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A random discrete-time system {xn}, n = 0, 1, 2,... is called stochastically 
stable if for every E > 0 there exists a X > 0 such that the probability 
P[(sup, 11 X, 11) > E] < E whenever P[jl x,, II > h] < h. A system is shown 
stochastically stable if some local Lyapunov function V(.) satisfies the super- 
martingale definition on { V(x,)} in a neighborhood of the origin; earlier proofs 
of stochastic stability require additional restrictions. A criterion for X, + 0 
almost surely is developed. It consists of a global inequality on { U(X,)} stronger 
than the supermartingale defining inequality, but applied to a U(.) that need 
not be a Lyapunov function. The existence of such a U(.) is exhibited for 
a stochastically unstable nontrivial stochastic system. This indicates that our 
criterion for X, -+ 0 is “tight,” and that the two stability concepts studied are 
substantially distinct. 

The application of deterministic Lyapunov functions to stability analysis 
for nonrandom systems suggests that stochastic forms of such functions may 
be used in corresponding investigations on random systems. Although the 
possibility of stochastic Lyapunov functions was recognized over ten years 
ago, it remained for Bucy [2] and Kushner [6] to separately initiate a syste- 
matic theory. They realized that the definition of positive supermartingales 
[IO, p. 1311 embodies properties usually ascribed to deterministic Lyapunov 
functions. In subsequent work, Kushner [7] and Bucy and Joseph [3] refined 
their analyses, arriving at conclusions that require somewhat different 
hypotheses. 
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DISCRETE TIME SYSTEM STABILITY CONCEPTS 465 

One of the aims of the present note is to strengthen and unify some of the 
theorems appearing in [7] and [3], in particular showing that a stochastic 
version of Lyapunov stability holds under less demanding hypotheses than 
the intersection of the respective hypotheses demanded in [3] and [7]. We 
also find a sufficiency condition under which the system state approaches zero 
almost surely; this form of stability is comparable to “weak” asymptotic 
stability for deterministic systems, see [4, pp. 4-5 and 961. It is of interest to 
relate the latter type of (stochastic) stability to the stochastic asymptotic 
stability [3, p. 841 motivated by the analogous deterministic concept. We 
illustrate this relationship, which is the subject of a new theorem, by an 
example. 

We consider here, as in [2] and [6], the stability of the discrete-time system 
lx,}, n = 0, I,..., where the X, are random variables in the m-dimensional 
space R *n. In systems theory, x0 is interpreted as a random initial state, from 
which the system evolves successively to states x1 , x2 ,.... Each new state 
depends in general not only on x,, and the preceding xk but also on current 
random inputs and/or stochastic system parameters.l A discrete-time dynam- 
ical system is often described by a stochastic difference equation, e.g. 
X nt1 =f&o )a..> %I *m), where the random process (yn} is regarded as the 
forcing function of the system. A specific application is to dynamical feedback 
systems with randomly timed instantaneous sampling, which is modeled by 
x,+1 = knc% 7 T,)lX?2 > the r, being random sampling intervals. The sta- 
bility of the latter system has been investigated both by direct probabilistic 
[1] and stochastic Lyapunov function [8] methods. 

An intuitively appealing probabilistic version of Lyapunov stability is 
given by the following definition. 

DEFINITION la ([3], p. 82). A system is stochastically stable at the origin 
if for each E > 0 there exists a h > 0 such that the probability 

p[stP II %a II > 4 < E> (1) 
whenever 

w x0 II > 4 < A. (2) 

The properties of the system which assure stochastic stability are expressed 
in [3] by a stochastic Lyapunov function V(.). It is assumed that V(.) is a 
scalar function which is zero at the origin, continuous in R", and satisfying 
an inequality 

WI x II> G v49 (3) 

1 We do not in general assume {x,,} to be Markov, but require some discretionary 
choice over the distribution of the initial state x,, . 
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466 BEUTLER 

where h( *) is continuous and nondecreasing, with A(U) = 0 iff u = 0. Further- 
more, { V(X,)} is supposed a supermartingale, that is 

in which “a.s.” is the abbreviation of “almost surely,” and V, replaces V(X~) 
purely for notational convenience. 

The value of the result quoted from [3] is compromised by the demand 
that (4) hold globally, since certain prospective Lyapunov functions satisfy 
(4) only in some vicinity of the origin, i.e., only for 1) x, /I < 4, 0 < Q < cc 
(see [6, p. lo], for example). Kushner has recognized the enhanced generality 
attained by requiring (4) to apply only on an open set of Rm containing the 
origin [6, Theorem 11. On the other hand, Kushner sets more restrictive 
conditions on x0 than (2), requiring instead of (2) that expectation 

and 

EV(xo) < P 

II x0 II < rl ah 

(5) 

(6) 

where p depends on E, and r) on both p and e. 
In this note, we prove that (1) actually follows from assumptions most 

succinctly described as the intersection of the hypotheses of Kushner [6] and 
Bucy and Joseph [3]. That is, we require (2) as in [3] instead of the stronger 
(5) and (6) from [6], while demanding that (4) hold only in a neighborhood of 
the origin (as in [6]) in place of the global requirement of [2, 31. We could 
adopt (3), following Kushner [7], but shall only need V(x) 3 0 and 

V(x) + 0 implies x-e 0, (7) 

which is more convenient than but completely equivalent to (3).2 
It is assumed hereafter that V(.) is the function on Rm previously defined, 

with (7) replacing Kushner’s inequality (3). The supermartingale defining 
property is presumed to hold locally; for each 1z, 

E[V,+, ( &] - V, < 0 a.s. (8) 

on the set A, = {u: /I x,(w)/1 < 4) in probability space, for some (fixed) 4 > 0. 
Here Sn is the completion of the u-field in probability space generated by 
x0 , Xl 1**+, %I ’ 

Our first result extends (8) to a true supermartingale defining relation. 

2 The hypotheses of Bucy and Joseph [3] on V(.) do not preclude V(x) = 0 in a 
finite region which may not include the origin. Then a(~) = 0 for all sufficiently 
small c, and so their proof fails. 
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LEMMA 1. De$ne {W,} to be the random process 

w, = v, A r, (9) 

where Y = inf ,, z ,, hp V(x), and ‘u A v = min(u, v). If {V,} satisfies (8), {W,J is 
a supermartingale adapted to {Fn}. 

Proof. Take B, to be given by B, = (UJ: V,(w) < r>. 1y, is clearly 
measurable on Sn , and B, C A, . Thus, (8) holds a.s. on B, , and since 
v, = WV2 7 vn,, 2 w,,, , the same inequality is valid for W, and W,,, . 
The supermartingale inequality holds for {W,} on the complement of B, also. 
In fact, if I/;, 2 r, W, = r and so W,,, < W,; hence, E[Wn,., / SJ < W,, . 

A positive supermartingale, such as {W,} is subject to the inequality 
[9, P. 811 

P[(s:p W,) >, C] < E-lEW,,; (10) 

it is this inequality which is utilized to show stochastic stability. However, 
the right side of (10) cannot be made small by direct application of a proba- 
bility statement such as (2). Bucy and Joseph [3] circumvent this problem 
by an ad hoc calculation on their equivalent of our EW,, , but we prefer to 
proceed more systematically. We start by noting that stochastic stability at 
the origin (Definition la) can be expressed in a different way. For this 
purpose, we shall write Z,d 2 to indicate that (Z,> converges to 2 in proba- 
bility. Then we have as ar? alternative definition of stochastic stability the 
following: 

DEFINITION lb. Let (~~“1, n = 1, 2,... be a family of stochastic processes 
constituting successive states of a system, whose corresponding initial states 
are respectively xsk, k = 1, 2 ,.... The system is stochastically stable at the 
origin if 

II Xok /I 7 0 (11) 

implies 

(su,p II x,” II) -;: 0. (12) 

The latter definition facilitates proof of the stochastic stability theorem, for 
we have the following lemma. 

LEMMA 2. I/ x0” I/ , V,,lc and WOk all converge to zero in probability together, 
where 

V,k = V(x,k) and Wnk = Vmk A r. (13) 

Similarly, (sup, /I x,le \I), (supn Vnk) and (sup% W,lc) converge in probability to 
zero together as k -+ a~. 
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Proof. The result follows immediately from (7) and the consideration of 
sufficiently small neighborhoods of x = 0. 

The facts already derived make it possible to use statements on convergence 
in probability to deduce convergence in probability mean, and in particular 
to estimate EWOA. 

LEMMA 3. If /) x0” 117 0, then EWok + 0. 

Proof. By Lemma 2, Wok7 0. But each Wok is bounded by r, and so 
{Wok} is uniformly integrable. A standard result (see [lo, Proposition 11.5.41) 
then yields the desired conclusion. The theorem on sufficiency conditions 
for stochastic stability at the origin is now within easy grasp. 

THEOREM 1. Let V( .) be a nonnegative continuous function on Rm satisfying 
(7). If (8) holdsfor every solution sequence {xn} on the sets A, = {w: 11 x,(w)11 < q>, 
the system is stochastically stable at the origin. 

Proof. Since we prefer to apply Definition lb of stochastic stability, we 
consider {x,,~} such that 11 xsk 1) + 0 as K -+ co. We apply the inequality (10) 
to the positive supermartingale’{ WSk}, n%ting that EWok + 0 by virtue of 
Lemma 3. It follows that (supn Wnk) -+ 0. Application of Lemma 2 then 
yields (supn I/ x,li 11) + 0, and the proof L complete. 

For deterministic :ystems, conventional asymptotic stability requires not 
only x, + 0, but also Lyapunov stability [4, pp. 4-51. It is, therefore, natural 
that a sufficiency condition for asymptotic stability be phrased in terms of 
a more stringent requirement on the Lyapunov function than is needed to 
merely insure Lyapunov stability. This deterministic situation again serves 
as an analog to stochastic systems, for which Bucy and Joseph [3, Theorem 
6.31 again offer a stochastic extension. 3 However, we may wish to inquire 
whether X, + 0 without regard to Lyapunov stability, these two stability 
notions being quite distinct for deterministic systems [4, p. 961. In what 
follows, we shall state a condition assuring x,--f 0 in a stochastic system; 
while the requirement superficially appears more demanding than that on 
{ Vn} in Theorem 1, it does not after all imply the assumptions of that 
Theorem. Indeed, we shall exhibit a system such that X, -+ 0 for every 
initial distribution of x0 , but which is stochastically unstable in the sense of 
Definition 1. The property X, -+ 0 is formalized by the following. 

DEFINITION 2. The system {xn} is weakly almost surely asymptotically 
stable (WASAS for short) relative to a family K of random variables, if for 
any x0 E K we have x, -+ 0 a.s. 

3 The hypotheses of the referenced theorem require a minor modification, since 
the stated assumptions are inadequate to assure that x --t 0 follows from ~(11 x 11) + 0. 
Our k(.) corresponds to the y(.) of [3]. 
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This behavior, in combination with stochastic stability at the origin (see 
Definition l), leads to this next definition. 

DEFINITION 3. The system (xn} is almost surely asymptotically stable 
relative to K if it is stochastically stable at the origin as well as WASAS 
relative to K. 

We now present the proposition giving sufficient conditions that a system 
is WASAS. The upcoming inequality on U(.) differs in one vital aspect from 
(8); U(.) need not be a Lyapunov function (as in Theorem l), and indeed 
may lack most of the properties of the latter. 

THEOREM 2. Let U(.) be a measurable scalar function on R”” which is 
bounded from below.4 Assume U, = U(xJ satisfies 

.fwn+, I et1 - url < - WI x, II) a.s., (14) 

where k( .) is a nonnegative function for which k(u) + 0 implies u --f 0. Then 
(xn} is WASAS relative to K = {x0: EU, < CQ}. 

COROLLARY. If Cl(*) is continuous, nonnegative, zero at the origin, and 
satis$es (7) and (14), the system (xn} is almost surely asymptotically stable with 
respect to K. 

Proof. The corollary is immediate (from Theorem 1 and Definition 3) 
once the main Theorem is proved, so we proceed to the latter. Since (U,} is a 
supermartingale [by (14)J that is bounded from below, it has a Riesz decom- 
position (see [9, p. 891 for definitions and proof) 

Un = S, -t T, , (15) 

where {S,} is a martingale and {T,} is a potential. From this decomposition, 
together with the martingale property, we obtain 

E[u,+, I K] - un = E[Tn+, I %I - Tn . (16) 

We assert that the expression (16) approaches zero a.s. as n -+ 03. Indeed, 
T, -+ 0 a.s. because {T,) is a potential; but since a potential is also a non- 
negative supermartingale 

~<E[Tn+,/~l~~n-tO a.s. (17) 

Hence, (16) approaches zero as claimed, and the same is true of the left side 
of (14). But k(e) is nonnegative, so we must have k(Il x, 11) - 0 a.s. and, 
consequently, x, + 0 a.s. also. 

4 While it suffices for U, > Z, , where {Z,} is a submartingale, there seems little 
application for the additional generality implied thereby. 
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An example will serve to illustrate application of Theorem 2 as well as the 
distinction between WASAS and almost sure asymptotic stability. 

EXAMPLE. Consider the scalar system relations 

%I +Yn+l 
1 - %Yn+l 

x,# - 1, 
X n+1 = (18) 

0, x,=-l, 

where yn+i depends on x,, ,..., x, only through x, via a specified conditional 
probability distribution. For instance, we may assume that Y,,+~ = 0 or 
yn+l = - ( X, j , each with probability one-half. Under this supposition, a 
positive xs yields a sequence of positive x, which decreases monotonely to 
zero. On the other hand, if - 1 < x0 < 0 the x, become successively more 
negative until x, < -1 for some n. The next state variable, xlz+i , will then 
be positive, and succeeding ones will decrease monotonically to zero as 
before. 

It is seen from the above that the system described is WASAS relative to 
the class of all random variables. Nonetheless, there exists for every h > 0 
and every positive M an x0 such that --h < x0 < 0, and for some n, 
x, < -M, as a direct calculation will readily verify. Thus, this system is 
WASAS without being stochastically stable. 

Although verification of WASAS is straightforward in this instance. 
Theorem 2 could have been used for the same purpose. We may take 
U(x) = tar-r x, noting that this definition yields for x, # - 1 

u n+l = U, + (tan-l y,). 

This U(.) demonstrates WASAS, since 

(19) 

E[U,+, I %] - U, d --(tan-l I x, I); (20) 

moreover, K is the collection of all possible x,, , by the boundedness of U(T). 
It is evident that U(e) is not a stochastic Lyapunov function nor-since {xn} 
is not stochastically stable-does a function satisfying the conditions of the 
corollary exist. 

Less transparent elaborations of the preceding example are possible 
through the specification of other conditional statistics for the ym . If (for 
instance) the conditional density ofy,+, , given x, , is uniform from - ) x, 1 to 
+ Q 1 x, ) , WASAS seems plausible, but appears difficult to verify in direct 
fashion. However, an application of the same U(.) as before, i.e., 
U(x) = tan-l x, yields 

-VJ,+, I %zl - Un G - 6+--l 4 ! xn 1). (21) 
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Equation (21) clearly satisfies condition (14) of Theorem 2. Moreover, 
--rr < U, < ~12, so that this U(e) not only meets the other hypothesis of the 
theorem, but also guarantees WASAS for all initial distributions on x,, . 

We assert that the WASAS system just discussed is again stochastically 
unstable. To show this, we consider the Markov chain {U,} over the state 
space [-rr, 0). For any E > 0, let A = [-n, --cl in this state space. Then 
for any U, < 0 (i.e., any x,, < 0), there exists an n such that the n step transi- 
tion probability from U,, into A satisfies 

p'"'(U,, , A) > 0. (22) 

It follows (see [5, Lemma 5.1, p. 1941) that the probability of an eventual 
return to A can be made arbitrarily close to one by taking a sufficiently large 
number of steps. In other words, x, eventually leaves the c-neighborhood 
of the origin a.s., regardless of the choice of negative initial position .1ca . In 
fact, one can verify that actually U, ---f -7r a.s. for any x,, < 0, which in 
turn requires (inf, x,) < - 1; for a proof, one combines the law of large 
numbers for Markov chains [5, p. 2201 with the convergence of the super- 
martingale {U,} to a random variable taking on only the values zero and -v. 
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