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Brainstem Hap1–Ahi1 is involved in insulin-mediated feeding control

Shao-Na Niu a,b,1, Zhen-Bo Huang a,1, Hao Wang a, Xiu-Rong Rao a, Hui Kong a, Jing Xu a, Xiao-Jiang Li c,
Chuan Yang b,⇑, Guo-Qing Sheng a,⇑
a CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, People’s Republic of China
b Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Sun Yat-sen University, 107 Yanjiang Road (W), Guangzhou 510020, People’s Republic of China
c Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA

a r t i c l e i n f o
Article history:
Received 18 October 2010
Revised 12 November 2010
Accepted 27 November 2010
Available online 10 December 2010

Edited by Robert Barouki

Keywords:
Huntingtin-associated protein 1
Abelson helper integration site 1
Brainstem
Nucleus of the solitary tract
Food intake
Energy homeostasis
0014-5793/$36.00 � 2010 Federation of European Bio
doi:10.1016/j.febslet.2010.11.059

⇑ Corresponding authors. Address: 190 Kai Yuan A
hou 510530, People’s Republic of China. Fax: +86 20

E-mail address: shenggibh@gmail.com (G.-Q. Shen
1 These authors contributed equally to this work.
a b s t r a c t

The function of the brainstem Hap1–Ahi1 complex in the regulation of feeding behavior was inves-
tigated. When mice were fasted or treated with 2-deoxy-D-glucose (2-DG), Hap1–Ahi1 was signifi-
cantly upregulated. By using streptozotocin (STZ) to decrease the circulating insulin in mice,
Hap1–Ahi1 was significantly increased. Furthermore, intra-brain injection of insulin decreased
the expression of Hap1–Ahi1 in the brainstem. Moreover, when we knocked down the expression
of brainstem Hap1 by RNAi, the mice showed decreased food intake and lower body weights. Collec-
tively, our results indicate that the Hap1–Ahi1 complex in the brainstem works as a sensor for insu-
lin signals in feeding control.

Structured summary: Ahi1 physically interacts with Hap1: shown by anti bait coimmunoprecipitation (view
interactions 1, 2)

� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Over the past few years, significant advances have been made
regarding the neural control of feeding behavior. As a result, it
has become evident that neural circuits in the central nervous sys-
tem play a crucial role in controlling energy homeostasis [1]. A
number of metabolic hormones, neuropeptides and signaling path-
ways are components of the neural circuits that regulate energy
homeostasis [2–6]. Recent studies have suggested that the neuro-
nal molecules huntingtin-associated protein 1 (Hap1) and Abelson
helper integration site 1 protein (Ahi1) potentially participate in
the regulation of energy homeostasis.

Hap1 was initially identified as an interacting partner for the
Huntington disease protein (Htt) [7]. Hap1, as an interacting part-
ner of Htt, has been implicated in the hypothalamic pathology of
Huntington’s disease. Hap1 is highly expressed in the hypothala-
mus [8,9] and mutant Htt binds more tightly to Hap1 than normal
Htt [10]. Mice lacking Hap1 also show retarded growth and die at
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g).
a very young age, possibly due to a feeding defect [11,12]. Fur-
thermore, it was reported that Hap1 functions as a mediator of
feeding behavior in the hypothalamus under normal conditions
[13].

Ahi1 was initially identified as a common helper provirus
integration site for murine leukemia and lymphomas [14].
However, there is some evidence suggesting that Ahi1 may also
be related to energy homeostasis. It was reported that the Ahi1
gene is genetically linked with type 2 diabetes [15]. A recent study
showed that Ahi1 is involved in feeding control in the hypothala-
mus [16].

However, whether Hap1 and Ahi1 in the extra-hypothalamic re-
gions also participate in the control of food intake and energy
homeostasis is currently unknown. A previous study showed that
Hap1 and Ahi1 form a stable complex that is involved in the devel-
opment of the cerebella and brainstem [17]. This finding suggests
that Hap1–Ahi1 may also be involved in the regulation of feeding
behavior in the brainstem. In this study, we thus investigated the
changes of Hap1–Ahi1 expression in the brainstem as energy
metabolism in the mice was altered. We also examined the effects
of knocking down brainstem Hap1 on food intake and body weight.
We provided evidence suggesting that the Hap1–Ahi1 complex in
the brainstem works as a sensor for insulin signals in feeding
control.
lsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Animals

Male C57BL/6J mice, which were 8–10 weeks of age, were pur-
chased from Southern Medical University in the Guangdong prov-
ince of China. The animals were housed in a temperature and
humidity-controlled environment with a 12 h light/dark cycle
and were given access to food and water ad libitum. The animals
were acclimatized to laboratory conditions for a week before test-
ing. All efforts were made to minimize animal suffering and the
number of animals used in this study. Animal care and all proce-
dures for animal experiments conformed to the guidelines of the
Animal Care and Use Committee at the Guangzhou Biomedical
and Health Institute in the Chinese Academy of Sciences.

2.2. Animal models and treatments

For the fasted mouse model, C57BL/6J male mice (10–12 weeks
of age) were weighed prior to the experiment and divided into two
groups. They had free access to both food and water (control) or
were deprived of food for 48 h. To study 2-deoxy-D-glucose (2-
DG, Sigma) induced acute glucoprivation, C57BL/6J male mice
(10–12 weeks) were injected with 2-DG (250 mg/kg in saline,
i.p.) during the light phase and were deprived of food for 4 h. Water
was available ad libitum. The mice were then euthanized and their
tissues were harvested. For the mouse model of diabetes, male
mice (10 weeks old) were randomly assigned to two groups that
received one of the following treatments: (1) a single 200 mg/kg
interperitoneal (i.p.) injection of streptozotocin (STZ, Sigma); (2)
a control i.p. injection of sterile vehicle (100 mM citrate buffer,
pH 4.5). At Day 3 and Day 8 post-injection, plasma glucose levels
(PGLs) were measured using a Blood Glucose Test Meter (Roche
ACCU-CHEK Advantage). The STZ-treated mice were considered
to be diabetic once their PGLs were above 16.7 mM/l [18]. Then,
the mice were euthanized and their tissues were harvested, and
serum insulin levels in the animal models were measured using
a commercially available Rat/Mouse Insulin ELISA kit (Millipore).
The assay was performed according to the manufacturer’s
instructions.

2.3. Immunostaining, immunoprecipitation, Western blot and
quantitative RT-PCR

The antibodies against Hap1 or Ahi1 were described in previous
study [17]. The methods for immunohistochemistry, immunofluo-
rescence, immunoprecipitation, Western blot and real-time quan-
titative RT-PCR can be found in the Supplementary methods
provided online.

2.4. RNA interference and NTS insulin injection

For the RNA interference procedure, male C57BL/6J mice (10–
12 weeks of age) were anesthetized with 2.5% avertin and injected
with adenovirus expressing either Hap1-siRNA with GFP or GFP
alone using a stereotaxic table (David Kopf Instruments). All of
the surgical procedures were performed under sterile conditions.
With the head placed in the flat-skull position, 1 ll of adenovi-
ral-GFP or adenoviral-Hap1-siRNA virus [108 plaque-forming units
(pfu)/ll] were injected bilaterally over a period of 10 min using a
Hamilton syringe and a syringe infusion pump. The titer of adeno-
virus was chosen according to a previous study [13]. The stereo-
taxic coordinates for brainstem intra-nucleus of the solitary tract
(NTS) injection were as follows: anterior/posterior (AP) axis,
7.2 mm from bregma to the posterior; lateral, ±0.6 mm from
midline (ML); depth, 4.0 mm from the surface of the skull (DV)
as described in the atlas by Paxinos and Franklin [19]. The needle
was removed after 10 min. After the injection, the mice were
housed individually with ad libitum access to standard chow and
water in a temperature-controlled environment with a 12 h light/
dark cycle. The food intake and body weight of the mice were mea-
sured daily for 4 weeks.

For intra-brain insulin injection, bilateral thin-wall stainless
steel guide cannulae (22-gauge) were aimed at the NTS (AP-
7.2 mm, ML ±0.6 mm, DV �4.0 mm). Standard postoperative care,
including the administration of analgesics, was provided. After se-
ven days of recovery from surgery, insulin (Sigma, at a dose of 2 U/
kg in 0.5 ll of sterile saline) or saline vehicle was bilaterally in-
jected into the NTS (1 ll/mouse) with a 27-gauge injector extend-
ing 1 mm beyond the tip of the guide cannula. The animals were
returned to their home cages. Six hours after the injections, the
mice were anesthetized with a brief exposure to ether, and their
brains were quickly removed after decapitation. The brainstems
were dissected out and immediately frozen in liquid nitrogen for
Western blot analysis.

2.5. Statistics

GraphPad Prism was utilized for data analysis. Statistical analy-
ses were carried using Student’s t-test (two-tail). The values
P < 0.05 (⁄), P < 0.01 (⁄⁄) were considered statistically significant.
3. Results

3.1. Hap1 and Ahi1 are expressed in the nucleus of the solitary tract
(NTS) and form a protein complex

To confirm the expression and distribution of Hap1 and Ahi1 in
the brainstem, we performed immunohistochemistry using Ahi1
and Hap1 polyclonal antibodies. We found that cells with strong
Ahi1 and Hap1 expression were distributed in the nucleus of the
solitary tract (NTS), which is a critical central region for energy
homeostasis (Fig. 1A and C). As shown in Fig. 1B, the immunoreac-
tive Ahi1 and Hap1 signals in the brainstem appear as dot-like
structures. Through immunofluorescent staining, we found that
Hap1 significantly colocalized with Ahi1 in the brainstem sections
(Fig. 1D). Furthermore, as indicated by immunoprecipitation
(Fig. 1E), Hap1 and Ahi1 were combined with each other in the
brainstem lysates. These data indicate that Hap1 and Ahi1 form a
protein complex in the brainstem.

3.2. Energy deficiency stimulates the expression of Hap1–Ahi1 in the
brainstem

Using the fasted mouse model, we examined the expression of
Hap1 and Ahi1 in the brainstem after 48 h of food deprivation.
As shown in Fig. 2A, the protein levels of both Hap1 and Ahi1 in
the fasted mice significantly increased (P < 0.05) compared with
control mice (ad libitum fed). Moreover, the transcription of
Hap1 and Ahi1 mRNA was also stimulated from fasting (Fig. 2B:
P < 0.01 for Hap1 and P < 0.05 for Ahi1). The fasted mice showed
significantly low levels of blood glucose and insulin compared to
the control mice (P < 0.05; Fig. 2C and D).

Because 48 h of food deprivation was a long and severe starva-
tion period, we sought to examine whether short-term energy
deficiency affected the expression of brainstem Hap1–Ahi1 by
using 2-deoxy-D-glucose (2-DG), an antagonist of glycolysis. Treat-
ment of mice with 2-DG led to an increase of Hap1–Ahi1 protein in
the brainstem (Fig. 3A, P < 0.05). For mRNA levels, an increasing
but not statistically significant trend in mRNA transcription was
observed in 2-DG treated mice for both Ahi1 and Hap1 (Fig. 3B).



Fig. 1. The expression of Hap1 and Ahi1 in the brainstem. (A and C) Immunohistochemistry revealed that cells with strong Ahi1 and Hap1 expression were distributed in the
nucleus of the solitary tract (NTS) of the brainstem. (B) The immunoreactive Ahi1 and Hap1 signals in the brainstem appeared as dot-like structures. (D) Immunofluorescence
staining showed a significant colocalization of Hap1 with Ahi1 in the brainstem sections. (E) Immunoblots of immunoprecipitations (IP) from brainstem lysates using
antibodies against Ahi1 and Hap1; an immunoprecipitation with no antibody was used as a control. 4 V: the fourth ventricle; NTS: nucleus of the solitary tract; BS: brainstem;
No ab: no antibody. Scale bar: 200 lm in (A); 25 lm in (B and D).

Fig. 2. Fasting stimulated the expression of brainstem Hap1–Ahi1. (A) Western blot showed that the protein levels of Hap1 and Ahi1 in the fasted mice significantly increased
(P < 0.05) compared with control mice (ad libitum-fed). (B) Real-time PCR showed that the transcription of Hap1 and Ahi1 mRNA was also stimulated by fasting (P < 0.01 for
Hap1, P < 0.05 for Ahi1). Blood glucose levels (C) and insulin levels (D) were also measured in the mice. The histograms are shown as means ± S.E.M. of three independent
experiments (n = 3 per group) for each experiment; ⁄P < 0.05, ⁄⁄P < 0.01.
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The blood glucose and insulin levels tested 4 h after 2-DG treat-
ment were not significantly different between the two groups
(Fig. 3C and D).

3.3. Diabetes affects the expression of Hap1–Ahi1 in the brain stem

To test the effects of diabetes on Hap1–Ahi1 expression,
streptozotocin (STZ) was used to induce a model of diabetes
in mice. Non-fasting blood glucose measurements were taken
from the saphenous vein. Once the measurement levels were
greater than 16.7 mM/l, the animals were considered to be
diabetic [18]. The Western blot results showed that the
brainstem Hap1–Ahi1 protein level was higher in diabetic
mice compared to control mice (Fig. 4A, P < 0.05). Moreover,
STZ treatment induced a significant increase of Hap1 and
Ahi1 mRNA expression in the brainstem (Fig. 4B, P < 0.01).



Fig. 3. Hap1–Ahi1 increased in the 2-deoxy-D-glucose (2-DG) mouse model. (A) 2-DG (250 mg/kg in saline, i.p.), an antagonist of glycolysis, was injected into mice. Western
blot analysis showed that brainstem Hap1–Ahi1 levels increased after treating the animals with 2-DG for 4 h (P < 0.05). (B) Real-time PCR showed that there was an
increasing, but not significant, trend in the expression of Ahi1 and Hap1 in 2-DG-treated mice. Blood glucose levels (C) and insulin levels (D) were also measured in the mice.
The histograms are shown as means ± S.E.M. of three independent experiments (n = 3 per group) for each experiment; ⁄P < 0.05.

Fig. 4. Diabetes affected the expression of brainstem Hap1–Ahi1. (A) Western blot showed that brainstem Hap1–Ahi1 significantly increased in the STZ-induced diabetic
mice (P < 0.05). (B) Real-time PCR showed that Ahi1 and Hap1 mRNA levels were significantly higher in the STZ-induced diabetic mice (P < 0.01). Blood glucose levels (C) and
insulin levels (D) were also measured in the mice. The histograms are shown as means ± S.E.M. of three independent experiments (n = 3 per group) for each experiment;
⁄P < 0.05, ⁄⁄P < 0.01.
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The blood glucose levels were significantly higher in STZ-
treated mice than control mice (Fig. 4C, P < 0.01), and blood
insulin levels were significantly lower in the STZ-treated mice
(Fig. 4D, P < 0.05).



Fig. 5. The expression of Hap1–Ahi1 was regulated by insulin. (A) The expression of Hap1–Ahi1 in the N18TG2 neuronal cell line was decreased by insulin treatment. The
cells were treated with 50 or 100 nM insulin, harvested at the indicated time, and subjected to Western blot analysis. (B) Bilateral injection of insulin to the nucleus of the
solitary tract (NTS) in the brainstem decreased the expression of Hap1–Ahi1. The data are shown as means ± S.E.M. of three independent experiments; ⁄P < 0.05.
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3.4. Insulin regulates the expression of Hap1–Ahi1

The low levels of blood insulin in fasted mice and STZ-treated
mice led us to speculate that decreased insulin levels may cause
the upregulation of brainstem Hap1–Ahi1. A previous study
showed that circulating insulin can regulate the expression of
hypothalamus Hap1 through ubiquitination in order to control
feeding behavior [13]. We hypothesized that insulin may also reg-
ulate the expression of brainstem Hap1–Ahi1. To determine
whether insulin directly affects Hap1–Ahi1 expression, the neuro-
nal cell line N18TG2 was stimulated with insulin. As shown in
Fig. 5A, the expression of Hap1–Ahi1 was decreased by insulin in
a time- and dose-dependent manner. Then, we injected insulin di-
rectly into the NTS in the brainstem to test whether insulin can de-
crease the expression of Hap1–Ahi1 in vivo. As shown in Fig. 5B,
the level of Hap1–Ahi1 protein in the brainstem was significantly
decreased by insulin (P < 0.05).

3.5. Knockdown of brainstem Hap1 results in decreased food intake
and body weight

To determine the effects of brainstem Hap1 knockdown on
feeding and body weight, we bilaterally injected Ad-Hap1-siRNA
or adenovirus vectors into the brainstem in mice. As shown in
Fig. 6A with immunofluorescence and in Fig. 6B with a Western
blot, Ad-Hap1-siRNA produced a significant knockdown of Hap1
protein in the brainstem. After surgery, the animals were housed
individually. Food intake and body weight were measured daily
for 4 weeks. As shown in Fig. 6C, food intake in the siHap1 mice
and the control mice were minimal immediately following surgery.
After 24 h, both groups started to increase their food intake. How-
ever, the siHap1 mice consumed significantly less food compared
to the control mice, and this difference remained relatively con-
stant throughout the first two weeks. Consequently, body weight
also showed an initial dramatic decrease in the siHap1 mice and
control mice during the first 2 days. Subsequently, body weight
gradually increased in the control mice, but it decreased at the
sixth day in the siHap1 mice. The average body weight of the si-
Hap1 mice was significantly lower than the control group through-
out the testing period (Fig. 6D).

4. Discussion

Feeding and energy metabolism are basic and vital life pro-
cesses that are essential for animals and human beings to survive.
The brainstem has been strongly implicated in the neural regula-
tion of food intake and energy balance [20,21]. Regions of brain
stem such as the nucleus of the solitary tract (NTS), area postrema,
dorsal motor nucleus of the vagus, and the locus coeruleus are crit-
ical regulators of the neural circuits in energy homeostasis [22].
Additionally, the caudal brainstem contains neurons and circuits
that are involved in the autonomic control of ingestion, digestion,
and absorption of food [23]. More important, the brainstem can
achieve autonomic control even without forebrain influence [24],
just as in respiration and circulation, functions essential for sur-
vival. Previous studies in a chronic decerebrate rat preparation
found that taste concentrations, gastric preloads and cholecystoki-
nin (CCK; a peptide released from intestinal endocrine cells during
feeding) similarly affected meal size compared to intact rats [25].
These results indicated that when the brainstem was isolated from
its forebrain connection, the basic behavior of satiety was pre-
served. In addition to meal size control, decerebrate rats also
showed a fully formed sympathoadrenal response to systemic 2-
DG administration [26], which suggested that the brainstem
houses a system that is responsive to glucoprivation. The brain-
stem may also have a basic system for the automatic control of



Fig. 6. Ad-Hap1-siRNA administration decreased food intake and reduced body weight. (A) Immunofluorescent staining showed a significant fluorescence intensity decrease
in Hap1 in the brainstem section of Ad-Hap1-siRNA-treated mice at Day 7 post-injection. Scale bar: 25 lm. (B) Western blot revealed that the protein level of Hap1 in the
brainstem was significantly decreased by Ad-Hap1-siRNA at Day 7 post-injection. (C) Food intake and (D) body weight were measured daily for 4 weeks post-injection. Note
that the Ad-Hap1-siRNA-treated mice showed significantly less food intake for approximately 2 weeks after surgery and displayed lower body weights throughout the testing
period compared to control mice. The data are shown as means ± S.D.; n = 12 for control group, n = 13 for siHap1 group; ⁄P < 0.05, ⁄⁄P < 0.01.
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feeding and energy metabolism. Our study indicated that brain-
stem Hap1–Ahi1 could be a complex that is responsive to energy
deficiency. When we treated mice with 2-DG, which caused a
short-term energy deficiency, the expression of Hap1–Ahi1 in-
creased in the brainstem. When mice were fasted for 48 h, which
resulted in severe energy deficiency, not only did the expression
of brainstem Hap1–Ahi1 protein levels increase, but the mRNA lev-
els also increased. The increased expression of brainstem Hap1–
Ahi1 may promote food intake to supply energy. When we de-
creased the expression of Hap1 in the brainstem, the mice showed
decreased food intake and lower body weights.

The brain was once considered to be an insulin-insensitive tissue
because insulin is not a major regulator of glucose in the brain [27]
and due to the widespread belief that the insulin peptide is too large
to cross the blood–brain barrier. However, recent observations have
revealed that insulin does enter the brain, combines with specific
insulin receptors on brain neurons, and triggers diverse events such
as reducing food intake or reducing body weight [28,29]. Serum
insulin in the cerebrospinal fluid has been detected in animals
and humans [30,31], and the proportion of insulin in the fluid to
its plasma level also has to be calculated [32]. Food intake, fasting,
and refeeding can all influence the entry of insulin into the brain
[33,34]. This process is adaptive because when the available energy
is low, circulating insulin has less access to the brain, which pro-
motes food intake; and when the available energy is high, insulin
more readily enters the brain and limits food intake. Insulin recep-
tors have been identified in the dorsal vagal complex and a number
of other caudal brainstem sites [35,36]. The brainstem neurons
bearing insulin receptors are also endowed with intracellular sig-
naling substrates including insulin receptor substrate-1 and phos-
phatidylinositol 3-kinase [37]. A prior study reported that
circulating insulin can regulate the expression of hypothalamus
Hap1 through ubiquitination in order to control feeding behavior
[13]. We hypothesized that insulin may also regulate the expres-
sion of brainstem Hap1–Ahi1. When we decreased circulating insu-
lin with STZ in mice, we observed a high expression of brainstem
Hap1–Ahi1. In the fasted mice with low circulating insulin levels,
we also found an upregulation of brainstem Hap1–Ahi1. However,
in the 2-DG model, we did not observe a decrease in the circulating
insulin level. Instead, there was an intial increase in blood glucose
soon after the injection of 2-DG and a consequent increase in insu-
lin. However, even though the circulating insulin level increased,
the 2-DG-treated mice still exhibited energy deficiency in the brain.
This situation is different from the situation, where there is an
increase in blood glucose after eating and a consequent increase
in insulin, which provides the animals’ brains with energy suffi-
ciency information. It has been shown that refeeding the fasted
mice for 4 h, which would supply energy for the fasted mice and
generate a subsequent increase in circulating insulin, decreased
the upregulation of Ahi1 in the hypothalamus [16]. Our results also
showed that insulin can decrease the expression of Hap1–Ahi1 both
in a neuronal cell line (in vitro) and in the brainstem (in vivo). In
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conclusion, the increased expression of brainstem Hap1–Ahi1 may
not be solely dependent on the circulating insulin level. In other
words, the regulatory mechanism of brainstem Hap1–Ahi1 expres-
sion is more complex than previously thought. The mechanism
could be a combination of regulatory processes between central
neural information and peripheral insulin signaling.

Even though the specific regulatory mechanism of brainstem
Hap1–Ahi1 expression needs to be further addressed, our study
showed that the Hap1–Ahi1 complex in the brainstem is involved
in energy metabolism and can be regulated by insulin.
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