). (F)

The mass spectra of (B) at 18.4 min shows F-C (MW 635.4;

M+H)+ and Na+-F-C (MW 657.3; M+Na)+, and the same analysis

with sample (A) is given in (E).
tested (e.g., ampicillin, kanamycin, streptomycin, apra-
mycin, tetracycline, spectinomycin, gentamicin, and
tobramycin). Only hygromycin was found to be useful
as a selection marker for the genetic work. Fortunately,
we were able to develop a gene inactivation strategy for
C. crocatus Cm c5. Inactivation of the NRPS gene cmdC
in the cloned gene cluster via homologous recombina-
tion abolished chondramide production in the resulting
mutant C. crocatus Mut.20 (Figure 3). The deduced func-
tion of the proteins encoded on cosmids B:O9 and
C:K13 (Table 1) are also consistent with their involve-
ment in chondramide biosynthesis.

A Proposed Biosynthetic Pathway to Chondramides

The chemical structure of chondramides suggests type I
PKSs and NRPSs are involved in their biosythesis.
These multifunctional enzymes catalyze the formation
of polyketides by condensation of simple carboxylic
acids and of peptides via the assembly of amino acids.
The molecular logic of PKS and NRPS systems has gen-
erally been interpreted in light of known product struc-
tures. By using the predicted substrate specificity of
individual NRPS [34, 37] and PKS modules [46–48] as
a guide, the PKS and NRPS modules encoded in the
cmd gene cluster can be aligned to constitute the chon-
dramide megasynthetase shown in Figure 2. The bio-
synthetic system of chondramides shows a high level
of colinearity between genes in the cluster and the pre-
dicted biochemical steps required for chondramide
biosynthesis, which is not always the case in myxobac-
terial biosynthetic systems [49–53].

Analysis of the modular structure of CmdA revealed
that it most likely encodes the initial three modules of
the megasynthase. Similar to several myxobacterial
PKSs, CmdA shows an atypically arranged starter mod-
ule plus one extension module ACP1-KS2-AT2a-AT2b-
DH2-KR2-ACP2-KS3-AT3-DH3-KR3-ACP3 [33, 49, 54–56].
In these systems, the first AT loads the starter molecule,
whereas the second AT is responsible for the first ex-
tending unit [56, 57]. The initiation step of chondramide
biosynthesis includes selection and loading of the
starter unit acetyl-CoA to ACP1 and loading of ACP2

with methylmalonyl-CoA (mmCoA). All AT domains of
the cmd gene cluster contain the conserved active site
motif GHSXG. The computational approach to identify
AT2b, AT3, and AT4 substrate specificity relied on identi-
fication of 13 key residues that can be compared to AT
Figure 6. Analysis of Recombinant Module 7

Adenylation Domain, A7

(A) ATP-PPi exchange assay. The diagram

shows the relative activity compared to b-

tyrosine, normalized to 100%. (B) Overex-

pression and purification of the A7 protein.

Lane 1, MW markers; lane 2, extract of

IPTG-induced E. coli Bl21-pGEX-Ad7 cells;

lane 3, GST-tagged A7 protein (w89 kDa) af-

ter GST-affinity chromatography; and lane 4,

purified A7 after digestion with PreScission

protease.
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Figure 7. Comparison of the PKS AT Do-

mains and Alignment of the Chondramide

Synthase DH Domains

(A) Comparison of the PKS AT domains

(AT2a, AT2b, AT3, AT4) of chondramide syn-

thase. The residue number in the first row

corresponds to the position in the E. coli

fatty acid acyltransferase crystal structure

[48, 92]. Identical residues are shaded in

gray.

(B) Alignment of the chondramide synthase

DH domains depicting conserved histidine

and proline residues in bold. The alignment

also shows the amino acid sequence of

DH2, and gray indicates amino acids that

are different from the corresponding amino

acids in both DH3 and DH4.
sequences of known substrate specificity and showed
a distinct pattern (QQGHSMGRSHTNSV) (see Figure 7A)
similar to the characteristic motif of mmCoA specific AT
domains [47, 58]. However, the residues involved in sub-
strate specificity of AT2a differ significantly from those
found in AT2b, AT3, and AT4 (Figure 7A). The conserved
motif of AT2a is more typical of that for the activation
of benzoate (as observed in the soraphen synthase),
but it might be substrate limited in vivo in the chondra-
mide producer. Several other ATs have been described
that do not fit into the consensus sequences published
[58, 59]. According to these data, we propose that the
first AT domain in module 2 of the chondramide PKS rec-
ognizes the starter unit, acetyl-CoA, and covalently at-
taches it to ACP1. This is followed by transacylation to
the KS2 domain of the first elongating module. The other
AT domain, AT2b, recognizes mmCoA and loads it onto
the second ACP [54, 57]. Both the second and the third
PKS modules contain auxiliary DH and, KR domains,
which should theoretically catalyze the formation of
double bond intermediates. The typical active site
(LxxHxxxGxxxxP) of DH domains [60] and the motif for
NADP(H) binding (GxGxxAxxxA) [61] essential for KR
domains are found in both modules. However, compar-
ison of the DH2 sequence to functional dehydratases
shows low homology and the presence of two sequence
gaps (Figure 7B). Because a functional DH2 is not in ac-
cordance with the final structure (the hydroxyl group
found at C7 is essential for the thioesterase catalyzed
cyclization), the DH in module 2 seems to be inactive.
A conserved LDD motif and residues P144 and N148 of
the KR3 domain are characteristic of B-type ketoreduc-
tases [62] and correlate well with trans configuration of
the C4-C5 double bond [10].

The PKS CmdB harbors one module possessing
a complete reductive loop (KS, AT, DH, ER, KR, and
ACP). This module is involved in another extension
with mmCoA and perfectly matches the last step of
PKS chain biosynthesis. At this stage, the CmdB teth-
ered polyketide intermediate is transferred to the PCP
bound alanine by the C domain of CmdC. The CmdC
NRPS represents a minimal elongation module (C5-A5-
PCP5). The substrate specificity of NRPS A domains is
determined by the amino acid binding pocket, consist-
ing of a stretch of approximately 100 amino acid resi-
dues found between the highly conserved motifs A4
and A5 [63]. Eight specific residues in this region deter-
mine the nonribosomal code, which is widely used for
substrate prediction [34, 37]. The deduced substrate
code for the CmdC A domain (DLFNNALT) is identical
to that of McyA of the microcystin gene cluster in the
cyanobacterium Anabaena strain 90 [64] and also to
that of JamO of the jamaicamide biosynthesis gene
cluster in Lyngbya majuscula [65]. Both of these en-
zymes are predicted to incorporate alanine based on
the structures of the respective peptide products. In
the chondramide biosynthesis, an alanine unit is also
incorporated at this point.

The next protein of the assembly line, CmdD, harbors
NRPS module 6 (C6-A6-MT6-PCP6-E6) and 7 (C7-A7-
PCP7), which nicely explain the final steps in chondra-
mide biosynthesis in agreement with the colinearity
rule [34]. Sequence analysis of the A6 substrate binding
pocket (DGVQMAGV) shows 62% identity to the speci-
ficity pocket of the TycB3 A domain in Bacillus brevis.
TycB3 is involved in selection and activation of L-trypto-
phan, which has been confirmed experimentally [66]. A
methyltransferase (MT6) domain is found inserted be-
tween the core motifs A8 and A9 of A6. The positioning
of this domain supports its role in catalyzing N-methyla-
tion of the tryptophan residue. The amino acid sequence
of MT6 carries three of the conserved core motifs for
S-adenosyl methionine-dependent MTs: LEIGTGTG,
GFSAGQFDTIV, and LKPGGTLFL [67]. The incorpora-
tion of D amino acids into secondary metabolites is
a special feature occurring in nonribosomal peptides.
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In rare instances, D amino acids can be provided by ex-
ternal racemases recognized by a specific A domain
[68]. More commonly, epimerization (E) domains are in-
tegrated into a module and catalyze the inversion of PCP
bound L amino acids (in initiation modules) or L-peptidyl
moieties (in elongation modules) [68–70]. Subsequently,
only the D-aminoacyl or D-peptidyl-extender is selected
by the downstream C domain for condensation with the
next building block [71, 72]. The E6 domain found down-
stream the PCP6 of the chondramide gene cluster is pre-
dicted to epimerize tryptophan loaded by the NRPS
module 6. After epimerization, the C7 domain discrimi-
nates against the L isomer, and only the D isomer is
incorporated into the product. E domains share a con-
served HHXXXDG motif and the second histidine resi-
due seems to be directly involved in catalysis [69, 73]. Al-
though the stereochemisty of the tryptophan residue in
the chondramides is unknown, the E6 domain carries
the corresponding conserved residues (HHLVVDG),
which argues for its catalytic activity.

The last NRPS module in CmdD is a termination mod-
ule (C7-A7-PCP7-TE) that includes a thioesterase (TE)
domain. The substrate specificity code for module 7
(DGSTITAV) shows 75% identity with tyrosine incorpo-
rating modules in two cyanobacterial systems: AdpB,
involved in anabaenopeptilide biosynthesis [74], and
NosD1, required for nostopeptolide A biosynthesis
[75]. However, chondramide assembly requires the in-
corporation of the unusual amino acid b-tyrosine by
the terminal NRPS module. Naturally occurring b amino
acids are relatively rare, and in almost all cases, the
b amino acids are formed by an intramolecular migration
of the a-amino group. A number of aminomutases cata-
lyzing these reactions have been characterized and
include several involved in secondary metabolism [76–
78]. A putative tyrosine aminomutase (TAM) gene is lo-
cated downstream of cmdE, and the translated product
shows high similarity to the TAM that functions in
C-1027 biosynthesis in Streptomyces globisporus [78].
This similarity includes the signature Ala-Ser-Gly motif
common to the family of ammonium lyases. The TAM
from S. globisporus (SgcC4) has been intensively stud-
ied and shown to possess ammonium lyase and amino-
mutase activity through elimination and subsequent
Michael addition of ammonium to the a-b unsaturated
acid prior to its release [78]. It was further demonstrated
that the enzyme utilizes a 4-methylideneimidazole-5-
one (MIO) as cofactor, which is formed autocatalytically
from the conserved ASG sequence motif. Interestingly,
SgcC4 preferentially catalyzes the formation of (S)-b-
tyrosine [78–80], but (R)-b-tyrosine is found in jaspamide
[16]. Although the absolute stereochemistry of chondra-
mides has not been independently solved, the NRPS do-
main organization suggests that at least the alanine and
tryptophan residues should possess the same configu-
ration as jaspamide.

As described above, a specificity code for A domains
has been developed [36, 37, 81]. However, numerous
deviations from this ‘‘nonribosomal code’’ have been
described [50], and only studies using purified enzyme
provide a detailed insight into substrate specificity.
Because of the similarity of the A7 binding pocket to
tyrosine activating domains, and due to the fact that
no studies have been performed on b amino acid acti-
vating NRPS domains, we set out to characterize this
domain biochemically. The A7 gene fragment was
cloned and heterologously expressed in E. coli BL21. Af-
ter purification, the specificity of the enzyme was exam-
ined by the standard amino acid-dependent ATP-PPi
exchange assay [40]. Of the five amino acids tested, A7

showed equal activity when presented with (R,S)-b-tyro-
sine or L-a-tyrosine (see Figure 6A). However, because
racemic b-tyrosine was used, each enantiomer was
present at 1 mM rather than the 2 mM concentration of
L-tyrosine. While the question remains whether A7 in
vivo also activates both tyrosine and b-tyrosine, the
findings in vitro suggest b-tyrosine is the preferred sub-
strate. In addition, the ‘‘wrong’’ enantiomer present in
the assay performed might inhibit the activation reac-
tion. Presumably, in vivo PCP7 and the TE domain per-
form some gatekeeper function similar to that described
for C and TE domains [71, 82] and discriminate against
activated tyrosine since b-tyrosine is the only extender
unit found in the known chondramides. The stereo-
chemistry of chondramide and the stereospecificity of
TAM and A7 need to be addressed in future work. Finally,
once the elongated chain reaches the final PCP domain,
cyclization and release of the completed PKS/NRPS
hybrid structure is catalyzed by the TE domain [83].

The biosynthesis of chondramides B and D requires
the action of a specific halogenase and CmdE shows
significant similarity (55%) and identity (35%, each given
on protein level) to other FADH2-dependent halo-
genases. It has been determined that FADH2 is pro-
duced by nonspecific flavin reductases that are required
by these halogenases [84]. The chondramide halogen-
ase, CmdE, represents a rare tryptophan 2-halogenase.
Free 2-chlorotryptophan is unstable and degrades rap-
idly under various conditions (U. Kazmaier, personal
communication). Due to the natural occurrence of chon-
dramides A and C, it is likely that CmdE modifies an
NRPS bound species or the nascent product of the
NRPS. Additionally, subsequent chlorination avoids
the risk of halogenating free tryptophan required for
protein synthesis. Moreover, CmdE shows only 20%
identity with the regioselective tryptophan 5-halogenase
(PyrH) involved in pyrroindomycin biosynthesis in Strep-
tomyces rugosporus LL-42D005 [85] and homology to
only the FAD binding domain at the N terminus of the
tryptophan 7-halogenase (PrnA) from Pseudomonas
fluorescens [84]. CmdE exhibits no significant similarity
to RebH of the Lechevalieria aerocolonigenes, which is
involved in generating 7-chlorotryptophan during the
biosynthesis of rebeccamycin [86]. To prove the func-
tion of CmdE in chondramide biosynthesis, an inactiva-
tion of the chondramide halogenase in C. crocatus
Cm c5 was carried out (Figure 4A). The resulting mutant
only produced the nonchlorinated metabolites, chondra-
mides A and C (Figures 4C and 4D). Interestingly, when
5-fluorotryptophan was fed to cultures of C. crocatus
Cm c5, subsequent HPLC-MS analysis showed that in
addition to chondramides (A–D), fluorinated analogs
of chondramides A and C were produced (Figure 5).
However, fluorochondramide B and fluorochondramide
D, which would have 2-chloro-5-fluorotryptophan resi-
dues, were not detected. This finding indicates that the
megasynthetase does not discriminate against 5-fluoro-
tryptophan as extender unit, but the fluorine most likely
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deactivates the indole such that it cannot attack the ac-
tivated chlorine species (probably HOCl) [84]. Alterna-
tively, the fluorine may affect the hydrogen bonding abil-
ity of the indole so that it is not properly positioned in the
CmdE active site.

On first inspection, the cmdF-encoded TAM seems to
be transcriptionally coupled to cmdE and essential for
chondramide biosynthesis (see above). Nevertheless,
cmdF is expressed independently from the upstream
genes of the gene cluster since its transcription is re-
duced but not abolished in the cmdE minus background
(Figure 4B). This finding and the presence of a putative
terminator sequence 20 bp downstream of the cmdE
gene suggests the presence of a promoter region in
the intergenic gap.

Finally, one would expect to find genes encoding a hy-
droxylase, possibly a cytochrome P450-dependent en-
zyme plus an O-methyl transferase that are required
for the formation of chondramides A and B from C and
D, respectively. No candidate genes were found in the
sequenced region except for orf6 exhibiting similarity
to cephalosporin hydroxylases. However, inactivation
of this gene had no effect on chondramide biosynthesis
(data not shown). Therefore, the formation of the me-
thoxy group remains obscure. There are other examples
from myxobacterial biosynthetic ‘‘gene clusters’’ where
post-PKS modification enzymes are not found within the
boundaries of the gene locus [51, 87].

Following cmdF, genes encoding phosphoenolpyr-
uvate (PEP) synthase (orf3), a sugar diphosphoesterase
(orf4), a hypothetical protein (orf5), a cephalosporin hy-
droxylase (orf6), and a cation transporting ATPase
(orf7) are found. Upstream of cmdA, open-reading
frames with translation products showing similarity to
D-aminoacylases, hypothetical proteins, and another
PEP synthase are found. Surprisingly, a second copy of
this PEP synthase, exhibiting high similarity (57% iden-
tity at the protein level) is located at the 30 end of CmdD
(Figures 2A and 2B). This finding leads to the speculation
that the chondramide biosynthetic gene cluster could
have evolved by horizontal gene transfer and integration
between orf2 and cmdE of the C. crocatus Cm c5
genome. PEP synthase is known to catalyze the phos-
phorylation of pyruvate to PEP via a phospho-histidine
intermediate [88]. Although enzymes with similarity to
PEP synthases are assumed to play a role in natural
product biosynthesis in actinomycetes [89], inactivation
of orf2 and orf3 showed no involvement of the PEP syn-
thases in the biosynthesis of chondramides. Identical
ratios of the various chondramides are produced in the
respective mutants. A probable promoter for the chon-
dramide gene cluster was identified in the region 51 bp
upstream of the orf2 stop codon. This region was un-
changed by the inactivation of orf2.

Significance

The highly cytotoxic chondramides and jaspamide are

representative members of an important family of
mixed PKS/NRPS derived natural product that have

gained widespread use as tools to study the role of
actin polymerization and depolymerization in various

cellular functions. These compounds are also prime
examples of strikingly similar natural products being
isolated from terrestrial microorganisms and marine
invertebrate animals and fuel speculation as to the

identity of the organism actually producing the marine
natural product. Further adding to the interest in these

compounds is the biochemistry leading to the rare
b-tyrosine, or a-methoxy-b-tyrosine, residue and the

unique 2-bromo- or 2-chlorotryptophans. Importantly,
the cloned chondramide biosynthetic gene cluster can

now be transferred to more easily manipulated host
cells, which could increase production and facilitate

analog development. These terrestrial genes may
also provide useful information in the search for the

marine natural product biosynthetic genes or serve

as the starting point to create synthetic gene clusters
for related compounds like jaspamide.

Experimental Procedures

Standard methods for DNA isolation and manipulation were used

as described by Kieser et al. [90] and Sambrook and Russell [91].

DNA fragments were isolated from agarose gels with the NucleoSpin

Extract gel extraction kit (Macherey-Nagel, Düren, Germany). South-

ern analysis of genomic DNA was performed with the DIG DNA label-

ing and detection kit (Boehringer Mannheim, Germany). Hybridiza-

tion was performed with a buffer containing 50% formamide at

42ºC for homologous probes with stringent washes at 68ºC. For het-

erologous probes, hybridization was performed at 37ºC with strin-

gent washes at 60ºC. Other manipulations were performed accord-

ing to the manufacturer’s protocol. PCR was carried out with Taq

DNA polymerase (Gibco BRL). Conditions for amplification using

an Eppendorf Mastercycler gradient thermal cycler were as follows:

denaturation, 30 s at 95ºC; annealing, 30 s at 48ºC –60ºC; extension,

45 s at 72ºC; 30 cycles and a final extension for 10 min at 72ºC. PCR

products were purified with the High Pure PCR Product Purification

Kit (Boehringer Mannheim).

Construction of the Cosmid Library

Chromosomal DNA of Chondromyces crocatus Cm c5 was partially

digested with Sau3AI, dephosphorylated, and subsequently ligated

into SuperCos 1 (Stratagene) pretreated with XbaI, dephosphory-

lated, and restricted with BamHI. Packaging of the ligation mixture

with Gigapack III Gold (Stratagene) packaging extract and transduc-

ing the resulting phages into E. coli SURE (Stratagene) generated

a genomic library consisting of 2304 clones.

Screening of the Cosmid Library for the Chondramide

Gene Cluster

All single colonies were transfered into 384-well microtiter plates,

grown in LB medium overnight, and replicated twice. Glycerol (25%)

was added to one copy of the library, and the plates were frozen

at 280ºC. For colony hybridization, the colonies of the second

copy were transferred twice onto a 22.2 3 22.2 cm nylon mem-

brane (Biodyne B, Pall) with a Qbot robot (Genetix) as previously

described [32].

The membrane was incubated for 5 min on blotting paper prewet-

ted with solutions I (0.5 M NaOH, 1 M Tris/HCl [pH 8.0]) and II (1.5 M

NaCl, 1 M Tris/HCl [pH 8.0]), respectively. After drying for 15 min, the

filters were UV-cross-linked with a Stratalinker (Stratagene). Bacte-

rial debris was removed with tissue prewetted with 60ºC prewarmed

prehybridization solution. For the screening of the cosmid library,

hybridization was performed with homologous and heterologous

ketosynthase (KS) fragments as probes under low stringency condi-

tions. The heterologous KS fragments were derived from three sour-

ces: S. cellulosum So ce90, S. aurantiaca Sg a15 [8], and from the

mtaB gene, which is part of the myxothiazol biosynthetic cluster

[33]. Homologous KS fragments approximately 700 bp in size were

amplified from the genome of C. crocatus Cm c5 with the degenerate

oligonucleotides KS1UP and KSD1 [8] designed to bind to con-

served regions within KS domains. Additionally, the cosmid library

was screened with homologous NRPS probes amplified from the

genome of C. crocatus Cm c5 with degenerate primers RevA3 and
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PSLGG designed to recognize the regions corresponding to the

conserved A3 and A10 motifs within the NRPS adenylation (A) do-

mains [34, 35].

A total of 42 cosmids that hybridized with both KS and NRPS

probes were subjected to PCR analysis for the amplification of

NRPS A domains (primers used were RevA3 and PSLGG). The

resulting PCR products were gel purified and subcloned into

pCR2.1TOPO vector (Invitrogen) and sequenced. Several identical

NRPS sequences from different cosmids were found, which showed

that the corresponding cosmids must overlap. The eight critical res-

idues responsible for substrate recognition [36, 37] were extracted

from the sequence enabling an in silico prediction of the substrate

specificity of each cloned A domain fragment. Cosmids harbouring

A domains that were predicted to activate alanine, tryptophan, or ty-

rosine were digested with BamHI, and the restriction pattern was

compared to identify similar cosmids. Finally, one representative

of each cosmid group was end sequenced from the T3 and the T7

termini of the SuperCos vector. Oligonucleotide pairs based on

the sequences obtained were designed and used to screen all other

cosmids for the presence of overlapping sequences. The cosmid

C:K13 carrying A domain sequences for the activation of alanine,

N-methyltryptophan (as judged by the identification of an elongated

PCR product with tryptophan specificity code also showing homol-

ogy to N-methyltransferase domains) and tyrosine was found to

overlap with a cosmid harboring only the NRPS A domain involved

in the activation of tyrosine (B:O9).

Cosmids C:K13 and B:O9 were expected to carry the complete se-

quence of the chondramide biosynthetic gene cluster and were thus

sequenced on both strands, by using a shotgun library with DNA

fragments approximately 1.5–2.0 kb in length as described previ-

ously [33]. All sequence similarity searches were carried out on the

amino acid level in the GenBank database with the BLAST program

(release 2.0). Amino acid and nucleotide sequences were aligned

with the Lasergene and Vector NTI software packages (DNASTAR

and Invitrogen, respectively).

Chondromyces crocatus Cm c5 Conjugation

The lack of methodologies for genetic manipulation and transforma-

tion of Chondromyces species required that we develop methods

for gene inactivation and DNA transfer into the chromosome of

C. crocatus Cm c5. The transformation is based on biparental mat-

ing and conjugation with the methylation-deficient E. coli strain

ET12567 harboring the pUB307 plasmid [38] and an insertion plas-

mid as donor strain. The conjugational transfer plasmids were con-

structed by first generating the insertion fragment by PCR. The

resulting products were subcloned into the pCR2.1TOPO vector

(Invitrogen), but because C. crocatus Cm c5 is not affected by kana-

mycin, the kanamycin resistance marker used with this vector can-

not be used for the isolation of mutants. Therefore, the cloned frag-

ment was excised with proper restriction enzymes and subcloned

into the multiple cloning site of the conjugation plasmid pSUPHyg

[39] carrying an oriT and the hygromycin resistance cassette, which

can be used for C. crocatus Cm c5 selection. Mobilization of the

plasmid into C. crocatus Cm c5 was done as follows: 50 ml of C. cro-

catus Cm c5 culture grown in Pol03 medium [9] for 5 days was centri-

fuged for 10 min at 5,000 rpm. The collected cell clumps were gently

disaggregated and resuspended in 2 ml fresh Pol03 medium with a 5

ml glass homogenizer. The cells were centrifuged briefly at 3,000

rpm and gently resuspended in Pol03 medium to give a cell suspen-

sion of approximately 1010 cells/ml. E. coli ET12567 cells, carrying

pUB307 and the conjugational plasmid, were grown overnight in

LB medium containing 100 mg/ml hygromycin and 40 mg/ml kanamy-

cin. The culture was used for the inoculation of 50 ml LB medium and

was grown at 37ºC to OD600 = 0.6–0.8. The cells were washed with

MD1 medium at room temperature and resuspended to a final con-

centration of 1010 cells/ml. The cell suspensions (100 ml each) were

mixed and incubated at 37ºC in a thermomixer (Eppendorf) at 300

rpm for 3 hr. Next, the suspension was spotted onto Pol03-agar

and incubated at 37ºC for 40 hr. Subsequently, the cells were trans-

ferred into 1 ml of Pol03 medium by adding the medium to the agar

plate and resuspending all cells by scraping the agar surface. Ali-

quots of 300 ml were plated onto Pol03 agar containing tobramycin

(80 mg/ml) and hygromycin (100 mg/ml) and incubated at 30ºC. Mu-

tant colonies of C. crocatus Cm c5 were observed after 5–7 days
of growth. The growth of the exconjugants had to be controlled

regularly to prevent swarming, which can quickly prevent the pos-

sibility of picking single colonies (see Figures 1B and 1C). Single

exconjugants were transferred into 5 ml of the Pol03 medium con-

taining 100 mg/ml hygromycin and incubated at 30ºC for 7 days in

a rotary shaker at 180 rpm. For chromosomal DNA isolation, the

cell clumps were transferred into a 250 ml conical flask containing

50 ml of MD1 medium and incubated at 30ºC with 100 mg/ml hy-

gromycin. For HPLC analysis of the secondary metabolite profile,

cell clumps were used to inoculate Pol03 medium with 1% ad-

sorber-Harz XAD 16 resin (Rohm & Haas, Frankfurt/Main, Germany)

as described previously [9].

Inactivation of the Chondramide Biosynthetic Gene Cluster

An NRPS gene in the chondramide biosynthesis gene cluster was

targeted for inactivation by insertional disruption with an internal

fragment of an adenylation domain. A 1135 bp internal fragment of

the A domain (A5) from the cmdC gene was amplified by PCR with

the oligonucleotides RevA3: (50-CCT CCG G[GC]C C[GC]A CCG

G[GC][AC] CGC C[GC]A AGG-30) and PSLGG: (50-GCC GCC

[GC]AG [GC]C[CT] GAA GAA-30) and the cosmid B:O9 as template

DNA. Conditions for amplification were as follows: denaturation,

30 s at 95ºC; annealing, 30 s at 50ºC; extension, 45 s at 72ºC. The

PCR fragment of the expected size was cloned into pCR2.1-TOPO

and sequenced. The cloned fragment was excised with HindIII and

EcoRV and cloned into pSUPHyg creating a conjugation plasmid

designated pSBO9. The plasmid was electroporated into E. coli

strain ET12567 containing pUB307, and the resulting clones were

used for conjugation and transfer of pSBO9 into C. crocatus Cm

c5 as described above. The mutant resulting after homologous re-

combination of pSBO9 into the genome was designated C. crocatus

Mut20. It was grown in Pol03 medium containing hygromycin (100

mg/ml) at 30ºC for 7 days in a rotary shaker at 180 rpm with 1% ad-

sorber-Harz (XAD) to analyze metabolite production as described

previously [9]. The mutant strain was also grown in 50 ml MD1 me-

dium for chromosomal DNA isolation. For verification of the plasmid

insertion, the oligonucleotides pSUP-EV: (50-GCATATAGCGCTAG

CAGC-30) and RevA3 were used in PCR containing wild-type and

mutant chromosomes. Furthermore, Southern blot analysis of the

BamHI digested chromosome of C. crocatus Cm c5 and two

NRPS mutants was performed with a Dig-labeled internal fragment

of the NRPS as hybridization probe.

Inactivation of the Halogenase Gene, cmdE

Inactivation of cmdE, the putative halogenase gene, was done by

generating a 1138 bp internal fragment of the gene leading to

a frame-shift mutation in the N-terminal sequence. By using geno-

mic DNA of C. crocatus Cm c5 as template, PCR was carried out

with oligonucleotides Halo-frame-up (50-AGA TCC TTG TTC GTA

GGT G-30) and Halo-mut-dn (50-TGC GAC ATG TTG AAG ACG-30).

The PCR product was cloned into pCR2.1TOPO, the resulting plas-

mid was transformed into E. coli, and the product was verified by se-

quencing. Next, the fragment was subcloned into the EcoRV and

BamHI sites of pSUPHyg to create the insertion plasmid pSHAL.

This plasmid was transferred by conjugation into C. crocatus Cm

c5 leading to gene inactivation after homologous recombination.

Mutants Cmc-Hal2 were analyzed by PCR with the oligonucleotides

Halo-frame-up and pSUP-EV as described above. Correct clones

were further verified by Southern analysis (data not shown) and an-

alyzed for chondramide production by HPLC-MS. Separation was

carried out with an Agilent 1100 series system equipped with a pho-

todiode array detector and coupled to a Bruker HCTplus mass

spectrometer operated in positive ionization mode at a scan range

from m/z = 100–1100. A 125 3 2mm Nucleodur C18/3 mm RP column

(Macherey & Nagel) was used for separation with a solvent system

consisting of H2O (A) and acetonitrile (B), each containing 0.1% for-

mic acid. The following gradient was applied: 0–2 min 5% B, 2–32

min linear from 5% B to 95% B, 32–35 min isocratic at 95% B. Chon-

dramides were identified by comparison to the retention times and

the MS data of authentic standards (chondramide A: rt = 15.9 min,

[M+H]+ = 647; chondramide C: rt = 16.7 min, [M+H]+ = 617; chondra-

mide B: rt = 16.9 min, [M+H]+ = 681; chondramide D: rt = 18.0 min,

[M+H]+ = 641).
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Transcriptional Analysis of the TAM Gene in the cmdE Mutant

Cmc-Hal2

C. crocatus Cmc-Hal2 was grown in Pol03 with 100 mg/ml hygrom-

ycin for 5 days at 30ºC. Bacterial cells were collected by centrifuga-

tion at 5000 rpm. Transcriptional analysis of cmdI expression in wild-

type and mutant cells was performed by Northern blot analysis of

the bacterial total RNA, which was isolated with the FastRNA Kit,

BLUE (BIO 101, Germany) according to the manufacturer’s protocol.

A 1060 bp internal fragment of cmdI was generated by PCR with

TAM-up (50-CTC CAA CCT GTC CAT CTA C-30) and TAM-dn (50-

GAT GTT CAG GTA GTC GCA G-30), labeled with digoxigenin by

using DIG High Prime kit (Roche) and used as a probe in the Northern

blot (hybridization was performed at 42ºC).

Inactivation of Orf2, Orf3, and Orf6

Inactivation of orf2 located upstream the gene cluster and encoding

a putative phosphoenolpyruvate synthase, orf3 (the second putative

phosphoenolpyruvate synthase), and orf6 (the putative cephalospo-

rin hydroxylase) was performed analogously with the inactivation

plasmids pSR4, pSR5, and pSR6, respectively. These plasmids

were constructed by cloning 921 bp, 649 bp, and 604 bp (with

a frame-shift mutation in the 50 sequence) PCR products generated

with the oligonucleotides PEP1-up (50-GGTTTACGAGCACTACG

G-30) and PEP1-dn (TGGTAGGTGATCTTGCAG -30), PEP3-frame-

up (50-ATGCGTGCGCATCCTCTGGCTG-30) and PEP3-dn (50-GGTC

ATGTTCTGCTTCTC-30), and Ceph-up (50-GCC AGA TGA CCA CCT

CTA C-30) and Ceph-dn (50-GACGTAGTAGTCGCCCTC-30), respec-

tively. The plasmids were transferred by conjugation into C. croca-

tus Cm c5 leading to gene inactivation after homologous recombina-

tion, which was verified by Southern blot and PCR analysis (data not

shown). The resulting mutants Cmc-orf2, Cmc-orf3, and Cmc-orf6

were analyzed by HPLC-MS for chondramide production.

Incorporation of Fluorotryptophan into Chondramides

To test the incorporation of nonchlorinated tryptophan into the

structure of chondramide, 5-fluorotryptophan (Fluka) was added

to a 100 ml culture of the C. crocatus Cm c5 in equal portions (final

concentration of 1 mM) at 24, 48, and 72 hr after the inoculation.

XAD resin (1% V/V) was added, the culture was grown for 7 days

at 30ºC, and cells and resin were harvested and extracted with

methanol. The solvent was removed, and the residue was dissolved

in 500 ml of methanol, and 10 ml of this concentrated extract was

analyzed by HPLC-MS/MS.

Amplification and Cloning of the Chondramide A7 Domain

The pGEX-6P-1 (Amersham Biosciences) overexpression system

was used to express a 1709 bp PCR product corresponding to the

adenylation domain from module 7 (A7). PCR with chromosomal

DNA of C. crocatus Cm c5 was carried out with PFU polymerase

(Stratagene) by using oligonucleotides Tyr-Ad-up (50-GGAATT-

CATGGACGAACAGAGGAAG-30; introduced EcoRI site is in bold)

and Tyr-Ad-dn (50-GAGCTTGAAGAAGTCGTC-30). The resulting

PCR product was purified and cloned into pCR2.1TOPO, creating

pTOPO-Ad7. After checking the sequence fidelity, the insert was

excised from the vector and subcloned into the EcoRI site of the

expression vector pGEX-6P-1 creating pGEX-Ad-7.

Overexpression and Purification of the Adenylation Domain A7

Plasmid pGEX-Ad-7 was transformed into E. coli BL21, and cells

were grown in LB medium supplemented with 100 mg/ml ampicillin

at 30ºC. Expression was induced with 0.2 mM IPTG (isopropyl-b-

D-thiogalactopyranoside) at an OD600mm = 0.6–0.8, and the cells

were allowed to grow for an additional 2 hr before harvest. The A7

protein was expressed as an N-terminal GST-fusion protein.

Purification of the protein was carried out by glutathione affinity

chromatography and on-column GST-fusion protein cleavage with

PreScission Protease at 4ºC according to the manufacturer’s rec-

ommendations.

ATP-PPi Exchange Reactions

Assays were performed following described methods [40] and were

carried out at 25ºC in 100 ml total volume containing 50 mM Tris (pH

8.0), 10 mM MgCl2, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 2 mM

dATP, 150 nM A7, 1 mM [32P]-pyrophosphate (0.5 mCi), and 2 mM
of either L-tyrosine, (R,S)-b-tyrosine (Johnson Pump, UK), L-trypto-

phan, L-phenylalanine, or L-methionine as possible substrates. The

reactions were allowed to proceed for 15 min at 25ºC and then

quenched by addition of a charcoal-tetrasodium pyrophosphate-

perchloric acid mixture (1.6% [w/v] activated charcoal, 4.46%

[w/v] tetrasodium pyrophosphate, 3.5% perchloric acid in water).

The charcoal was pelleted by centrifugation, washed twice with

the quenching mixture (without charcoal), and then resuspended

in 0.5 ml water and submitted for liquid scintillation counting. The

reactions were typically performed in triplicate.
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