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In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the 
suitable boundary condition in near horizon limit, we study the correspondence between gravitational 
perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a 
Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be 
seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is well-known that gauge/gravity correspondence is a great 
breakthrough on theoretical physics. If we consider a space–time 
with a boundary, such conjecture claims that there exists a corre-
spondence between the gravity theory in this space–time and the 
field theory on its boundary. This conjecture offers us a powerful 
tool to study properties of strongly coupled systems. An important 
application of this conjecture is the correspondence between grav-
ity and fluid dynamics. Such correspondence was first observed by 
Policastro, Son and Starinets [1]. The crucial idea of this fluid/grav-
ity correspondence is quite clear. Because of the gauge/gravity cor-
respondence, a gravity theory in space–time should correspond to 
a field theory on its boundary. Therefore the gravitational pertur-
bation in the space–time will induce a perturbation in the dual 
field theory on the boundary. Since the infrared behavior of a field 
theory is governed by hydrodynamics, there should be a natu-
ral relation between the perturbed Einstein equation in the long 
wavelength limit and the hydrodynamical equation. By considering 
long wavelength model of perturbation on black brane solutions, 
Son et al. established such correspondence and calculated the asso-
ciated shear viscosity of the dual fluid. During the last decade, this 
topic has attracted great attention of researchers [2–10]. Many in-
teresting fluid phenomenon have been realized holographically, e.g. 
turbulence [11] and Hall viscosity [12]. In 2011, Strominger et al.
develop a new method to relate the perturbed Codazzi equation on 
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boundary with the Navier–Stokes equation [13,14]. Soon later, with 
the idea of local boost transformation Compére et al. re-realized 
such correspondence and generalize the fluid/gravity correspon-
dence to higher order perturbation [15]. Since the fluid/gravity du-
ality is a quite natural corollary of gauge/gravity correspondence, it 
is reasonable to believe that such correspondence should hold for 
general stationary black holes. Unfortunately, the long wavelength 
conditions used in the original method in [1,13–15] can not be 
generalized to deal with non-plane symmetric black hole cases. Es-
pecially, the method can not be applied to rotating black holes. In 
2011, Strominger and his colleagues proposed a new idea to realize 
the correspondence [16]. They found that, by imposing a care-
fully chosen boundary condition, the perturbed Einstein equation 
exactly reduces to the Navier–Stokes equation in one lower dimen-
sion. Mathematically, this method is much simpler than the origi-
nal one and can be generalized to the cases of more general black 
holes. Following this idea, the fluid/gravity correspondence for gen-
eral non-rotating black holes has been established in[17–26]. In 
this paper, we consider the case of rotating black holes.

On the gravity side, rotating black holes have an important phe-
nomenon, i.e. the frame-dragging effect [27]. Near horizon, the 
stationary observer will be forced to rotate with the black hole 
because of the distorted space–time geometry. In fact, such ef-
fect exists for any rotating massive objects and has been observed 
by the GPB experiment [28]. An interesting question is what the 
dual effect for the frame-dragging on the field theory side is. In 
this paper, we will study the fluid/gravity duality and focus on 
the physical effect on the dual fluid caused by the rotation of 
black holes. We discover that the dual fluid equation is an incom-
pressible Navier–Stokes equation with the Coriolis force. Our result 
implies that the holographic dual effect of frame-dragging is just 
the Coriolis force, at least at the hydrodynamical limit level.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2016.08.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:agoodmanjerry.ep02g@nctu.edu.tw
mailto:wuxn@amss.ac.cn
mailto:yiyang@mail.nctu.edu.tw
mailto:phyuan.py00g@nctu.edu.tw
http://dx.doi.org/10.1016/j.physletb.2016.08.018
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.08.018&domain=pdf


132 C.-J. Chou et al. / Physics Letters B 761 (2016) 131–135
In this paper, we first introduce some basic properties of our 
black hole background. To describe a general stationary black hole, 
we use the theory of isolated horizon which is developed by 
Ashtekar and other authors [29]. Then we study the fluid/gravity 
correspondence for rotating black holes using Strominger’s bound-
ary condition method. Finally, we conclude our results.

2. Asymptotic behavior of metric near horizon

In order to study the fluid/gravity correspondence in general 
cases, one needs to consider the properties of general station-
ary black hole configuration. To do this, Ashtekar’s isolated hori-
zon theory is a suitable tool [29]. This theory was developed by 
Ashtekar and other authors for four dimension at the end of last 
country. Later, Lewandowski and his colleagues generalized it to 
general dimensions [30]. Roughly speaking, an isolated horizon is 
a null hyper-surface with constant area. It is easy to check that 
stationary horizon is a special case of isolated horizon since the 
whole space–time is time-independent. In fact, isolated horizon 
is a natural generalization of the stationary black hole horizon. It 
does not require the space–time to be stationary, but only requires 
the geometry inside the horizon is time-independent. Physically, 
isolated horizon describes the case that all dynamical processes in 
the neighborhood of black hole has been fixed, but the exterior 
space–time region may still be dynamical.

In the rest part of this paper, we will focus on the gravitational 
perturbation near the isolated horizon. As has been discussed in 
[22], near the horizon, one can establishes a special coordinates 
{t, r, xi} (i = 1, 2, · · · , p), the Bondi-like coordinates, with the hori-
zon at r = 0. In terms of such coordinates, there is a set of null 
tetrad {l, n, E I } (I = 1, 2, · · · , p), which can be expressed as

n = ∂r, (1)

l = ∂t + U∂r + Xi∂i,

E I = W I∂r + ei
I∂i, I, i = 1,2, · · · , p,

where (U , Xi, W I , ei
I ) are functions of (t, r, xi) whose near horizon 

behavior can be obtained from Cartan structure equations as

U = ε̂r + 1

2
(R̂nlnl + 2|π̂ |2)r2 + O (r3), (2)

W I = −π̂I r + 1

2
(R̂nInl + 2θ̂ ′

I J π̂ J )r
2 + O (r3),

Xi = −π̂ ir + 1

2
(R̂nInlê

i
I + 2θ̂ ′

I J π̂I ê
i
J )r

2 + O (r3),

ei
I = êi

I − θ̂ ′
I J êi

J r + 1

2
(R̂nIn J êi

J + 2θ̂ ′
I J θ̂

′
J K êi

K )r2 + O (r3),

where êi
I is the tetrad on the section of horizon and θ ′

I J :=
〈E I , ∇ J n〉, ε := 〈n, ∇ll〉 with ε̂ being the surface gravity of hori-
zon. The hatted quantities represent the initial data of the horizon. 
What need to be emphasized is the quantity πI := 〈E I , ∇ln〉. Based 
on the discussion in ref. [29], it is just the rotational 1-form po-
tential. πI �= 0 implies that the black hole is rotating. In previous 
works, all black holes considered are non-rotating The main con-
cern of this paper is to study the effect induced by the non-zero 
πI .

Finally, using the null tetrad (1), the most general form of the 
metric in the neighborhood of a stationary horizon can be written 
as

(gμν) =
⎛
⎝ 0 1 �0

1 2U + W I W I Xi + W I ei
I�0 X j + W I e

j
I ei

I e
j
I

⎞
⎠ . (3)
3. Brown–York tensor of the boundary near horizon

Based on the basic gauge/gravity correspondence, Brown–York 
tensor corresponds to the energy-momentum tensor of the dual 
field theory and can be obtained by

ta
b = Kha

b − K a
b , (4)

where K a
b is the extrinsic curvature and ha

b is the induced metric 
of the boundary. It is well-known that the dynamical equation of 
fluid comes from the conservation law of the energy-momentum 
tensor. To study the fluid/gravity correspondence by using Stro-
minger’s boundary condition method [16], it is crucial to have 
the asymptotic behavior of the Brown–York tensor near horizon. 
Such behavior can be obtained by the direct calculations based 
on the asymptotic results of metric in last section. Another impor-
tant technique of Strominger’s method is to take the near horizon 
limit.1 Based on the gauge/gravity dictionary, the radius of the 
boundary is related to the energy scale of the dual field theory on 
the boundary. So the boundary approaching to the horizon implies 
the low energy limit in the dual field theory, i.e. the hydrody-
namic limit. We summarize our approach as follows: introduce a 
rescaling parameter λ and consider the boundary at r = rc in the 
neighborhood of the horizon, then define rescaled coordinates as 
τ = 2ε̂λ2t and rc = 2ε̂λ2. Taking λ → 0 limit corresponds to take 
the near horizon and non-relativistic limit at the same time. We 
denote the Brown–York tensor of the background as ta(B)

b and ex-
pand the components of the non-perturbed Brown–York tensor in 
terms of λ,

tτ (B)
τ = ξλ + O (λ3), (5)

tτ (B)
i = π̂i λ + O (λ3),

ti(B)
τ = O (λ3),

ti(B)
j = 1

2λ
δi

j +
[
(β + ξ) δi

j − ξ i
j

]
λ + O (λ3),

t(B) = p

2λ
+ [p (β + ξ)]λ + O (λ3).

where β , ξ i
j and ξ = ξ i

i are constants depending on the initial data 
of the horizon,

β = 1

4
(3R̂nlnl + |π̂ |2), (6)

ξ i
j = −2ĝik∇̃( jπ̂k) + 2π̂ iπ̂ j + 2ε̂ ĝ jmθ̂ ′

I J êi
I ê

m
J ,

and ∇̃ is the induced derivative on the section of the horizon.

4. Petrov-like boundary condition and gravitational perturbation

Following fluid/gravity correspondence, one needs to consider 
the gravitational perturbation in the space–time. A basic require-
ment for the perturbation is to satisfy the regular condition at 
horizon. In early works, people solved the perturbed equation con-
cretely to ensure the regularity [13,14]. For general stationary hori-
zons, this method fails to work. One needs other method to ensure 
the regularity of the perturbation. Thanks to the results on initial-
boundary value problem [31], one can ensure such regularity by 
imposing suitable boundary condition. One of the possible choices 
is Strominger’s Petrov-like boundary condition [16]. The Petrov-like 

1 Such limit also has been used to consider other topics about black hole which is 
related with AdS/CFT correspondence, such as Kerr/CFT correspondence [32]. Detail 
analysis will show such limit is equivalent to the “large mean curvature limit” in 
Strominger’s original work [16].
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boundary condition requires the perturbed Weyl curvature satisfy 
the following condition on the boundary,

Clilj = 0, (7)

where la is the out-pointed null normal of the time-like bound-
ary. Physically, this boundary condition implies there is no outgo-
ing perturbation at boundary. As the original paper by Strominger 
et al., the perturbation is introduced in terms of Brown–York ten-
sor:

ta
b = ta(B)

b +
∑

k

ta(k)

b λk, (8)

where ta(k)

b are gravitational perturbations and λ 
 1 is the pertur-
bation parameter. Under such rescaling, the perturbed Petrov-like 
boundary condition implies that

ti(1)
j = −2ĝik∇̃( j(t

τ (1) + π̂ )k) + 2tτ i(1)
(

tτ (1)
j + π̂ j

)

+ t(1)

p
δi

j + ξ i
j − R̃ i

j + 2(p2 − 3)

p2(p + 1)
�δi

j . (9)

It is easy to check that this equation reduces to the non-rotating 
result in [22] as π̂ vanishes.

5. The dual Navier–Stokes equation

With preparation in previous sections, we are able to study the 
holographic dual of gravitational perturbations. The basic AdS/CFT 
dictionary tells us that the Brown–York tensor corresponds to the 
energy-momentum tensor of dual field theory. On the field theory 
side, the hydrodynamic limit of the conservation law of energy-
momentum tensor should give the fluid equation. On the gravity 
side, the conservation equation of Brown–York tensor is just the 
Codazzi equation on the boundary of space–time. Thus the hydro-
dynamic limit indeed corresponds to the near horizon limit. So 
what one has to consider the near horizon limit of the Codazzi 
equation, D̄ata

b = 0, where D̄ is the induced derivative on space–
time’s boundary. Since the inner geometry on boundary is fixed, 
the perturbed Codazzi equation are obtained from Eq. (8) as

0 = D̄ata(B)

b + D̄ata(1)

b λ + O (λ2). (10)

Considering the τ component of Codazzi equation, under the near 
horizon limit, the first non-trivial equation is in the O (λ−1),

∇̃i(ĝi jtτ (1)
j ) = 0. (11)

For i components of Codazzi equation, the first non-trivial equation 
is in the O (λ),

0 = ∂τ tτ (1)
i − 2tτ j(1)∇̃(iπ̂ j) − 2tτ j(1)∇̃[iπ̂ j] − ∇̃ j(ξ

j
i − t j(1)

i )

+ ∇̃i

[
β + ξ − 1

4
(R̂nlnl − |π̂ |2)

]
. (12)

Combined with Eq. (9) and Eq. (11) and used the concrete expres-
sion of β and ξ in Eq. (6), this equation becomes

0 = ∂τ tτ (1)
i + ∇̃i

t(1)

p
+ 2tτ j(1)∇̃ jt

τ (1)
i − 4tτ j(1)∇̃[iπ̂ j]

− ∇̃2(tτ (1)
i + π̂i) − R̃ j

i (t
τ (1)
j + π̂ j) − ∇̃ j R̃ j

i

+ 1

2
∇̃i

(
R̂nlnl + 9|π̂ |2 − 8∇̃ jπ̂

j
)

, (13)

where R̃ j is the Ricci curvature of the section metric ĝi j .
i
Now let’s identify the geometric quantities with hydrodynamic 
quantities based on gauge/gravity dictionary. Since ta

b corresponds 
to the energy-momentum tensor in the dual field theory, it should 
be identified with the fluid energy-momentum tensor under the 
hydrodynamic limit. By comparing the perturbed Brown–York ten-
sor with the energy-momentum tensor (8), we establish the stan-
dard identification [16],

tτ (1)
i → 1

2
vi,

t(1)

p
→ P

2
, (14)

where P is the pressure and vi is the velocity in the dual fluid. 
The above identification (14) works for curved background geome-
tries [17,20–22,24–26]. With this identification, Eq. (11) reminds 
us that the dual fluid is incompressible, i.e. ∇̃i vi = 0, and the fluid 
equation can be finally written as,

0 = ∂τ vi + ∇̃i P + v j∇̃ j vi − ∇̃2 vi − R̃ j
i v j − f i

− 4v j∇̃[iπ̂ j], (15)

where

f i = 2∇̃2π̂i + 2∇̃ j R̃ j
i + 2R̃ j

i π̂ j

− ∇̃i

(
R̂nlnl + 9|π̂ |2 − 8∇̃ jπ̂

j
)

. (16)

Eq. (15) can be realized as the forced incompressible Navier–Stokes 
equations. The first line in Eq. (15) are standard terms of Navier–
Stokes equation in the curved space–time with a total divergence 
term f i which is only dependent on background geometry and can 
be realized as external forces. In addition, there is an unusual term 
−4v j∇̃[iπ̂ j] appears in Eq. (15). An interesting recognizing is that 
this term take the exact form of Coriolis force. According to Eq. (5)
and gauge/gravity dictionary, the vector π̂i is the velocity of the 
reference frame, and ∇̃iπ̂ j − ∇̃ jπ̂i is just the angular velocity. In 
order to see this, we consider the Gauss equation. Under near hori-
zon limit, the perturbed Gauss equation gives

tτ (1)
τ = −2ĝi jtτ (1)

i tτ (1)
j − 2π̂ itτ (1)

i − ξ + R̃

= −1

2
|v + π̂ |2 +

(
−ξ + R̃ + 1

2
|π̂ |2

)
. (17)

Based on the AdS/CFT dictionary, tττ corresponds to the energy 
density of the dual fluid. Obviously, the first term can be recog-
nized as the non-relativistic kinematic energy. This agrees with 
that the Navier–Stokes equation describes the non-relativistic dy-
namics of fluid. In Eq. (17), vi + π̂i plays the role of total velocity 
in the background of an inertial reference frame. Since we identi-
fied vi as the velocity in the dual fluid relative to the background, 
it is natural to see that π̂i is just the velocity of the background 
consisting with the second equation in Eq. (5).

In eq. (15), we have obtained that the Codazzi equation with 
Petrov-like boundary condition takes the form of Navier–Stokes 
equation in the near horizon limit. Comparing to the standard 
Navier–Stokes equation, there are two extra terms in eq. (15). One 
term corresponds to the Coriolis force which has been discussed 
in previous paragraph. The other term corresponds to the external 
forces which only depend on background geometry of the hori-
zon. The term of external forces again contains two parts. The 
first part is the gradient of the Weyl curvature component Ĉlnln , 
which can be seen as a induced gravitational potential caused by 
the curved higher dimensional space–time. The second part de-
pends on π̂i . Since we have identified π̂i as the velocity in the 
non-inertial frame, the second part can be realized as certain non-



134 C.-J. Chou et al. / Physics Letters B 761 (2016) 131–135
inertial effect caused by the non-inertial frame. This external force 
vanishes if the horizon is planar symmetric without rotating. This 
agrees with the results of [13–16].

If we consider a 5-dimensional space–time with its 3-dimen-
sional horizon section metric ĝi j being flat (based on characteristic 
initial value problem [33], such solution exists, at least locally), we 
can write the angular velocity of the background with respect to 
the inertial reference frame as

� = ∇̃ × π̂ . (18)

Then Eq. (15) reduces to the standard 4-dimensional incompress-
ible Navier–Stokes equation in a rotating frame of reference,

∂τ v + v · ∇̃v + ∇̃ P − ∇̃2v + 2� × v + f = 0, (19)

with 2� × v is the Coriolis force induced by the non-inertial refer-
ence frame and

fi = −2∇̃2π̂i + ∇̃i

(
Ĉnlnl + 9|π̂ |2 − 8∇̃ jπ̂

j
)

, (20)

being the external force since f only depends on the back ground 
geometry.

Finally we try to give a more intuitive way to explain why the 
rotation of a black hole would induce the Coriolis effect in the dual 
fluid theory. In ref. [34], Eling et al. gave a quite nice qualitative 
picture about the fluid/gravity correspondence. A stationary black 
hole background corresponds to a trivial solution of fluid equation, 
so the four velocity of the fluid along the direction of Killing vector 
∂t . If one perturbs this black hole, the generator of the perturbed 
horizon will have small fluctuations on xi which can be identified 
as the velocity of the fluid respecting to the static background. If 
the black hole is rotating, this picture should be modified. Because 
of the rotation of the black hole, the generator of horizon does not 
coincide with ∂t , but becomes ∂t + 
H∂φ which is just the famous 
frame-dragging effect. According to Eling’s picture, this means that 
the dual fluid has an additional velocity seen by the inertial ob-
server at infinity due to the frame-dragging effect. Thus the dual 
fluid on the horizon is in a non-inertial frame and the angular ve-
locity of the frame causes the Coriolis effect!

6. Conclusion

In this paper we studied the fluid/gravity correspondence for 
a general rotating black hole. We considered a rotating black hole 
with an isolated horizon, which is more general than an usual sta-
tionary horizon since only the geometry inside the horizon is re-
quired to be stationary in this case. Further calculation has shown 
that the fluid/gravity correspondence will be fail if one give up 
the isolated condition. We showed that the fluid/gravity correspon-
dence can be established for general rotating black holes. Further 
more, the most interesting result is that the dual fluid equation 
on rotating horizon contains a Coriolis force term, which means 
the dual fluid is in a non-inertial reference frame. As in Eq. (18), 
the associated angular velocity � of the reference frame is deter-
mined by π̂ which is closely related to the angular velocity of 
horizon. However, it is well-known that the horizon angular ve-
locity characterizes the frame-dragging effect for a rotating black 
hole. Combine all these facts, we thus proposed that the Coriolis 
effect should be the holographic dual of the frame-dragging effect 
in a rotating black hole.

One may ask that whether or not we could get the fluid equa-
tion (15) by just replacing vi by vi + π̂i in the ordinary N–S equa-
tion? The answer is no because of the frame-dragging effect. Due 
to the frame-dragging effect, any physically reasonable observer 
near horizon has to be co-rotating with the black hole, and there 
is no proper inertial frame near the horizon. This is also the reason 
why one must find a Coriolis term in the final fluid equation. Since 
the frame obtained by the near horizon limit is non-inertial, one 
cannot get the correct result by just putting vi + π̂i into the ordi-
nary fluid equation. Technically, this is because the space and time 
derivatives appeared in the fluid equation are in the non-inertial 
frame, but vi + π̂i is the total velocity of the fluid in the (im-
proper) inertial frame. In summary, the Coriolis force term can not 
be eliminated by any simple coordinate transformation since it is 
caused by the frame-dragging effect, which is a geometric effect.

When we finish this paper, there appears another paper [35]
discussing Kerr/fluid Duality. In that paper, the authors considered 
the fluid/gravity correspondence for extreme Kerr metric, a special 
case of our general rotating black hole. In the dual fluid equation, 
they found a “surprising” term proportion to εi j v j which is re-
semble to the term 4v j∇̃[iπ̂ j] in our result. We believe that this 
term should be related to Coriolis force which we found in this 
paper.
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