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We study the Gray index, a numerical invariant for phantom maps. It has been conjectured
that the only phantom map between finite-type spaces with infinite Gray index is the
constant map. We disprove this conjecture by constructing a counter example. We also
prove that this conjecture is valid if the target spaces of the phantom maps are restricted
to being simply connected finite complexes.
As a result of the counter example, we can show that SNT∞(X) can be non-trivial for some
space X of finite type.
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1. Introduction

Throughout this paper all spaces have base-points, and maps and homotopies between them are pointed.
Recall that a map f : X → Y is called a phantom map if for any finite-dimensional CW-complex K and any map g : K → X ,

the composition f ◦ g : K → Y is null homotopic. Here by a finite-dimensional CW-complex we mean one with only n-cells
for n less than some fixed finite number.

In the literature there is another slightly different notion of a phantom map, which may be more common at least when
considering stable phantom maps. In it a map h : Z → W is said to be a phantom map if for any finite complex L and any
map k : L → Z , the composition h ◦ k : L → W is null homotopic, e.g., see [17]. McGibbon gives a full detail of the reason
why we choose the first definition about a phantom map at the first section of his survey paper [11]. Needless to say, if
X is of finite type then the two definitions coincide.

We write Ph(X, Y ) for the set of homotopy classes of phantom maps from X to Y . It is, in general, only a pointed set.
Its base point is the homotopy class of the constant map. If X has the rational homotopy type of a suspension or Y has
the rational homotopy type of a loop space, then Ph(X, Y ) has a natural abelian group structure. As it is a huge set unless
trivial (e.g., see [11] or [15]), it is natural to seek for filtrations or invariants to distinguish one phantom map from another.
The Gray index for phantom maps is one of such invariants and goes back to [3]; it has been recently studied in [2,6–9,12].

If X is a CW-complex and f : X → Y is a phantom map, then for each natural number n there is a map fn : X/Xn → Y
such that f � fn ◦ πn , where Xn is the n-skeleton of X and πn : X → X/Xn is the canonical collapsing map. The Gray index
G( f ) for f is the least integer n for which fn : X/Xn → Y cannot be chosen to be a phantom map. If for every n we can
choose fn as a phantom map, then we say that f has infinite Gray index, which is denoted by G( f ) = ∞. We denote the
set of all homotopy classes of phantom maps f : X → Y with G( f ) � n by Phn(X, Y ). The constant map is a phantom map
with infinite Gray index. It is easy to see that the Gray index is a homotopy invariant for phantom maps. Moreover, it does
not depend on the choice of the CW-structure on X (see [3] or [7]).

It is natural to conjecture that every essential phantom map has finite Gray index. Unfortunately, McGibbon and Strom
[12] have constructed an essential phantom map out of CP∞ with infinite Gray index. The target space in their example is,
however, not of finite type. This observation has led to the following conjecture.
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Conjecture 1.1. Ph∞(X, Y ) = ∗ for finite type domains X and finite type targets Y .

Here a space X is called a finite type domain if each of its integral homology groups is finitely generated; a space Y is
referred to as a finite type target if each of its homotopy groups is finitely generated. This conjecture is known as the Gray
index conjecture. But we are able to disprove this conjecture as follows.

Theorem 1.2. There is a 3-connected space Y of finite type such that Ph∞(CP∞,ΩY ) �= ∗.

For a space X , by SNT(X) we denote the set of homotopy types of spaces Y having the same n-type for X , for all n.
That is, X (n) and Y (n) , the Postnikov approximations of X and Y for dimension n, have the same homotopy type for all n.
Ghienne [2] introduces a natural filtration on SNT(X):

SNT(X) ⊃ SNT1(X) ⊃ · · · ⊃ SNTk(X) ⊃ · · · ⊃ SNT∞(X) =
⋂

k

SNTk(X),

which has the same algebraic characterization as the Gray index for phantom maps and whose precise definition will be
given in Section 2.

Corollary 1.3. SNT∞(CP∞ × Ω2Y ) �= ∗, where Y is the space in Theorem 1.2.

Although the Gray index conjecture is not true in general, it is valid under additional hypotheses.

Theorem 1.4. Let X and Y be nilpotent spaces of finite type. If any of the following conditions hold, then Ph∞(X, Y ) = ∗.

(i) X has only finitely many nonzero rational homology groups, or dually, Y has only finitely many nonzero rational homotopy
groups [12].

(ii) Y is a bouquet of suspensions of connected finite complexes [2,6].
(iii) Ph(X, Y ) has a natural abelian group structure and it has no elements of order p for some prime p [6].

Next, we provide another collection of spaces for which the Gray index conjecture is valid.

Theorem 1.5. If Y is a simply connected finite complex, then for any CW complex X of finite type we have Ph∞(X, Y ) = ∗.

The remainder of the paper is devoted to proving the foregoing results. Our proofs are based on the tower-theoretic
approach to phantom maps.

For an inverse tower G = {G1 ← G2 ← G3 ← ·· ·} of groups, not necessarily abelian, Bousfield and Kan [1] defined lim←−
1 G

and proved that a short exact sequence of inverse towers

1 → K → G → H → 1

induces a six-term lim←− – lim←−
1 exact sequence of pointed sets

1 → lim←− K → lim←− G → lim←− H → lim←−
1 K → lim←−

1G → lim←−
1 H → ∗.

They also established a short exact sequence of pointed sets

∗ → lim←−
n

1[Σ Xn, Y ] → [X, Y ] → lim←−
n

[Xn, Y ] → ∗

for any CW-complex X . By using this sequence and the definition of phantom maps, we obtain a bijection of pointed sets

Ph(X, Y ) ∼= lim←−
n

1[Σ Xn, Y ].

2. Proofs of Theorem 1.2 and Corollary 1.3

We start by constructing an algebraic example.
Let

A = Z/2∞ × Z/3∞ × · · · × Z/p∞ × · · · ,
where p is a prime and Z/p∞ = Q/Z(p) . An is a subgroup of A defined by

An = {
(x1, x2, . . . , xn, xn+1, . . .) ∈ A

∣∣ x1 = x2 = · · · = xn = 0
}
.
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We embed Z in A via the map

k �→ k

(
1

2
,

1

3
, . . . ,

1

p
, . . .

)

and its image is also denoted by Z. Now we consider the following tower of abelian groups

A0 = A/Z ← A1 ← A2 ← ·· · ← An ← ·· · ,
where the first map is the composition of the inclusion and the projection and the others are all inclusion maps.

For a tower G = {G1 ← G2 ← G3 ← ·· ·} of sets, we define G(k)
n = Im(Gk → Gn) if k � n, and G(k)

n = Gk if k < n, and
G(∞)

n = ⋂
k�n G(k)

n .

Lemma 2.1.

A(∞)
0 = (Z/2 × Z/3 × · · · × Z/p × · · ·)/Z ∼= R ⊕ Q/Z,

where R is viewed as a rational vector space whose cardinality equals that of the real numbers.

Proof. Let[(
n2

2
,

n3

3
, . . . ,

np

p
, . . .

)]
∈ (Z/2 × Z/3 × · · · × Z/p × · · ·)/Z,

then by the Chinese Remainder Theorem there is an integer k such that n2 ≡ k (mod 2),n3 ≡ k (mod 3), . . . for the first n
primes. Thus

[(
n2

2
,

n3

3
, . . . ,

np

p
, . . .

)]
=

[(
n2

2
,

n3

3
, . . . ,

np

p
, . . .

)
− k

(
1

2
,

1

3
, . . . ,

1

p
, . . .

)]

=
[(

0, . . . ,0,
np − k

p
, . . .

)]
∈ A(n)

0 ,

where p is the (n + 1)-st prime. As n is arbitrary, we have A(∞)
0 ⊃ (Z/2 × Z/3 × · · · × Z/p × · · ·)/Z.

To the contrary, let [(q2,q3, . . . ,qp, . . .)] ∈ A(n)
0 ; then there is an integer k and a set of rationals {rp} such that

(q2,q3, . . . ,qp, . . .) = k

(
1

2
,

1

3
, . . . ,

1

p
, . . .

)
+ (0,0, . . . ,0, rp, . . .),

where p is the (n + 1)-st prime. Thus A(∞)
0 ⊂ (Z/2 × Z/3 × · · · × Z/p × · · ·)/Z and we proved the first assertion.

As for the group structure, we make use of the computation of lim←−
1.

It is easy to see that K 0
n = Ker(An → A0) = k(n)K ⊂ An ⊂ A for n � 1, where k(n) is a product of the first n primes. Then

there is a short exact sequence of towers:

0 → {
K 0

n

} → {An} → {
A(n)

0

} → 0.

This induces the following six-term lim←− – lim←−
1 exact sequence

0 → lim←−
n

K 0
n → lim←−

n
An → lim←−

n
A(n)

0 → lim←−
n

1 K 0
n → lim←−

n

1 An → lim←−
n

1 A(n)
0 .

As lim←−n
An = lim←−

1
n

An = 0, we have an isomorphism

A(∞)
0 = lim←−

n
A(n)

0
∼= lim←−

n

1 K 0
n

∼= lim←−
n

1k(n)Z ∼= R ⊕ Q/Z.

As for the last equation see, for example, p. 1228 of [11]. �
Roitberg [14] constructs spaces M2n+1(I, J ) to show that some groups Ph(X, Y ) can possess torsion. Here we use these

spaces to construct the space Y stated in Theorem 1.2.
Let I and J denote non-empty complementary sets of primes. The spaces M2n+1(I, J ), n � 2, are defined by means of

homotopy-pullback diagrams:
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M2n+1(I, J ) Ω2 S2n+1
J

K (ZI ,2n − 1) K (Q,2n − 1)

where K (ZI ,2n −1) and S2n+1
J denote the respective localizations of K (Z,2n −1) and S2n+1 and the bottom and right-hand

maps are rationalizations.
Let p be a prime, I p = {p} and J p be the set of all primes except p. Set M2p+3 = M2p+3(I p, J p), that is, M2p+3 are

defined by means of homotopy-pullback diagrams:

M2p+3 = M2p+3(I p, J p) Ω2 S2p+5
J p

K (ZI p ,2p + 3) K (Q,2p + 3).

Note that M2p+3 is a 2p + 2-connected double-loop space of finite type.
By using a fiber sequence

K (Q,2p + 2)
δ−→ M2p+3 → K (ZI p ,2p + 3) × Ω2 S2p+5

J p
,

it is easy to show that

Ph
(
Σ2CP∞, M2p+3) = [

Σ2CP∞, M2p+3] ∼= R ⊕ Z/p∞

and that the torsion elements in Ph(Σ2CP∞, M2p+3) come from [Σ2CP∞, K (Q,2p + 2)]. We use CP∞
m to denote the

stunted projective space CP∞/CPm−1.

Lemma 2.2. If p � m, the canonical projection CP∞ → CP∞
m induces an isomorphism

[
Σ2CP∞

m , M2p+3] = Ph
(
Σ2CP∞

m , M2p+3) → Ph
(
Σ2CP∞, M2p+3).

If p < m, then Ph(Σ2CP∞
m , M2p+3) = 0.

Proof. As there is an epimorphism (see Section 5 of [11])

∏
k

Hk(Σ2CP∞
m ;πk+1

(
M2p+3) ⊗ R

) ∼= H2p+2(Σ2CP∞
m ;R

) → Ph
(
Σ2CP∞

m , M2p+3),
the assertion clearly follows for the case p < m.

Next we consider the case p � m. We have

[
Σ2CP∞, M2p+3] = Ph

(
Σ2CP∞, M2p+3).

Then the cofiber sequence CPm−1 → CP∞ → CP∞
m → ΣCPm−1 induces an exact sequence

[
Σ3CPm−1, M2p+3] → [

Σ2CP∞
m , M2p+3]

→ Ph
(
Σ2CP∞, M2p+3) → [

Σ2CPm−1, M2p+3].
As there is no essential phantom map in [Σ2CPm−1, M2p+3] and [Σ3CPm−1, M2p+3] = 0 as p � m, this exact sequence
induces an isomorphism:

[
Σ2CP∞

m , M2p+3] ∼= Ph
(
Σ2CP∞, M2p+3). (2.1)

On the other hand, by Proposition 3 of [7], we have

Ph
(
Σ2CP∞, M2p+3) = Ph2m+2(Σ2CP∞, M2p+3)

= Im
(
Ph

(
Σ2CP∞

m , M2p+3) → Ph
(
Σ2CP∞, M2p+3)). (2.2)

(2.1) and (2.2) imply the truth of the assertion for the case p � m. �
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Let ϕp be the composition

ϕp : Σ2CP∞ Σ2xp/p−−−−→ Σ2 K (Q,2p)
ι−→ K (Q,2p + 2)

δ−→ M2p+3

where x ∈ [CP∞, K (Z,2)] ∼= H2(CP∞;Z) ⊂ H2(CP∞;Q) is the canonical generator and ι : Σ2 K (Q,2p) → K (Q,2p + 2) is
the adjoint of the identity K (Q,2p) → Ω2 K (Q,2p + 2). ϕp is a torsion element of order p. Now we put

ϕ =
( ∏

p:prime

ϕp

)
◦ � : Σ2CP∞ →

∏
p:prime

Σ2CP∞ →
∏

p:prime

M2p+3

and let Y be the homotopy fiber of the map ϕ:

Y → Σ2CP∞ ϕ−→
∏

p:prime

M2p+3.

Here
∏

p:prime Σ2CP∞ and
∏

p:prime M2p+3 have the product topology.
First we show that Y is 3-connected and of finite type. By definition of Y there is an exact sequence

πi+1

( ∏
p:prime

M2p+3
)

→ πi(Y ) → πi
(
Σ2CP∞)

.

As M2p+3 is 2p + 2-connected, we have an isomorphism

πi+1

( ∏
p:prime

M2p+3
)

∼=
⊕

2p+2�i

πi+1
(
M2p+3),

therefore, it is finitely generated and 0 for i < 6. Needless to say, πi(Σ
2CP∞) is finitely generated and 0 for i < 4. By the

exact sequence above πi(Y ) is also finitely generated and 0 for i < 4.
Again by definition, there is an exact sequence

[
CP∞

m ,Ω2Σ2CP∞] (Ω2ϕ)∗−−−−→
[
CP∞

m ,
∏

p:prime

Ω2M2p+3
]

→ [
CP∞

m ,ΩY
]
.

Thus there are inclusions

Ph

(
CP∞

m ,
∏

p:prime

Ω2M2p+3
)/

Im
(
Ω2ϕ

)
∗ ⊂ Ph

(
CP∞

m ,ΩY
)

and we analyze the tower
{

Ph

(
CP∞

m ,
∏

p:prime

Ω2M2p+3
)/

Im
(
Ω2ϕ

)
∗

}
m

∼=
{

Ph

(
Σ2CP∞

m ,
∏

p:prime

M2p+3
)

/ Imϕ∗
}

m
.

Proposition 2.3. The map

(ϕp)∗ : [Σ2CP∞
m ,Σ2CP∞] → [

Σ2CP∞
m , M2p+3]

is trivial for m > 1. For m = 1, its image is isomorphic to Z/p and is generated by ϕp .

Proof. As ϕp factors through K (Q,2p + 2), it is sufficient to establish a set of generators of [Σ2CP∞
m ,Σ2CP∞] up to

homology to compute Imϕ∗ . McGibbon [10] proves that any self-map of ΣkCP∞ is homologous to a linear combination of
k-fold suspensions of elements in [CP∞,CP∞] ∼= Z for k � 1. Another set of generators is given by Morisugi [13].

Let f �
1 : CP∞ → ΩΣCP∞ be the adjoint of the identity f1 : ΣCP∞ → ΣCP∞ . Following [13], we define inductively

f �
n+1 : CP∞ �̃−→ CP∞ ∧ CP∞ f �

1 ∧ f �
n−−−−→ ΩΣCP∞ ∧ ΩΣCP∞ 	−→ ΩΣCP∞,

where �̃ is the reduced diagonal map and 	 denotes an extension of the adjoint of the Hopf construction of CP∞ . Morisugi
proves that f �

n factors as

CP∞ → CP∞
n = CP∞/CPn−1 g�

n−−→ ΩΣCP∞,
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where the first map is the canonical projection. Let fn : ΣCP∞ → ΣCP∞ and gn : ΣCP∞
n → ΣCP∞ be the adjoint of f �

n
and g�

n , respectively. {Σk−1 fn}n�1 is a set of generators of self-maps of ΣkCP∞ up to homology for k � 1.
Let βn ∈ H2n(CP∞;Z) ∼= Z be the dual of xn , where H∗(CP∞;Z) = Z[x]. We put

( fn)∗(σβk) = δn(k)σβk,

where σ : H̃∗(CP∞;Z) → H̃∗+1(ΣCP∞;Z) is the suspension isomorphism. Then δn(k) is given by the following formula
(see, Theorem 3.3 of [10]),

δn(k) =
n∑

i=1

(−1)n−i
(

n

i

)
ik.

δn(k) is known to be 0 for k < n and to be divisible by n!.

Lemma 2.4. If p is a prime, then δn(p) is divisible by p for n > 1.

Proof. As ip ≡ i (mod p), we have

δn(p) =
n∑

i=1

(−1)n−i
(

n

i

)
ip

≡
n∑

i=1

(−1)n−i
(

n

i

)
i (mod p)

≡ δn(1) (mod p)

≡ 0 (mod p). �
It is easy to see that {Σ2 pm

k ◦ Σ gk : Σ2CP∞
m → Σ2CP∞ | k � m} is a set of generators of [Σ2CP∞

m ,Σ2CP∞] up to
homology, where pm

k : CP∞
m → CP∞

k is the canonical projection for k � m. Consider the following commutative diagram

[Σ2CP∞
m ,Σ2CP∞] (ϕp)∗

j1

Ph(Σ2CP∞
m , M2p+1)

j2

[Σ2CP∞,Σ2CP∞] (ϕp)∗
Ph(Σ2CP∞, M2p+1)

where the vertical maps are induced by the projection Σ2CP∞ → Σ2CP∞
m . As j1 is injective up to homology, j2 is injective

and Σ f1 is the identity, to prove Proposition 2.3, it is sufficient to prove the following.

Lemma 2.5. (ϕp)∗(Σ fn) = 0 for n > 1.

Proof. As(
Σ2 xp

p
◦ Σ fn

)
∗

(
σ 2(βp)

) = δn(p)

(
Σ2 xp

p

)
∗

(
σ 2(βp)

)
,

we have (ϕp)∗(Σ fn) = δn(p)ϕp = 0. Here we use the fact that ϕp is of order p and δn(p) is divisible by p, due to
Lemma 2.4. ��
Proof of Theorem 1.2. We have inclusions

Ph

(
Σ2CP∞

m ,
∏

p:prime

M2p+3
)

/ Im(ϕ)∗ ⊂ Ph
(
CP∞

m ,ΩY
)

and in the tower{
Ph

(
Σ2CP∞

m ,
∏

p:prime

M2p+3
)

/ Imϕ∗
}

m
,

we have
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Ph

(
Σ2CP∞,

∏
p:prime

M2p+3
)

/ Imϕ∗

∼= ((
Z/2∞ ⊕ R

) × (
Z/3∞ ⊕ R

) × · · · × (
Z/p∞ ⊕ R

) × · · ·)/K

where K ∼= Z is a subgroup generated by (ϕp)p , and for m > 1 we have

Ph

(
Σ2CP∞

m ,
∏

p:prime

M2p+3
)

/ Imϕ∗ = Ph

(
Σ2CP∞

m ,
∏

p:prime

M2p+3
)

∼= (
Z/�∞ ⊕ R

) × · · · × (
Z/p∞ ⊕ R

) × · · ·
where � is the smallest prime which is equal to m or larger than m. Then Lemma 2.1 shows that

Ph∞(
CP∞,ΩY

) ⊃
(

Ph

(
Σ2CP∞,

∏
p:prime

M2p+3
)

/ Im(ϕ)∗
)(∞)

�= 0

and the proof is complete. �
We recall the natural filtration on SNT(X) according to Ghienne [2].
Let {Gn}n be an inverse tower of groups. A surjection of towers {Gn}n → {G(n)

k }n induces a surjection of lim←−
1 sets:

pk : lim←−
n

1Gn → lim←−
n

1G(n)

k .

Set L = lim←−n
1Gn and define Lk = Ker pk . We then have a filtration:

L = L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ · · · ⊃ L∞ =
⋂

k

Lk,

which is called the algebraic Gray filtration on L = lim←−
1
n

Gn .
For a connected space X , we denote by Aut(X) the group of homotopy classes of self-homotopy equivalences of X . Recall

from [16] that we have a bijection:

SNT(X) ∼= lim←−
n

1Aut
(

X (n)
)
.

This description of SNT(X) as lim←−
1 set defines the algebraic Gray filtration on it:

SNT(X) ⊃ SNT1(X) ⊃ · · · ⊃ SNTk(X) ⊃ · · · ⊃ SNT∞(X) =
⋂

k

SNTk(X).

Proof of Corollary 1.3. For a phantom map f : X → Z , its homotopy fiber has the same n-type as X × Ω Z for all n since
f (n) : X (n) → Y (n) is null-homotopic. Then we can define a map

F : Ph(X, Z) → SNT(X × Ω Z)

which associates to a phantom map its homotopy fiber. Theorem 3.6 of [2] says that this map respects filtration. In partic-
ular, F(Ph∞(X, Z)) ⊂ SNT∞(X × Ω Z).

To prove Corollary 1.3, therefore, it is sufficient to prove that there is a phantom map φ ∈ Ph∞(CP∞,ΩY ) such that its
homotopy fiber Fφ is not homotopy equivalent to CP∞ × Ω2Y .

We follow the argument of the proof of Lemma 3.3 in [4].
Let φ be an element of Ph∞(CP∞,ΩY ) with infinite order which factors through

∏
ΩM2p+3.

Let f : CP∞ ×Ω2Y → Fφ be any map, j : CP∞ → CP∞ ×Ω2Y the canonical embedding and consider the fiber sequence

→ Ω2Y b−→ Fφ
i−→ CP∞ φ−→ ΩY .

We write d = i ◦ f ◦ j ∈ [CP∞,CP∞] ∼= Z. We have φ ◦ d = φ ◦ i ◦ f ◦ j = 0 as φ ◦ i = 0.
By Lemma 2.1 we can identify φ with an element in

(Z/2 × Z/3 × · · · × Z/p × · · ·)/Z

and write

φ =
[(

n2
,

n3
, . . . ,

np
, . . .

)]
.

2 3 p
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Then we can write

φ ◦ d =
[(

d2 n2

2
,d3 n3

3
, . . . ,dp np

p
, . . .

)]
,

and as dp ≡ d (mod p), we have

=
[(

d
n2

2
,d

n3

3
, . . . ,d

np

p
, . . .

)]
= dφ.

As φ is an element of infinite order, φ ◦ d = dφ = 0 implies that d = 0.
Then there is a map g : CP∞ → Ω2Y such that f ◦ j � b ◦ g .
Consider the following commutative diagram:

[CP∞,Ω2Y ] ξ∗

�∗

[CP∞,Ω2Σ2CP∞] (Ω2ϕ)∗

�∗

[CP∞,
∏

Ω2M2p+3]
�∗

π2(Ω
2Y )

ξ∗
π2(Ω

2Σ2CP∞)
(Ω2ϕ)∗

π2(
∏

Ω2M2p+3).

Here the horizontal sequences are induced by the fiber sequence Ω2Y → Ω2Σ2CP∞ → ∏
Ω2M2p+3 and vertical maps are

induced by the canonical inclusion � : S2 = CP 1 → CP∞ . In the proof of Theorem 1.2 we proved that the kernel of the map
(Ω2ϕ)∗ : [CP∞,Ω2Σ2CP∞] → [CP∞,

∏
Ω2 M2p+3] is generated by the maps which are the adjoints of {Σ fk | k � 2} up

to homology. Thus, as ξ∗(g) factors through CP∞
2 up to homology, we have

0 = �∗ ◦ ξ∗(g) = ξ∗ ◦ �∗(g),

that is,

�∗(g) ∈ Ker
(
ξ∗ : π2

(
Ω2Y

) → π2
(
Ω2Σ2CP∞))

∈ Im
(
π2

(∏
Ω3M2p+3

)
→ π2

(
Ω2Y

))
.

On the other hand, π2(
∏

Ω3M2p+3) ∼= ∏
π5(M2p+3) = 0 as M2p+3 is 2p + 2-connected. It follows that

g∗ : π2
(
CP∞) → π2

(
Ω2Y

)
is the 0 map. As f∗ ◦ j∗ = b∗ ◦ g∗ = 0 on 2-dimensional homotopy groups and j∗ : π2(CP∞) → π2(CP∞ × Ω2Y ) is an
embedding, we see that

f∗ : π2
(
CP∞ × Ω2Y

) → π2(Fφ)

maps the factor π2(CP∞) trivially, hence, that f cannot be a homotopy equivalence. �
3. Proof of Theorem 1.5

By using a bijection of pointed sets given by Lê Minh Hà [6]

Ph∞(X, Y ) ∼= lim←−
n

1[Σ Xn, Y ](∞),

it is sufficient to prove that the tower {[Σ Xn, Y ](∞)}n satisfies the Mittag-Leffler condition to prove Theorem 1.5. From now
on in this proof, let Gn = [Σ Xn, Y ] ∼= [Xn,ΩY ].

To prove that the tower {G(∞)
n }n satisfies the Mittag-Leffler condition, it is sufficient to prove that for each n, the image

of the map

lim←−
k

Gk = lim←−
k

G(∞)

k → G(∞)
n

has a finite cokernel. For Im(G(∞)
m → G(∞)

n ) has only finitely many possibilities in G(∞)
n as

Im
(

lim←−
k

G(∞)

k → G(∞)
n

)
⊂ Im

(
G(∞)

m → G(∞)
n

) ⊂ G(∞)
n .

Since there is a surjection [X,ΩY ] → lim Gk , therefore,
←−k
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Im
([X,ΩY ] → G(∞)

n
) = Im

(
lim←−

k

Gk → G(∞)
n

)
,

it is sufficient to show that the image [X,ΩY ] → G(∞)
n has a finite cokernel.

When ΩY has the rational homotopy type of

P1 =
∏

α∈A1

S2nα+1 ×
∏

α∈A2

Ω S2nα+1,

where P1 is topologized as the direct limit of finite products, it is easy to construct a rational homotopy equivalence

f : P1 → ΩY .

Here a map f : X → Y is called a rational homotopy equivalence if it induces an isomorphism in rational homology groups.
In [5] we construct a rational homotopy equivalence in the opposite direction. We modify this result to prove Theorem 1.5

as follows.

Lemma 3.1. For a natural number n and a rational homotopy equivalence g : ΩY → P1 there is a rational homotopy equivalence
f : P1 → ΩY such that

( f ◦ g)(n) : (ΩY )(n) = ΩY (n+1) → (ΩY )(n) = ΩY (n+1)

is a power map.

Assume for the moment that this lemma is true and we continue the proof of Theorem 1.5.
We set

P2 =
∏

α∈A1

Ω S2nα+2 ×
∏

α∈A2

Ω S2nα+1 =
∏
α∈A

Ω Snα .

Let ϕ = ∏
α∈A1

iα × id∏
α∈A2

Ω S2nα+1 : P1 → P2, where iα : S2nα+1 → Ω S2nα+2 is the adjoint of the identity of S2nα+2. Any

map h : Sm → ΩY is equal to the composition Ωh� ◦ i : Sm → Ω Sm+1 → ΩY , where i : Sm → Ω Sm+1 and h� : Sm+1 → Y
are the adjoint of id : Sm+1 → Sm+1 and h : Sm → ΩY , respectively. It follows that f : P1 → ΩY is factored as

f = f ′ ◦ ϕ : P1 → P2 → ΩY .

Now consider the following commutative diagram:

[X,ΩY ] g∗ [X, P1] ϕ∗ [X, P2] f ′∗ [X,ΩY ]

[Xn,ΩY ](∞)
g∗ [Xn, P1](∞)

ϕ∗ [Xn, P2](∞)
f ′∗ [Xn,ΩY ](∞)

(3.1)

where the vertical maps are induced by the inclusion map Xn → X .
First we assert that the second vertical map from the right is surjective. To prove this it is sufficient to prove that

for each m, we have Im([X,Ω Sm] → [Xn,Ω Sm]) = [Xn,Ω Sm](∞) . According to the remark after Proposition 2.6 of [6],
{[Xn,Ω Sm](∞)}n is a tower of epimorphisms. Then all maps in the sequence

[
X,Ω Sm] → lim←−

n

[
Xn,Ω Sm] = lim←−

n

[
Xn,Ω Sm](∞) → [

Xn,Ω Sm](∞)

are epimorphic and we complete the proof of the assertion.
For each n, by Lemma 3.1, there are rational homotopy equivalences f : P1 → ΩY and g : ΩY → P1 such that

( f ◦ g)(n) : (ΩY )(n) = ΩY (n+1) → (ΩY )(n) = ΩY (n+1)

is a power map, say λ. By λ we denote both a natural number and the power map on ΩY of power λ. Then for each
x ∈ [Xn,ΩY ](∞) there is u ∈ [Xn,

∏
α Ω Snα ](∞) such that f ′∗(u) = xλ . In fact, put u = ϕ∗ ◦ g∗(x), then we have f ′∗(u) =

f ′∗(ϕ∗ ◦ g∗(x)) = ( f ◦ g)∗(x) = ( f ◦ g)
(n)∗ (x) = λ∗(x) = xλ . Then, by the commutative diagram (3.1) and the fact that [X, P2] →

[Xn, P2](∞) is surjective, we conclude that for each x ∈ [Xn,ΩY ](∞) there exist v ∈ [X,ΩY ] and a natural number λ such
that v is mapped to xλ . Thus by Lemma 7.1.2 of [11] we conclude that the image [X,ΩY ] → [Xn,ΩY ](∞) has finite index
in [Xn,ΩY ](∞) and complete the proof of Theorem 1.5.
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Proof of Lemma 3.1. For a nilpotent space X by r = r(X) : X → X(0) we denote the rationalization of X . Consider the
following commutative diagram:

ΩY
r

g

(ΩY )(0)

g(0)

P1
r (P1)(0).

As g(0) is a homotopy equivalence, there is a homotopy inverse f ′′ : (P1)(0) → (ΩY )(0) . Thus r(ΩY ) � f ′′ ◦ r(P1)◦ g = f ′ ◦ g ,
where f ′ = f ′′ ◦ r(P1) : P1 → (ΩY )(0) .

Put

P ′ =
∏

α∈A1,2nα+1�n+1

S2nα+1 ×
∏

α∈A2,2nα�n+1

(
Ω S2nα+1)

n+1,

where (Ω S2nα+1)n+1 denotes the n + 1-skeleton of Ω S2nα+1. As the rationalization of ΩY can be constructed as an infinite
telescope using power maps and we may assume that g is a cellular map, there is a sufficiently large power map λ : ΩY →
ΩY such that

λ|(ΩY )n+1 � h ◦ g|(ΩY )n+1 .

Here h : P ′ → ΩY and f ′|P ′ � j ◦ h where j : ΩY → (ΩY )(0) is an inclusion to the telescope. Then we have

λ(n) � h(n) ◦ g(n).

As

[
Ω S2m+1,ΩY

] ∼= [
ΣΩ S2m+1, Y

] ∼=
∏

k

[
S2mk+1, Y

]
,

every map �′ : (Ω S2m+1)n+1 → ΩY has an extension � : Ω S2m+1 → ΩY . Thus it is easy to construct a rational equivalence
f : P1 → ΩY such that f (n) � h(n) . Then f satisfies the required condition in Lemma 3.1. �
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