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1. Introduction

A time scale (or a measure chain) was introduced by Hilger in his Ph.D. thesis in 1988 in order to unify discrete and
continuous analyses [1]. Since Hilger formed the definitions of derivative and integral on a time scale, several authors have
extended various aspects of the theory [2-5]. A time scale has been shown that is applicable to any field which can be
described with discrete or continuous models.

But the theory of time scales and equations involving derivatives (dynamic equations) on time scales is not only a
unification of the mentioned models. One of the advantages of this theory lies in the possibilities of a unification of all models
“between” continuous and discrete cases. In particular, g-difference (quantum) models and some difference schemes based
on variable step sizes are covered.

Since difference [6,7] and differential equations [8,9] are also considered in (infinite dimensional) Banach spaces, it seems
to be useful to extend the dynamic equations on this subject. In such a case, we need to check the necessity of compactness-
type assumptions (cf. [10,11]). However, the dynamic equations in Banach spaces on arbitrary time scales are still a new
research area. These kinds of dynamic equations have the same advantages as in a real-valued case and a growing number
of possible applications (likewise differential and difference equations in Banach spaces).

First, for the explicit difference equations (T = Z) the existence of (forward) solutions is trivially given without imposing
further assumptions on the right-hand side of Ax(t) = f(t, x(t)). There is no question about continuity hypothesis on f. Let
us note that there is no necessity of any additional compactness hypothesis on the right-hand side.

The opposite situation is when T = R. Peano’s Theorem (1890) is not true when the space E is infinite dimensional and
so the continuity assumption is not sufficient for the existence of solutions for the Cauchy problem

{x/(t) =FEx®) o1,

x(0) = xo, (1)

It can be deduced from an example of Dieudonné [12] and the problem was solved in several papers of Yorke [13], Cellina
[14] or Godunov [15,16]. There is no problem to extend such a counterexample to the case of time scales of the form
[0, b1] U [a3, b2] (b1 < ay). The case of a general time scale is more difficult.
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The question is how to describe the problem in a general time scale. It is known, that the terminal cases R and Z are
completely different. It is really interesting to consider the time scales between these two cases. In this paper we solve
Peano’s problem by presenting a counterexample to Peano’s Theorem in a time scale for which the initial point xq is right
dense. It is interesting, that for time scales containing only one right dense point, Peano’s Theorem fails for the problem

x2(t) = f(t, x(1))
{X(O) = %, teT. (2)

Let us note, that for Peano’s theorem in time scales we understand the result with continuous right-hand side. Peano’s
Theorem formulated in [5] is not correctly stated (rd-continuity is not a sufficient condition and an additional continuity
hypothesis is necessary). Even in such a strengthened situation we are able to show a counterexample in infinite dimensional
Banach spaces.

For simplicity, we consider delta derivatives and consequently rd-continuous solutions of the problem. It will cause no
problem to extend these results for nabla derivatives and 1d-continuous functions.

2. Preliminaries

To understand so-called dynamic equation and easily follow this paper, we present some preliminary definitions and
notations of a time scale which are very common in the literature (see [2,3,1,4] and references therein).

A time scale T is a nonempty closed subset of real numbers R, with the subspace topology inherited from the standard
topology of R. Three of the most popular examples of calculus on time scales are differential calculus, difference calculus
and quantum (g-difference) calculus i.e. when T = R,T = Nand T = ¢* U {0} = {¢° : t € Z} U {0}, where
g > 1. More interesting time scales are also the union of non-overlapping compact intervals or in the form T =
{tr : 0 < b1 < i, k € N, limy_, £ = 0} U {0}. The last time scale will be really useful in our consideration.

Definition 1. The forward jump operator ¢ : T — T and the backward jump operator p : T — T are defined by
o(t) = inf{s € T : s > t}and p(t) = sup{s € T : s < t}, respectively. We put inf@) = supT (i.e.o(M) = Mif T
has a maximum M) and sup ¥ = inf T (i.e. p(m) = m if T has a minimum m).

The jump operators o and p allow the classification of points in a time scale in the following way: t is called right dense,
right scattered, left dense, left scattered, dense and isolated if o (t) = t, o (t) > t, p(t) =t, p(t) < t, p(t) =t =o(t) and
p(t) <t < o(t), respectively.

Then we define the so-called delta derivative for Banach-valued functions similar as A-derivative for real functions on time
scales [3,5].
Definition 2. Fix t € T. Let E be a Banach space and u : T — E. Then we define u® (t) by
u(o (t)) — u(s
uA (t) = lim 22O 1S
s>t o(t)—s
It turns out that

(i) u® = v’ is the usual derivative if T = R and
(ii) u? = Au s the usual forward difference operator if T = Z,

(iii) u# = Dqu is the g-differential operator i.e Dgu(x) = % ifT=q2U {0} ={q" : t € Z} U {0}.

Hence a notion of time scales allows us to unify differential, quantum and difference equations.

Definition 3. We say thatu : T — E is right dense continuous (rd-continuous) if u is continuous at every right dense point
t € I, and lim,_, .- u(s) exists and is finite at every left dense point t € T.

By a classical solution of (2) we understand a function in G4(T, E) such that x(0) = xq and x(-) satisfies (2) forallt € T.

Let (E, || - ||) be an arbitrary Banach space. We will consider the Cauchy problem on a time scale T such that 0 € T:
A
x2(6) = f(t, x(1))
{X(O) = Xo, ret

where f is a function with values in a Banach space E.

3. An example

To show, that Peano’s Theorem fails in an infinite dimensional Banach space E in a time scale T, we will modify an example
of Dieudonné. The situation is a little bit more elaborate, but by utilizing the original example and due to some properties
of time scales and delta derivatives we obtain the desired thesis.
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Example 4. Let E be the space of real sequences x = (x;)neny convergent to zero. Consider the norm ||x|| = sup,¢y |Xs| on E
and define a function f : E — E as:

fe) = (\/lxnl +%) , xeE.

neN

It is obvious that f is a continuous function.
We will show that a dynamic Cauchy problem

x2(t) = f(x(1))
{X(O) —0, teT (3)

has no solution in E. Let us consider the time scale
T = {0} U {tk 10 < tggr < b ke N, lim t, = 0} .
k— 00

Observe, that 0 is a (unique) right dense point of this time scale. Without loss of generality we can assume, that t; < 1.
In fact, if X(t) = {X,}nen Were a solution of (3), its coordinates X, would satisfy the dynamic Cauchy problem:

1

~A _ -

SO =ViaO+- o (@)
;(n (O) = O,

Moreover, such a solution must be rd-continuous and for each t, € T the sequence X, (t,) must converge to zero.

Fix an arbitrary n € N.
It will be useful to consider also the (ordinary) differential Cauchy problem

X (t) = VIx(0)]
{x(O) —0. t [0, 1]. (5)
It is easy to check, that the problem (5) has a solution x(t) = % This function is differentiable at each point t. Since

X (t) = % and its restriction to T (again denoted by x) has a delta derivative x* (t;) = W (cf. [3]), it has x4 (t) > X' ().
Thus for the points t;, we have

X2 (t) > X (t) = V().

Let us remark, that all considered functions have non-negative derivatives (or delta derivatives) and the initial value is
zero, so the functions are positive for t > 0 and we can omit the absolute value in the next formulas.
From the definition of delta derivative we have

_ x(o (1)) — x(t)
o (ty) — ty

From the differentiability of x in t;, we have
x(te +h) — x(ty) = X' (t) - h + R(ty., h),

where w — 0as h — 0. For arbitrary ¢ > 0 there exists a number § > 0 such that if |h| < §, then

x*(te)

x(ty +h) — x(t)

h - X,(tk)

< é.

It means that there exists Ny such that for k > Ny we are able to put h = o (t;) — t; in such a way that h < §. Fix a point t;,
and a number h with the above property.
Then
X(te +h) —x(t)
h

x(o (t)) — x(t)

U(tk) — by
x* () — X' (t)
R, o (te) — t)
B o (ty) — bk

Denote by ¢ a positive number W which is dependent only on the (fixed) point .
K

As X' (ty) = +/x(t), we obtain x2 (t;) = /x(t) + &;.

- X/(tk)

X (t) ’ =
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We can assume, that g, < % (recall, that W is arbitrarily small when t, — 0 and 0 is a limit of the sequence

(te))-
Suppose, that the problem (3) has a solution . Thus, %, should satisfy the equation X2 (ty) = /X (tx) + % From the above

2
consideration it follows that a function x(t;) = % satisfies the equation x* (t;) = /x(tx) + &i. By theorem on differential
inequalities (Theorem 6.9 in [3]) we can ensure, that

- ti2
Xn(ty) > ?

for sufficiently small t;. This is a contradiction with the fact that X,,(t,) — 0 as n tends to co and thenx ¢ ¢y = E.

It is worthwhile to remark, that the number of right dense points is not a crucial thing of the above counterexample.
In fact, by changing the initial point in the considered problem, we obtain forward difference scheme and we get a local
solution. Let us stress, that in such a situation we still have only one right dense point in T.

Peano’s Theorem is true in the following cases (for any norm topology t on a Banach space E and delta derivatives):

e T =R, f is t-continuous and the space is finite dimensional,
e T = Z, for arbitrary f and E,
o for arbitrary time scale T if an initial point is not a right dense point of T.

It is clear, that the character of research for the dynamic equations is much closer to the differential equations rather
than difference equations and it is expected to use the techniques from differential equations when the space is infinite
dimensional (cf. [10,11]).
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