Polymorphisms of the Human Platelet Antigens-1 in Nonvalvular Atrial Fibrillation Patients with Ischemic Stroke in Turkish Population

Artşa Kılıç, Nilgün Ertöz, Boraço Sağıcı, Fatih Aksoy, Habil Yücel, Akif Arslan, Özkan Görgülü, Bayram Ali Uysal

1Department of Cardiology, Ahi Evran University Training and Research Hospital, Kirşehir, 2Department of Neurology, Giresun University, Giresun, 3Department of Biochemistry, Katip Celebi University, Izmır, 4Department of Cardiology, Süleyman Demirel University, Isparta, 5Department of Cardiology, Isparta State Hospital, Isparta, 6Department of Cardiology, Aksaray State Hospital, Aksaray, 7Department of Biostatistics and Medical Informatics, Ahi Evran University Education and Research Hospital, Kirşehir

Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, which confers a high risk of mortality and morbidity from stroke and thromboembolism. Altered platelet activation and platelet-dependent thromboembolism have been associated with the pathogenesis of cardiovascular or thromboembolic diseases, which include atherosclerosis, coronary disease and cerebrovascular disease. Platelet adherence and activation are mediated by human platelet antigens (HPAs), a complex of platelet membrane glycoproteins (Gp) and other cellbinding Factors. By altering platelet receptor sensitivity, polymorphisms in platelet Gp directly impact platelet susceptibility to activating stimuli, which is linked with an increased risk of atherothrombotic events, including acute myocardial infarction. We wanted to investigate HPA-1 polymorphism in patients with AF who have had a stroke than in healthy controls.

Methods: The HPA-1 polymorphism was analysed in 70 patients with nonvalvular AF who have had a stroke and 65 healthy individuals with no documented episode of AF matched for age, race and sex. Because ethnic differences have been reported for HPA-1, the HPA-1 gene polymorphism was identified by polymerase chain reaction (PCR) method. Distribution of the HPA-1 gene polymorphism alleles (1a, 1b) genotypes (1a1a, 1a1b and 1b1b) were determined in study population. The frequency of 1a1a genotype of HPA-1 polymorphism was significantly lower in patients with AF patients who have had a stroke group compared with control group (49 (70%) vs 57 (87.7%), p=0.012). The frequency of 1a1b genotype heterozygous genotype was significantly higher in AF patients who have had a stroke group than control (18 (25.7%) vs 6 (9.2%), p=0.012). Between the two groups were compared according to the dominant genetic model (1a1b + 1b1b vs 1a1a), The number of patients carrying at least one 1b mutant allele (1a1b + 1b1b) was significantly higher in AF patients who have had a stroke group than control (21 (30%) vs 7 (10.8%), p=0.006). With respect to allelic distribution (1a vs 1b, additive model), the frequency of the 1b allele was significantly higher in AF patients who have had a stroke (24 (17.1%) vs 8 (6.1%), p=0.009).

Conclusion: In this study, our data suggest that the HPA-1 gene polymorphisms may be associated with AF patients who have had a stroke from other clinical risk factors, but this should be confirmed in a much larger series of patients. Screening for this mutation may help in identifying patients at risk and in deciding the antithrombotic strategy.

PP-158
Evaluation of Left Atrial Functions and the Electromechanical Delay Time by Echocardiography in Patients with Prediabetes

Naile Eris Güdül, Turgut Karacaş, Muhammet Rasit Sayın, Ibrahim Akpinar, Nesimi Tavac, Mustafa Aydin

Bulent Ecevit University, Faculty of Medicine, Department of Cardiology, Zonguldak

Objective: Prediabetes is a predictor of manifest diabetes mellitus (DM) and is known to be associated with increased cardiovascular mortality and morbidity. As the diabetic patients are at higher risk of developing atrial fibrillation (AF), a significant part of the patients with lone AF are also diabetic. Inter-atrial and intra-atrial electromechanical coupling time which can be measured by both prolonged P wave dispersion and tissue Doppler imaging are known as the non-invasive predictors of atrial fibrillation. Impairment of left mechanical functions could be associated with the increased risk of developing AF. In our study, we examined the atrial electromechanical coupling time which is measured by the tissue Doppler imaging (TDI), left atrial (LA) mechanical function by disc method, and P wave dispersion of the prediabetic patients.

Material-Method: 50 prediabetic (22 M, 28 F; median age: 51±10 years) and 41 healthy subjects as control group included in this study. Atrial electromechanical coupling time was calculated from lateral mitral annulus (PA lateral), septal mitral annulus (PA septum) and right ventricular tricuspid annulus (PA tricuspid) by TDI. Left atrial volumes (maximum, minimum, and pre-systolic) were measured in the apical four-chamber view with the disk method and were indexed to body surface area. Left atrial mechanical functions (LAPEV, LAPEF, LAAEV, LAAEF, CV, LATEV) were evaluated. P wave dispersion was obtained by 12-lead electrocardiography and was calculated as subtracting the minimum P wave duration from maximum P wave duration period. The results of prediabetic and control groups were analysed.

Results: Inter-atrial (PA lateral-PA tricuspid) and left atrial electromechanical delays were found to be significantly longer in patients with prediabetes than the control group (21.1±10.5 vs 13.8±5.6 msec; p < 0.001, 12.5±8.1 vs 6.7±3.7, p < 0.001, respectively). Maximum and pre-systolic volumes were found to be similar in both groups (29.7±7.2 vs 27.1±8.2, p=0.24, 18.6±4.4 to 17.8±6.6, p=0.14, respectively). In the prediabetic patients, LATEV, LAAEV, CV and LAAEF were found to be higher than the control group (18.8±6.3 vs 16.1±4.5, p=0.01; 8.7±3.1 to 5.7±2.4, p<0.001; 31.3±8.3 vs 27.5±9.7, p=0.047; 0.53±0.16 vs 0.31±0.13, p<0.001, respectively).

In prediabetic patients, P-wave dispersion was found to be longer than the control group (55.3±11.1 msec to 28.9±5.9 msec, p<0.001, respectively).

Conclusion: Prolonged atrial electromechanical delay and prolonged PWD suggested that prediabetic population have an increased risk for development of AF than the normal population. Impaired left atrial mechanical functions could be a predictor of the heart failure and atrial fibrillation which may develop in future. In our opinion, in patients with prediabetes, some precautions are to be taken before the development of overt diabetes, may prevent such cardiovascular complications as AF and heart failure.

PP-159
Autonomic Dysfunction and Arrhythmic Disorders in Patients with Coronary Artery Disease

Evgeny Shlyakhko, Oleg Mamontov, Edward Berngard, Evgeny Mikhailov, Dmitry Lebedev, Alexandra Konradi

Almazov Heart, Blood and Endocrinology Centre, Saint-Petersburg, Russia

Objective: Prolonged autonomic modulation may be an effective approach to treatment and prevention of arrhythmias. We hypothesized that patients with CAD and paroxysmal atrial fibrillation (AF) and in 40 healthy subjects was performed by Valsalva maneuver test, evaluation of heart rate variability (HRV) and blood pressure response to Valsalva maneuver.

Methods: Estimation of sympathetic and parasympathetic activity in 40 patients with CAD and paroxysmal atrial fibrillation (AF) and in 40 healthy subjects was performed by Valsalva maneuver test, evaluation of heart rate variability (HRV) and blood pressure response to Valsalva maneuver.

Results: In patients with CAD and paroxysmal atrial fibrillation, there was a significantly lower heart rate variability (HRV) in the frequency domain in the delta band compared to healthy subjects (p<0.05). During Valsalva maneuver, the heart rate variability (HRV) significantly decreased in both groups (p<0.05). The RR interval variability was lower in patients with CAD and paroxysmal atrial fibrillation compared to healthy subjects (p<0.05).

Conclusion: The results suggest that patients with CAD and paroxysmal atrial fibrillation have a lower heart rate variability (HRV) and blood pressure response to Valsalva maneuver test compared to healthy subjects. Further studies are needed to determine the clinical implications of these findings.