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a b s t r a c t

To study how balanced or unbalanced a maximal intersecting family F ⊆


[n]
r


is we

consider the ratio R(F ) =
∆(F )

δ(F )
of its maximum and minimum degree. We determine

the order of magnitude of the functionm(n, r), the minimum possible value of R(F ), and
establish some lower and upper bounds on the function M(n, r), the maximum possible
value of R(F ). To obtain constructions that show the bounds onm(n, r)we use a theorem
of Blokhuis on the minimum size of a non-trivial blocking set in projective planes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A family F of sets is said to be intersecting if F1 ∩ F2 ≠ ∅ holds for any F1, F2 ∈ F . In their seminal paper, Erdős, Ko and
Rado showed [3] that if F is an intersecting family of r-subsets of an n-element set X (we denote this by F ⊆


X
r


), then

|F | ≤


n−1
r−1


provided that 2r ≤ n. Many generalizations of the above theorem have been considered ever since and many

researchers have been interested in describing what intersecting families may look like. One of the quantities concerning
intersecting families that has been studied [2,4] is the unbalance U(F ) = |F |−∆(F )where ∆(F ) denotes the maximum
degree in F .

In this paper we define another notion for measuring how balanced or unbalanced F is. U(F ) is sensible when
comparing the largest degree to the size of F , whereas our new notion will measure how close all degrees are to each
other. Denoting the minimum degree in F by δ(F ), our aim is to prove lower and upper bounds on R(F ) =

∆(F )

δ(F )
. To

avoid δ(F ) = 0 we will always assume that ∪F∈F F = X , i.e. the degree d(x) of any element x of the underlying set is
at least 1. One can easily define intersecting families satisfying this condition with large R-values: let x, y ∈ X and let
F ∗

= {F ⊆ X : x ∈ F , y ∉ F , |F | = r} ∪ {F ′
} where F ′ is any r-subset of X with x, y ∈ F ′. Clearly, d(y) = 1 holds and also

d(x) = R(F ) =


|X |−2
r−1


+ 1.
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We will restrict our attention to maximal intersecting families, i.e. families with the property G ∈


X
r


\ F ⇒ ∃F ∈

F F ∩ G = ∅, and show that for these families, at least for some range of r , the R-value is much smaller than that of F ∗. For
the sake of simplicity we will also assume that the underlying set X of our families is [n] = {1, 2, . . . , n}.

With the above notation and motivation we define our two main functions as follows:

M(n, r) = max

R(F ) : F ⊆


[n]
r


is maximal intersecting with ∪F∈F F = [n]


,

m(n, r) = min

R(F ) : F ⊆


[n]
r


is maximal intersecting with ∪F∈F F = [n]


.

Wewill use standardnotation to compare the orders ofmagnitude of twopositive functions.Wewillwrite f (n) = o(g(n))
to denote the fact that f (n)/g(n) tends to 0, and f (n) = ω(g(n)) to denote that g(n)/f (n) tends to 0. We will write
f (n) = O(g(n)) if there exists a positive constant C such that f (n) ≤ Cg(n) holds for all n and f (n) = Ω(g(n)) if there
exists a positive constant C such that Cg(n) ≤ f (n) holds for all n. If both f (n) = O(g(n)) and f (n) = Ω(g(n)) hold, then
we will write f (n) = Θ(g(n)). Finally, f (n) ∼ g(n) denotes the fact that f (n)/g(n) tends to 1.

The family giving the extremal size in the theorem of Erdős, Ko and Rado seems to be a natural candidate for achieving
the value ofM(n, r). In fact, most families F that occur in the literature have R(F ) = Θ

 n
r


. In Section 2 we will prove the

following theorems showing thatM(n, r) and m(n, r) have different orders of magnitude.

Theorem 1.1. (i) For all r ≤ n we have M(n, r) ≤ n + r r . In particular, if r <
log n

log log n , then M(n, r) ≤ (1 + o(1))n holds.
(ii) If 2r − 2 < n, then

M(n, r) ≥ n − 2r + 3 −
n − 2r + 2

2r−3
r−2


holds. In particular, if r <

log n
log log n , then we obtain M(n, r) ∼ n.

At first sight, the upper bound n+ r r seems to be very weak, but wewill show in Section 3 that it cannot be strengthened
too much in general.

Certainly R(F ) ≥ 1 is true for all families F ⊆


[n]
r


with ∪F∈F F = [n], so a trivial lower bound on m(n, r) is 1. The

next theorem states that for intersecting families n/r2 is also a lower bound andwe construct maximal intersecting families
showing that this is the order of magnitude of m(n, r) as long as r ≤ n1/2. For larger values of r we obtain regular maximal
families showing the tightness of the trivial lower bound.

Theorem 1.2. (i) m(n, r) ≥
n
r2

holds for all r ≤ n.

(ii) m(n, r) = Θ


n
r2


holds for all r ≤ n1/2.

(iii) If ω(n1/2) = r = o(n) and r(n)/n is monotone, then there exist infinitely many n′ and r ′
= r ′(n′) with m(n′, r ′(n′)) = 1

and r ∼ r ′.

2. Proofs

In this section we prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. To prove (i), let us consider a maximal intersecting family F ⊆


[n]
r


. Let us partition F into two

subfamilies F1 and F2 where F1 := {F ∈ F : ∃x ∈ F with (F \ {x}) ∩ F ′
≠ ∅ for all F ′

∈ F } and F2 = F \ F1.

Claim 2.1. Let dj denote the maximum number of sets in F2 that contain the same j-subset. Then dj ≤ r r−j holds. In particular,
we have d0 = |F2| ≤ r r .

Proof of Claim 2.1. By the definition of F2, for any j < r and any j-subset J that is contained in some F ∈ F2 there exists an
F ′

∈ F with J ∩ F ′
= ∅. Since F (and so F2) is intersecting, any set in F2 containing J must intersect F ′; thus summing the

number of sets of F2 containing J ∪ {x} for all x ∈ F ′ we obtain dj ≤ rdj+1. Since dr = 1, the claim follows. �

Let τ denote the covering number of F , i.e. the minimum size of a set meeting all sets of F . Clearly, if τ = r , then F1 = ∅

and thus by Claim 2.1, |F | ≤ r r and R(F ) ≤ r r .
Assume τ < r . We will show a mapping f from F1 to Fmin, the subfamily containing one fixed vertex y of minimum

degree. For any F ∈ F1 let g(F) be an element of F such that (F \ {g(F)}) ∩ F ′
≠ ∅ for all F ′

∈ F (such an element exists
by definition of F1). Let us define f (F) = F if y ∈ F , and f (F) = (F \ {g(F)}) ∪ {y} if y ∉ F . Note that f (F) ∈ F as already
F \{g(F)}meets all sets inF and by assumptionF is amaximal intersecting family. Observe that atmost n−r+1 sets can be
mapped to the same set G since all such sets should contain G\ {y}. This concludes the proof of (i) as R(F ) ≤ R(F1)+|F2|.
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To prove (ii) we need a construction. Let us write S = [2, 2r − 2] and S0 = [2, r − 1] and define

F1 =


{1} ∪ G : G ∈


S

r − 1


, F2 =


{1, i} ∪ H : 2r − 1 ≤ i ≤ n,H ∈


S

r − 2


\ {S0}


,

F3 =


S
r


, F4 = {(S \ S0) ∪ {i} : 2r − 1 ≤ i ≤ n}, F = ∪

4
j=1 Fj.

Claim 2.2. The family F is maximal intersecting.

Proof of Claim 2.2. F is clearly intersecting as all of its sets, except those coming fromF2, meet S in at least r −1 elements.
A set F2 from F2 meets any other from F1 ∪ F2 as they both contain 1, a set from F3 because of the pigeon-hole principle,
and a set from F4 as by definition F2 ∩ S ≠ S0.

To prove the maximality of F let us consider a set T ∉ F . If |T ∩ S| < r − 2, then any r-subset of S \ T is in F and
thus T cannot be added to F . Since all r-subsets of S are already in F , it remains to deal with the cases |T ∩ S| = r − 1 and
|T ∩ S| = r − 2. If |T ∩ S| = r − 1, then 1 ∉ T as otherwise T is in F1, and T ∩ S ≠ S \ S0 as otherwise T is in F4. But then a
set F from F2 with F ∩ S = S \ T is disjoint from T ; thus T cannot be added to F .

Finally, suppose |T ∩ S| = r − 2. If 1 ∉ T , then {1} ∪ (S \ T ) ∈ F1 is disjoint from T and thus T cannot be added to F . If
1 ∈ T , then T ∩ S = S0 as T ∉ F2. Then we can find a set disjoint from T in F4. �

Note that for any x, y ∈ [n], the ratio d(x)/d(y) is a lower bound for R(F ). Thus all we have to observe is that in F the
degree of 1 is


2r−3
r−1


+


2r−3
r−2


− 1


(n − 2r + 2), and the degree of i is


2r−3
r−2


for any 2r − 1 ≤ i ≤ n. Dividing d(1) by

d(i) yields the result.

Note that the proof of Theorem 1.1(i) gives an upper boundM(n, r) ≤ n + r r for any value of r and n.

Conjecture 2.3. If r = o(n) holds, then the order of magnitude of M(n, r) is Θ(n).

Now we turn our attention to the function m(n, r). In the proof of Theorem 1.2 we will use the following theorem of
Blokhuis on blocking sets of projective planes (for a short survey on the topic see [6]). Let us briefly introduce the properties
of projective planes that we will use in our proofs. A projective plane Q of order q is a family of subsets of V (Q ) (the points
of the projective plane) of size q + 1 such that any two sets intersect in exactly one point and for any x, y ∈ V (Q ) there
is exactly one F ∈ Q with x, y ∈ F . For every prime power q = pn there exists a projective plane Q of order q with the
following properties:

• both the number of points and the number of lines are q2 + q + 1,
• for any x ∈ V (Q ), we have d(x) = q + 1.

Theorem 2.4 (Blokhuis, [1]). Let Q be a projective plane of order q and B be a blocking set (a set that meets all lines of the
projective plane) of size less than 3

2 (q + 1). If q is prime, then B contains a line of the projective plane.

We will also need the following strengthening of Chebyshev’s theorem.

Theorem 2.5 (Nagura, [5]). For every integer n ≥ 25 there exists a prime p with n ≤ p ≤ (1 + 1/5)n.

Proof of Theorem 1.2. To prove (i) we make the following two easy observations: for any intersecting family F we have
∆(F ) ≥ |F |/r as for any set F ∈ F the inequality


x∈F d(x) ≥ |F | holds. Also, the average degree in F equals r|F |

n . As the
average degree is at least as large as the minimum degree, we obtain

R(F ) =
∆(F )

δ(F )
≥

|F |

r
r|F |

n

=
n
r2

.

Note that the proof does not use the fact that F is maximal.
To prove (ii) and (iii) we need constructions. Suppose first that r ≤ n1/2 holds. By Theorem 2.5 we can pick a prime p

such that 2
3 r ≤ p ≤

2
3


1 +

1
5


r =

4
5 r . Let P denote a projective plane of order p with vertex set [p2 + p + 1]. Let us define

the following maximal intersecting family:

Fn,r,p =


F ∈


[n]
r


: l ⊂ F for some line l ∈ P


.

Note thatFn,r,p is intersecting because any two of its sets intersect as they both contain lines of a projective plane, andFn,r,p

is maximal because if G ∈


[n]
r


does not contain any line of P; then by Theorem 2.4 and r <

3(p+1)
2 we know that there

exists a line l in P such that l ∩ G = ∅ and this line can be extended to a set l ⊂ Fl ∈


[n]
r


such that Fl ∩ G = ∅ holds. As
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every vertex is contained in p + 1 lines of P we have that d(x) = (p + 1)


n−p−1
r−p−1


+ p2


n−p−2
r−p−2


if x ∈ [p2 + p + 1]. Indeed,

either we pick one of the p + 1 lines of P containing x and add r − p − 1 other points, or we pick one of the p2 lines of P not
containing x and add x and r − p− 2 further points. Note that as r ≤ 2p, none of the sets can contain two lines and thus we
did not count any set F ∈ Fn,r,p twice.

Also for any y ∈ [p2 + p+ 2, n] we have d(y) = (p2 + p+ 1)


n−p−2
r−p−2


as we can pick any of the p2 + p+ 1 lines of P and

extend it by y and any r − p − 2 other points. Therefore we obtain

R(Fn,p,r) =

p2


n−p−2
r−p−2


+ (p + 1)


n−p−1
r−p−1


(p2 + p + 1)


n−p−2
r−p−2

 ≤ 1 +
1
p

·
n − p − 1
r − p − 1

≤
17
2

·
n
r2

where the last inequality follows from 2
3 r ≤ p ≤

4
5 r and n ≥ r2.

It remains to prove (iii). Consider the following general construction F ′

k,p,s ⊆


[n]
r


where 1 ≤ k is an odd integer, p is

a prime, 0 ≤ s ≤
p
2 and n = k(p2 + p + 1), r =

k+1
2 (p + 1) + s. For 1 ≤ i ≤ k let Pi be a projective plane of order p with

underlying set [(i − 1)(p2 + p + 1) + 1, i(p2 + p + 1)] and let us write

F ′

k,p,s =


F ∈


[n]
r


: F contains a line of Pi if i ∈ I for some I ∈


[k]
k+1
2


.

As any two lines of a projective plane intersect each other and so do any I, I ′ ∈


[k]
k+1
2


, the family F ′

k,p,s is intersecting.

To obtain the maximality of F ′

k,p,s we need to show that for any r-subset G ∉ F ′

k,p,s there exists an F ∈ F ′

k,p,s with
F ∩G = ∅. Let G ∉ F ′

k,p,s and let us write t = |{i : ∃ℓ ∈ Pi, ℓ ⊂ G}|, b = |{i : G∩Pi is a blocking set in Pi and @ℓ ∈ Pi, ℓ ⊂ G}|

and u = |{i : G ∩ Pi is not a blocking set in Pi}|. Since G ∉ F ′

k,p,s, we have t ≤ (k − 1)/2. By Theorem 2.4, we know that
whenever G∩ Pi is a blocking set, then |G∩ Pi| ≥ p+ 1 and if G∩ Pi does not contain any line of Pi, then |G∩ Pi| ≥

3
2 (p+ 1).

Therefore we must have

t · (p + 1) + b ·
3
2
(p + 1) ≤ r =

k + 1
2

(p + 1) + s.

Since s ≤
p
2 , it follows that t + b ≤

k−1
2 and thus u ≥

k+1
2 holds. Therefore we can pick lines ℓi1 , ℓi2 , . . . , ℓi(k+1)/2 of different

Pij ’s such that ℓij ∩ G = ∅. By the definition of F ′

k,p,s, every r-set containing all ℓij ’s belongs to F ′

k,p,s and therefore by adding
s elements not in G we can find a set F ∈ F ′

k,p,s with F ∩ G = ∅. This finishes the proof of the maximality of F ′

k,p,s. As the
construction is symmetric, all degrees are equal and therefore we obtain R(F ′

k,p,s) = 1.
Assume that we are given a sequence of integers r = r(n)with r = ω(n1/2). Let us pick a prime pwith p ∼

n
2r and an odd

integer k ∼
4r2
n . Then we can consider the family F ′

k,p,s with any 0 ≤ s ≤ p/2. Its vertex set has size k(p2 + p+ 1) = n′
∼ n

and by the monotonicity of r/n and r = ω(n1/2) we obtain that the sets of F ′

k,p,s have size k+1
2 (p + 1) + s = r ′

∼ r . �

3. Concluding remarks

As we mentioned in the Section 1, the bound of Theorem 1.1(i) cannot be greatly improved in general, as the following
example shows. If n = 2r , then a maximal intersecting family F contains one set from every pair of complement sets. Thus
the family F ∗

=


F ∈


[n]
r


: 1 ∉ F , F ≠ [r + 1, n]


∪ {[r]} is maximal intersecting and R(F ∗) = Θ

 n
r


= eΘ(n) holds

while r r = eΘ(n log n).
In Theorem 1.2(iii), we could show regular maximal intersecting families only for special values of n and r . There are

two ways to generalize our construction. First, one need not insist that all projective planes should be of the same order,
but for the maximality one still needs that they should be of the same asymptotic order (one will have to choose s a bit
more carefully). This will ruin the regularity, but for families F obtained this way, R(F ) = 1 + o(1) would still hold. The
other possibility is to add extra vertices that do not belong to∪Pi, like in the construction used for Theorem 1.2(iii). This will
enable us to obtain constructions for arbitrary values of n and r (provided n is large enough) but for these families F ′ we
will have R(F ′) = Θ


n
r2


.

It remains open whether one can construct maximal intersecting families with R-value 1 + o(1) for any r(n).
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