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A B S T R A C T

Background: Tuberculosis (TB) infections caused by multidrug-resistant Mycobacterium tuber-

culosis (MDR MTB) remain a significant public health concern worldwide. Georgia has a high

prevalence of MDR MTB. The genetic mechanisms underlying the emergence of MDR MTB

strains in this region are poorly understood and need to be determined for developing bet-

ter strategies for TB control. This study investigated the frequency of major drug resistance

mutations across rpoB, katG and inhA loci of Georgian MDR MTB strains and explored differ-

ences between new and previously treated patients.

A total of 634 MTB strains were examined for which an MDR phenotype had been previously

determined by the proportions method. The GenoType�MTBDRplus system was applied to

screen the strains for the presence of rpoB (S531L, H526D, H526Y, and D516V), katG (S315T)

and inhA promoter region (C15T and T8C) mutations. The target loci were amplified by

PCR and then hybridized with the respective site-specific and wild type (control) probes.

Results: Out of the 634 isolates tested considered by phenotypic testing to be resistant to RIF

and INH, this resistance was confirmed by the GenoType�MTBDRplus assay in 575 (90.7%)

isolates. RIF resistance was seen in 589 (92.9%) and INH resistance was seen in 584

(92.1%); 67.2% and 84.3% of MDR strains harbored respectively rpoB S531L and katG S315T

mutations (generally known as having low or no fitness cost in MTB). The inhA C15T muta-

tion was detected in 22.6% of the strains, whereas rpoB H526D, rpoB H526Y, rpoB D516V and

inhA T8C were revealed at a markedly lower frequency (65.2%). The specific mutations

responsible for the RIF resistance of 110 isolates (17.4%) could not be detected as no corre-

sponding mutant probe was indicated in the assay. There was no specific association of

the presence of mutations with the gender/age groups. All types of prevailing mutations

had higher levels in new cases.

A great majority of the Georgian MDR MTB strains have a strong preference for the drug

resistance mutations carrying no or low fitness cost. Thus, it can be suggested that MDR

MTB strains with such mutations will continue to arise in Georgia at a high frequency even

in the absence of antibiotic pressure.

� 2013 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights

reserved.
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of TB-related morbidity and mortality are drug-resistant

strains of the disease. Multidrug-resistant TB is defined as

strains of Mycobacterium tuberculosis expressing in vitro resis-

tance to at least Rifampicin (RIF) and Isoniazid (INH) – two

of the most powerful anti-tuberculous agents available. Resis-

tance to these agents leads to longer, more complicated and

more costly therapy. The estimates of the global burden of

disease caused by TB in 2009 are as follows: 9.4 million inci-

dent cases, 14 million prevalent cases, and 1.3 million deaths

among HIV-negative people and 0.38 million deaths among

HIV-positive people [1]. Developing countries account for

95% of all TB cases and 98% of all TB deaths worldwide [2].

Among TB patients notified in 2009 (5.8 million), an estimated

250,000 (range, 230,000–270,000) had multidrug-resistant TB

(MDR-TB). Of these, slightly more than 30,000 (12%) were diag-

nosed with MDR-TB and notified [1].

Georgia is a country in the South Caucasus which regained

its independence from the Soviet Union in 1991. Tuberculosis

is a significant health problem in Georgia with an estimated

incidence of 107 per 100,000 population, making it the fifth

highest burden country in the European region [3]. MDR-TB

has emerged as a serious public health problem in Georgia;

in the period 2001–2004 MDR-TB strains were isolated in

28.1% of all TB cases [4]. A study of MDR-TB among hospital-

ized patients at the National Centre for Tuberculosis and Lung

Diseases (Tbilisi, Georgia) showed that in the period 2006–

2008 the rates of MDR-TB were very high: 23% among new

cases and 55% among previously treated cases [5]. Out of

4732 TB cases in 2009, MDR-TB was found in 10.3% of newly

diagnosed patients and in 31.1% of previously treated patients

[6,7]. These high rates of MDR-TB have made the timely iden-

tification of resistant MTB strains extremely important both

in achieving effective disease management and in preventing

their spread [8].

In recent years, the development of new molecular meth-

ods based on PCR has allowed the rapid detection and identi-

fication of genetic mutations related to resistance, specifically

resistance to RIF and INH [10,11,14]. These methods are based

on the targeting of mutations in the rpoB, katG, and inhA

genes, the mutations that account for the highest frequency

of documented M. tuberculosis genetic diversity. Within the

last few decades, several chromosomal mutations in MTB

responsible for resistance to most of the major drugs, includ-

ing Rifampin and Isoniazid, have been discovered [9].

Point mutations in rpoB, a gene encoding the b-subunit of

DNA-dependent RNA polymerase, have been shown to ac-

count for a strong majority of RIF resistance worldwide. As

RIF mono-resistance is relatively rare, detection of RIF resis-

tance is a good indicator of MDR-TB [9]. More specifically,

95% of these RIF resistance-causing mutations are located

within an 81 base pair hotspot region of rpoB, spanning co-

dons 507–533, a region known as the RIF resistance determin-

ing region (RRDR) [10]. More than 35 resistant alleles have

been identified in this region [11,12]. Mutations in codons

516, 526 and 531 of rpoB are most commonly associated with

high-level RIF resistance [13,14], but the frequency with which

these mutations are observed varies by geographic location.

INH resistance in MTB is more complex than RIF resistance
in that a number of genes are implicated. However, up to

95% of INH resistance may be due to mutations in katG [15].

The most frequently observed alteration in katG is a serine-

to-threonine substitution at codon 315 (S315T), located within

the active site of the catalase moiety of katG. The S315T alter-

ation in this proposed binding site of INH prevents katG-med-

iated activation of INH [16]. Additionally, mutations in the

promoter region of inhA account for 8% to 20% of INH resis-

tance in MTB. A C-to-T substitution at nucleotide 215 results

in the over-expression of inhA, an NADH-dependent enoyl-

acyl reductase involved in mycolic acid synthesis, and INH

resistance arises as a result of drug titration [15].

The aim of the present study is to determine the frequency

of major drug resistance mutations across rpoB, katG and inhA

loci of Georgian MDR MTB isolates using a molecular test.

Materials and methods

Clinical strains

A total of 634 strains of MTB from pulmonary MDR-TB diag-

nosed cases registered during the period 2010–2011 at the Na-

tional Centre for Tuberculosis and Lung Diseases (NCTLD) of

Georgia were examined. The strains were recovered from

259 new and 375 retreatment pulmonary MDR-TB cases. Cul-

tures of these strains were previously examined and con-

firmed for M. tuberculosis complex (MTBC) using the

standard microbiological method [17]. The strains were addi-

tionally confirmed for M. tuberculosis/M. canetti by the Geno-

Type�MTBC assay (Lifescience GmbH, Nehren, Germany).

For these strains, MDR phenotypes were predetermined using

the method of proportions with LÖwenstein-Jensen solid

medium [18,19] GenoType�MTBDRplus assay; 634 MDR-MTB

strains of M. tuberculosis were screened for the presence of

the most common drug resistance mutations of rpoB, katG

and inhA using the GenoType�MTBDRplus assay, which was

performed according to the manufacturer’s instructions (Hain

Lifescience GmbH, Nehren, Germany). Briefly, the following

PCR conditions were applied for the amplification of target

rpoB, katG and inhA loci: 15 min of initial denaturation at

95 �C; 10 cycles involving subsequent denaturation for 30 s

at 95 �C, and annealing for 2 min. at 58 �C; additional 20 cycles

with denaturation for 25 s at 95 �C, annealing for 40 s at 53 �C,

and elongation for 40 s at 70 �C; and a final extension step for

8 min at 70 �C. Hybridization and detection were performed in

an automated TwinCubator (Hain Lifescience GmbH, Nehren,

Germany) using the following procedures: the PCR amplifica-

tion products were denatured at room temperature for 5 min;

the single-stranded biotin-labeled amplicons were hybridized

to specific probes attached to the MTBDRplus strip by incuba-

tion for 30 min at 45 �C; the strip was stringently washed, and

then was treated by a streptavidin–alkaline phosphatase (AP)

conjugate. After subsequent 30 min incubation at room tem-

perature, the MTBDRplus strip was subjected to an AP staining

reaction to detect colorimetric bands. The MTBDRplus strip

contains a total of 27 reaction zones. These include 21 probes

for screening of target rpoB, katG, and inhA drug resistance

mutations and their corresponding wild type loci, 3 probes
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specific to rpoB, katG, and inhA genes, 1 probe specific to MTBC

(TUB), and 1 conjugate control (CC) and 1 amplification

control (AP) probes. The probes, rpoB MUT1, rpoB MUT2A, rpoB

MUT2B, and rpoB MUT3 specifically target respectively the

most common rpoB mutations D516V, H526Y, H526D and

S531L that confer RIF resistance in M. tuberculosis. The probes

katG MUT1, katG MUT2 specifically recognize the most com-

mon katG mutation S315T that confers INH resistance. The

probes inhA MUT1, inhA MUT2, inhA MUT3A and inhA MUT3B

allow the screening respectively for inhA promoter region

mutations C15T, A16G, T8C, and T8A contributing to INH

resistance. The CC and the AP probes serve for verification

of the test procedures.

Statistical analysis was performed using v2, Fisher exact,

and McNemar tests with the aid of EpiInfo (version 3.4;

CDC, Atlanta, GA); 95% confidence intervals and P values were

also calculated. P values 60.05 were considered statistically

significant.

Results

Out of the 634 isolates tested, considered by phenotypic test-

ing to be resistant to RIF and INH, this resistance was con-

firmed by the Genotype�MTBDRplus assay in 575 (90.7%)

isolates. RIF resistance was seen in 589 (92.9%) isolates and

INH resistance was indicated in 584 (92.1%) isolates. INH

resistance due to katG S315T was found in 535 (84.3%) iso-

lates; due to inhA C (�15) T was found in 143 (22.6%) isolates;

and due to inhA T (�8) C was found in 8 (1.3%) isolates. Both

katG S315T and inhA mutations were detected in 126 (19.9%)

cases.

Single mutations

The results of this study indicate the most common drug

resistance mutations are rpoB, katG and inhA among MDR-

MTB isolates from Georgia (Table 1). The most common muta-

tion responsible for RIF resistance in MDR strains was rpoB

S531L (426/67.2%). The most common mutations responsible

for INH resistance were katG S315T (535/84.3%) and inhA C

(�15) T (143/22.6%). Table 1 also shows the distribution of

single mutations among new and retreatment cases. The

mutation rpoB S531L accounted for resistance measured in
Table 1 – The most common drug resistance mutations of rpoB, k
previously treated TB cases.

Mutation No. (detection %) of MDR isolates from

All cases (n = 634) New cases (n = 25

rpoB S531L 426 (67.2) 208 (80.30)
rpoB H526Y 13 (2.1) 4 (1.5)
rpoB H526D 7 (1.1) 4 (1.5)
rpoB D516V 33 (5.2) 16 (6.2)
katG S315T 535 (84.3) 252 (97.3)
inhA C (�15) T 143 (22.6) 69 (26.6)
inhA T (�8) C 8 (1.3) 2 (0.8)

* Total – 465, 169 isolates not including in the table: No mutation on rpoB – 1

7, Single mutation only on inhA – 2, Without any mutations – 36.
208 (80.3%) new cases versus 218 (58.1%). The mutation katG

S315T accounted for resistance measured in 252 (97.3%) new

cases versus 283 (75.5%). The rest of the mutations (rpoB

D516V, rpoB H526Y, rpoB H526D, inhA T (�8) C showed decreas-

ing levels respectively 33 (5.2%), 13 (2.1%), 7 (1.1%), and 8

(1.3%). There was no statistically significant differences be-

tween new and retreatment cases as well as between genders

for these mutations.
Combinations of mutations

The most common combinations of mutations responsible

for MDR in Georgia were: rpoB S531L + katG S315T (311/

49.1%) and rpoB S531L + katG S315T + inhA C (�15) T (89/

14.0%). The remainder of existing combinations did not ex-

ceed the level of 3.5%. Their distribution among new and

retreatment cases is shown in Table 2. The rpoB S531L + katG

S315T combination accounted for resistance measured in

155 new cases (59.8%) versus 156 previously treated cases

(41.6%), which is statistically significant (p-value 60.05). For

the rest of the combinations, no statistically significant differ-

ences were found.
Comparison of genotype and phenotype

The results of genotype and phenotype comparisons are

shown in Fig. 1. Comparative analysis performed on DST re-

sults of all 634 isolates demonstrated that they were divided

into two groups depending on wild type signal presence or

absence.

The group of 59 (9.3%) MTB isolates did not show MDR pro-

files by Genotype�MTBDRplus assay while they were indi-

cated as MDR by gold standard DST.

According to this assay, out of 59 MTB isolates, 36 (61%)

had wild type sequences indicating susceptibility to both

RIF and INH; 14 isolates (23.7%) showed wild type profiles

for INH only; and 9 isolates (15.3%) to RIF only.

Another group of 575 strains without wild type signals in-

cluded 110 isolates (17.4%) with RIF resistance. The specific

mutations responsible for this resistance, however, could

not be detected as no corresponding mutant probe was indi-

cated in the assay.
atG and inhA of M. tuberculosis MDR isolates from new versus

P value*

9) Previously treated cases (n = 375)

218 (58.1) 60.000001
9 (2.4) 0.45
3 (0.8) 0.37
17 (4.5) 0.35
283 (75.5) 60.000001
74 (19.7) 0.02
6 (1.6) 0.48

10, Single mutation only on rpoB – 14, Single mutation only on katG –



Fig. 1 – M. tuberculosis strains phenotype and genotype comparison.

Table 2 – The frequency of combinations of mutations responsible for MDR tuberculosis in Georgia.

Mutation profiles No. (frequency %) of MDR isolates from P value*

All cases (n = 634) New cases (n = 259) Prev. treated cases (n = 375)

rpoB S531L + katG S315T 311(49.1) 155(59.8) 156(41.6) 0.000006
rpoB S531L + inhA C (�15) T 12(1.9) 6(2.3) 6(1.6) 0.51
rpoB S531L + katG S315T + inhA C (�15)T 89(14.0) 42(16.2) 47(12.5) 0.189
rpoB H526Y + katG S315T 7(1.1) 2(0.8) 5(1.3) 0.5
rpoB H526T + katG S315T + inhA T (�8) C 6(0.9) 2(0.8) 4(1.1) 0.7
rpoB H526D + katG S315T + inhA C (�15) T 7(1.1) 4(1.5) 3(0.8) 0.3
rpoB D516V + inhA C (�15) T 11(1.7) 5(1.9) 6(1.6) 0.75
rpoB D516V + katG S315T 22(3.5) 11(4.2) 11(2.9) 0.37

* Total – 465, 169 isolates not including in the table: No mutation on rpoB – 110, Single mutation only on rpoB – 14, Single mutation only on katG –

7, Single mutation only on inhA – 2, Without any mutations – 36.
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Discussion

The emergence of drug-resistant isolates of M. tuberculosis

poses a serious threat to global TB control, and remains a

major problem for healthcare worldwide. Understanding

the relationship between antibiotic resistance and the

transmissibility and virulence of M. tuberculosis is essen-

tial for predicting the future burden of drug-resistant dis-

ease [20]. Assays for the rapid detection of resistance,

such as the Genotype�MTBDRplus system enable earlier

detection of resistance and thereby tailoring of treatment

regimens.

In this study the spectrum of mutations associated with

the resistance to RIF and INH (dominance of single mutations

in the rpoB Ser531Leu, katG Ser315Thr, inhA C [�15] T) was

similar or close to previously reported on larger populations

from several different geographic locations [8,10,21,22,35].

These patterns are seen more in newly diagnosed patients,

and these mutations seem to be increasing over time. This

may be due to the fact that these mutations do not seem to

affect mycobacterial fitness. This suggests that ongoing
transmission of these strains is what is occurring in the

community.

The rpoB S531L mutation accounted for RIF resistance in

67.2% of MDR isolates. In contrast, the proportion of mutations

at codons 526 (3.2%) and 516 (5.2%) of rpoB is lower. The low fit-

ness cost associated with rpoB S531L may account for the high

frequency with which it is observed [23]. The katG S315T muta-

tion was found in 84.3% of MDR isolates. The S531T katG muta-

tion is proposed to lead to clinically significant INH resistance

without exacting a significant fitness cost. This hypothesis is

consistent with both animal models of virulence and molecu-

lar epidemiological cluster studies [15,24,25].

In contrast with the data of Gegia et al. [26], in the present

study the distribution of single mutations among new and

previously treated cases shows that all types of prevailing

mutations had higher levels in new cases. In the earlier report

[26], drug resistance-related mutations in MTB strains isolated

from 196 patients of the Georgian National Centre for

Tuberculosis and Lung Diseases were examined and drug

resistance-related mutation rates for pretreated and new

cases were significantly different. Antimycobacterial drug
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resistance-related mutations, which included three individual

mutations – rpoB S531L, katG S315G and S315T – were detected

in significantly higher numbers in pretreated cases than in

new ones. The data indicating a higher level of transmission

of MDR-TB strains in new cases than in those previously trea-

ted may be associated with evidences which some resistance

mutations, particularly rpoB S531L and katG S315T appear to

confer no or low fitness cost. Thus antibiotic-resistant bacteria

will not disappear as a result of restricted use of antibiotics but

might instead, as shown by recent clinical studies, persist in

the population for a long time even after antibiotic use has

been reduced or eliminated [20,23,27,28]. Studies have shown

that there seems to be a strong selection for low-cost drug

resistance mutations in vivo [29,30].

The cost of the resistance-conferring mutations, in terms

of bacterial fitness and the ability of the bacteria to geneti-

cally compensate for such costs, are key parameters in deter-

mining if resistance-conferring mutations will be maintained

within a bacterial population in the absence of antimicrobial

therapy. Experimental work conducted in various model sys-

tems has established that chromosomal mutations conferring

antibiotic resistance are almost invariably associated with a

significant cost, and in the absence of drugs are adapted for

by accessory compensatory mutations rather than by rever-

sion to the drug-sensitive, high-fitness genotype [31].

The combination of mutations with more prevalent nucle-

otide changes were observed in codons rpoB S531L and katG

S315T. The mentioned combination of mutations had a higher

frequency in new cases. In this study, 88.6% (n = 412) of all iso-

lates found to have a combination of mutations involving

nucleotide changes in codons 531 (TCG! TTG) demonstrated

an association with higher levels of resistance to RIF (MIC,

P100 lg/ml). The combination of mutations involving katG

S315T mutation was 95.1% (n = 442), and this mutation is de-

scribed as having the association with higher levels of resis-

tance to INH (MIC, P100 lg/ml). This data is consistent with

earlier reports [21,32–34].

There were resistant strains in this study for which no

mutations were detected. The set of DNA probes used in the

Genotype�MTBDRplus assay covers most of the RIF-resis-

tance mutations prevailing in Georgia. A caveat in the inter-

pretation of the Genotype�MTBDRplus assay with respect to

Rifampicin detection is that resistance may be indicated by

the absence of a wild-type hybridization signal alone, without

confirmation by a mutant probe signal. However, some of the

isolates did seem to demonstrate phenotypic RIF resistance

probably based on other types of mutations. There are very

few reports in publications about such strains. So, Hauck

et al. report two strains from French patients showing weak

resistance to Rifampicin (MIC = 1 mg/L) with a wild-type pro-

file using Genotype�MTBDRplus assay [35]. As recent investi-

gations of Rosales-Klintz et al. showed, there are clear

geographical differences in the presence and proportion of

resistance-related mutations [36]. The present investigation

confirms the correctness of this conclusion and the necessity

of further research concerning MTB isolate genotypes and

their association with the drug resistance in this region.
Conclusions

The results of this study illustrate that the geographical distri-

bution of mutations resulting in drug resistance in M. tubercu-

losis in Georgia is similar to what is reported elsewhere. This

may have important implications for the roll-out of rapid

genotypic tests to identify drug-resistant M. tuberculosis. More

rapid testing will allow for improved diagnostics and treat-

ment for patients with drug-resistant forms of the disease.

If rapid genotypic assays for the detection of drug resistance

are to be widely used, there is a need to continually monitor

local patterns of drug-resistance mutations to ensure that if

clonal groups of M. tuberculosis do emerge, they are properly

diagnosed as drug-resistant.

When examining the possible differences in new and re-

treatment cases, it was found that all types of prevailing

mutations (rpoB S531L and katG S315T) had higher levels in

new cases. A great majority of the Georgian MDR-MTB

strains have a strong preference for the drug resistance

mutations carrying no or low fitness cost. This is true for

isolates from both new and previously treated cases, but

the prevalence of such mutations among new cases allow

us to suggest that MDR-MTB strains with such mutations

will continue to arise in Georgia at a high frequency even

in the absence of antibiotic pressure. Thus, the ongoing

transmission of these strains will occur even in the setting

of DOTS and further points out the importance of prompt

and effective MDR-TB treatment.

The set of DNA probes used in the Genotype�MTBDRplus

assay covers most of the RIF-resistance mutations prevailing

in Georgia. However, some of the isolates did seem to demon-

strate RIF resistance based on other types of mutations. The

study shows the necessity of further investigations concern-

ing MTB isolate genotypes and their association with the drug

resistance in this region.

Molecular genotyping methods are important in detecting

the dominance of transmission or re-infection in a popula-

tion. Further studies for determination of genotype of Geor-

gian M. tuberculosis isolates are necessary. In addition, the

analysis of phylogenetically preserved sequence motifs

among members of the M. tuberculosis complex in combina-

tion with geographical and epidemiological data will contrib-

ute important information for tracing the phylogenetic

spread of these pathogens.
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