Membrane Physical Chemistry II

1414-Pos
Spatially-Resolved Fluorescence Spectra of Patterned Lipid Bilayers
Teiwei Luo, Alfred Kwok.
Pomona College, Claremont, CA, USA.
Planar supported lipid bilayers can be micropatterned such that the lipid composition of localized regions differ from that of the surrounding region. These micropatterned bilayers can serve as model systems to study the dynamics of microdomains in lipid bilayers. We have obtained spatially-resolved fluorescence spectra of bilayers patterned with alternating rows of 1% Rhodamine-DMPE/POPC and lipid voids with epifluorescence and TIRF (total internal reflection fluorescence) excitation. A 60X water immersion objective is used to image a 100-micron slice of the bilayer onto the entrance slit of an imaging spectrograph. A CCD camera at the exit port of the spectrograph records the fluorescence spectra from the bilayer. In conventional fluorescence spectroscopy, the signal from all the pixels of each column of the CCD camera, which corresponds to signal from a specific wavelength, is integrated to produce a single spectrum. In our experiment, such integration is not performed. Since the fluorescence spectra from the alternating rows of Rhodamine-DMPE/POPC and voids are imaged onto different rows of the CCD camera, their spectra can be spatially resolved.

1415-Pos
Tethered Lipid Bilayers that Mimic the Composition of Neuronal Membranes
Matteo Broccio1, Rima Budyvtvyte2, Gintaras Valincius3, Mathias Loesche4.
1Physics Dept, Carnegie Mellon University, Pittsburgh, PA, USA.
2Institute of Biochemistry, Vilnius, Lithuania.
For the study of biomolecular interactions with membranes, biomimetic lipid membranes are more advantageous than model systems, as well as in developing neuronal devices. In this study, we prepared planar supported lipid membranes (tBLMs) as a long-term stable and versatile experimental model in which thiolated lipopolymers span a hydrated layer that separates the membrane from its solid support[1]. Such tBLMs may be prepared either by “rapid solvent exchange”[2], which leads to highly insulating bilayer but provides limited control over membrane composition, or by vesicle fusion, which provides better control over membrane composition but leads to membranes with lower resistance. Here we report on tBLMs that mimic mammalian neuronal membrane lipid compositions by containing various phospholipids, cholesterol, sphingomyelin and cerebrosides. Electrochemical parameters of these neuronal membrane mimics as a function of the Ca2þ concentration are studied with electrochemical impedance spectroscopy. In tBLMs prepared by rapid solvent exchange, membrane capacitance has a sigmoidal dependence on cholesterol content. These results are compared with those from tBLMs prepared by the fusion of vesicles, whose cholesterol content can be determined with routine biochemical assays. This work aims at establishing complex membrane mimics for studies of Aβ oligomer interactions with bilayers to assess their influence on the lipid component of neuronal membranes in Alzheimer’s disease.

1416-Pos
Fabrication of a Membrane Interferometer Containing Electrodes
Laura D. Hughes, Prasad V. Ganesh, Steven G. Boxer.
Stanford University, Stanford, CA, USA.
Despite the advantages of supported lipid membranes, one remaining problem has been the incorporation of membrane proteins, as membrane proteins tend to lose their functionality near a surface. To address this limitation but retain the positional variety characteristic of biological membranes on the other. We have developed tethered bilayer lipid membranes (tBLMs) as a long-term stable and versatile experimental model in which thiolated lipopolymers span a hydrated layer that separates the membrane from its solid support[1]. Such tBLMs may be prepared either by “rapid solvent exchange”[2], which leads to highly insulating bilayer but provides limited control over membrane composition, or by vesicle fusion, which provides better control over membrane composition but leads to membranes with lower resistance. Here we report on tBLMs that mimic mammalian neuronal membrane lipid compositions by containing various phospholipids, cholesterol, sphingomyelin and cerebrosides. Electrochemical parameters of these neuronal membrane mimics as a function of the Ca2þ concentration are studied with electrochemical impedance spectroscopy. In tBLMs prepared by rapid solvent exchange, membrane capacitance has a sigmoidal dependence on cholesterol content. These results are compared with those from tBLMs prepared by the fusion of vesicles, whose cholesterol content can be determined with routine biochemical assays. This work aims at establishing complex membrane mimics for studies of Aβ oligomer interactions with bilayers to assess their influence on the lipid component of neuronal membranes in Alzheimer’s disease.

1417-Pos
Conformational Flexibility in Membrane Binding Proteins: Synaptotagmin I C2A
Jacob W. Gauer1, Jesse Murphy1, Kristofer Knutson1, R. Bryan Sutton2, Greg Gillispie3, Anne Hinderliter4.
1University of Minnesota Duluth, Duluth, MN, USA, 2Texas Tech University Health Sciences Center, Lubbock, TX, USA, 3Fluorescence Innovations, Bozeman, MT, USA.
Thermodynamic parameters capture the averaged contribution to a system’s energetics. In the case of binding proteins, such as Synaptotagmin I, the first step toward addressing how and where the energy is distributed within that protein is to ascertain the magnitude of the interactions within that protein. Our aim is to understand how binding information is conveyed throughout this protein during the role it plays in regulated exocytosis. While many detailed molecular approaches have identified putative regions where interactions occur, it is the energetics that dictates their response. Here, denaturation studies of the C2A domain of Synaptotagmin I were carried out in conditions that are physiologically relevant to regulated exocytosis where calcium ions and phospholipids were either present or absent. Denaturation data was collected using two techniques: differential scanning calorimetry (DSC) and lifetime fluorescence. A global analysis approach combining these data sets was used where the data was simultaneously fit to models derived from thermodynamic principles. The enthalpy associated with the denaturation of the C2A domain of Synaptotagmin I in the absence of all ligands was found to be quite low when compared to other proteins of the similar molecular weight. This suggests some conformational flexibility in the interactions which hold the protein together. In addition, the denaturation behavior is shown to be different upon binding ligand, suggesting that conformational flexibility is impacted by ligand binding. This material is based in part upon work supported by the National Science Foundation under CAREER - MCB 0747339.

1418-Pos
Protrusive Growth and Periodic Contractile Motion in Surface-Adhered Vesicles Induced by Ca2þ-Gradients
Tatsiana Lobovkina1, Irep Gözen2, Yavuz Erkan1, Jessica Olofsson1, Stephen G. Weber2, Owe Orwar1.
1Chalmers University of Technology, Göteborg, Sweden, 2University of Pittsburgh, Pittsburgh, PA, USA.
Local signaling, cell polarization, and protrusive growth are key steps in directed migration of biological cells guided by chemical gradients. Here we present a minimal system which captures several key features of cellular migration from signaling-to-motion. The model system consists of flat, negatively charged phospholipid vesicles, a negatively charged surface, and a local, and controllable point-source supply of calcium ions. In the presence of a Ca2þ gradient, the surface-adsorbed vesicles form protrusions in the direction of the gradient. We also observe membrane shape oscillations between expanded (flattened), and spherical states as a function of the Ca2þ-concentration. The observed phenomena can be of importance in explaining motile action in prebiotic, primitive, and biomimetic systems, as well as in development of novel soft-matter nano- and microscale mechanical devices.

1419-Pos
Deposition of Model Biomimetic Membranes on a Soft Support
Agneszka Gorska1,2, Malgorzata Hermanowska2, Aleksander Balter1, Beate Klösgen2.
1Institute of Physics, Nicolaus Copernicus University, Torun, Poland, 2Institute of Physics and Chemistry, University of Southern Denmark, Odense, Denmark.
The lipid bilayer is the first site of all cellular interactions with the extracellular environment. The interactions between the membrane and its local surroundings are influenced by the presence of charges, within the membrane itself and as well in the near environment. The investigation of a biomimetic system requires an environment which will not modify the basic properties of the membrane to be probed. In this study a polyelectrolyte multilayer (PEM) consisting of alternating layers of chitosan and heparin (CHIT/HEP) as a soft and highly