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Acute skeletalmuscle injury triggers an expansion of fibro/adipogenic progenitors (FAPs) and a transient stage of
fibrogenesis characterized by extracellular matrix deposition. While the perpetuation of such phase can lead to
permanent tissue scarring, the consequences of its suppression remain to be studied. Using amodel of acutemus-
cle damage we were able to determine that pharmacological inhibition of FAP expansion by Nilotinib, a tyrosine
kinase inhibitor with potent antifibrotic activity, exerts a detrimental effect on myogenesis during regeneration.
We found that Nilotinib inhibits the damage-induced expansion of satellite cells in vivo, but it does not affect in
vitro proliferation, suggesting a non cell-autonomous effect. Nilotinib impairs regenerative fibrogenesis by
preventing the injury-triggered expansion and differentiation of resident CD45−:CD31−:α7integrin−:Sca1+

mesenchymal FAPs. Our data support the notion that the expansion of FAPs and transient fibrogenesis observed
during regeneration play an important trophic role toward tissue-specific stem cells.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Acute muscle damage triggers the activation and expansion of
Pax7+ tissue-specific stem cells called satellite cells (myogenic progen-
itors, MPs). Satellite cell proliferation gives rise to a population of
CD31−:CD45−:Sca1−:α7 integrin+ myoblasts, that embark into a step-
wise process characterized by the sequential upregulation of myogenic
regulators such asMyoD, myogenin andMRF4 to eventually lead to dif-
ferentiation (Le Grand and Rudnicki, 2007). Upon differentiation,
CM, extracellular matrix; MP,
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myoblasts fuse and rebuild thedamagedmyofibers, regenerating the ar-
chitecture of the muscle.

Acute skeletal muscle damage also triggers the activation of a popu-
lation of CD45−:CD31−:α7− integrin:Sca1+ mesenchymal progenitors
that reside in the interstitial space betweenmuscle fibers. Based on their
ability to originate adipocytes and fibroblasts both in vivo and in vitro,
these cells have been named fibro/adipogenic progenitors (FAPs) (Joe
et al., 2010; Uezumi et al., 2010; Heredia et al., 2013). FAPs proliferate
early during the response to acute damage, and they transiently synthe-
size extracellularmatrix (ECM). Suchfibrogenic stage is brief and its end
is marked by both a decline in the number of FAPs and clearance of the
collagen deposited in the extracellular space (Joe et al., 2010; Uezumi et
al., 2010; Lemos et al., 2015). Recent data indicate that besides their
fibrogenic activity, FAPs support developmental (Mathew et al., 2011)
and regenerative myogenesis through the release of promyogenic cyto-
kines, including IL6 and IL10 (Joe et al., 2010; Lemos et al., 2012). In
order to confirm their relevance in muscle regeneration, experiments
involving genetic ablation of FAPs have been attempted, reporting
somewhat detrimental effects to the regenerative process (Murphy et
al., 2011). However, these studies have been somewhat limited by the
inability to fully ablate FAPs in skeletal muscle. An alternative strategy
is to pharmacologically inhibit FAP expansion following acute damage.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Tyrosine kinase inhibitors (TKIs) have been effectively used in the
treatment of themost common and progressive forms of humanfibrosis
(Rosenbloom and Jiménez, 2008; Beyer and Distler, 2013). Nilotinib
(Tasigna®, AMN107; Novartis), a second-generation TKI, has been ra-
tionally designed to overcome Imatinib resistance in Chronic Myeloid
Leukemia (Saglio et al., 2010) and is characterized by better bioavail-
ability, tolerability and lacks the toxic effects commonly seen with Ima-
tinib treatment, such as fluid retention, edema, and weight gain
(Kantarjian et al., 2006). Nilotinib showed amore potent antifibrotic ef-
fect than Imatinib in liver and lung fibrosis (Rhee et al., 2011; H. Liu et
al., 2011; Y. Liu et al., 2011; Shaker et al., 2011). Nilotinib simultaneously
targets PDGFR and TGFβ pathways, which explains its potent
antifibrotic effects. These data suggest that TKI, could be effectively
used as antifibrotic agents (Rokosz et al., 2008).

Taking advantage of the fact that both PDGFR –a tyrosine kinase
family member receptor- and TGFβ receptor drive FAP activity in
vitro and in vivo (Uezumi et al., 2011; Lemos et al., 2015), here we
used Nilotinib to pharmacologically block FAPs in the context of
skeletal muscle regeneration. Our results show that Nilotinib
reduces FAP proliferation and expansion, dampening transient
fibrogenesis during muscle regeneration, an effect that is associated
with a reduction of fibrogenic gene expression and collagen
deposition. We also show that this effect correlates with poor
regeneration after acute muscle damage, due to non-cell autono-
mous reduced myoblast expansion. These results suggest that
while tyrosine kinase inhibitor-based therapies could prove useful
to reduce excessive fibrosis associated with degenerative
pathologies, such therapies could also have a detrimental effect on
the overall regenerative capacity of healthy patients.

2. Materials and method

2.1. Animals

All mice were maintained in pathogen-free facility, and all
experiments were performed in accordance with University of
British Columbia Animal Care Committee regulations. C57BL/6 and
PDGFRα-H2B::EGFP were purchased from The Jackson Laboratory.
Col1a1*3.6-eGFP mice were a gift from D.W. Rowe (Center for
Regenerative Medicine and Skeletal Development, University of
Connecticut Health Center). Mice were treated by intraperitoneal
(i.p.) injection with vehicle (DMSO) or Nilotinib (20 mg/kg/day) in
DMSO (concentration 5 mg/ml). Muscle damage was induced by
intramuscular injection of 0.15 μg notexin (NTX) snake venom
(Latoxan), into the tibialis anterior muscle (TA).

2.2. Skeletal muscle cells preparation

TAmuscle was carefully dissected and gently torn with tissue forceps
until homogeneous. Collagenase type 2 (Sigma; 250 μl of 2.5 U/ml), in
10mMCaCl2, was added to each sample, and the preparation was placed
at 37 °C for 30 min. After washing, a second enzymatic digestion was
performed with Collagenase D (Roche Biochemicals; 1.5 U/ml) and
Dispase II (Roche Biochemicals; 2.4 U/ml), in a total volume of 250 μl
per each sample, at 37 °C for 60 min. Preparations were passed through
a 40-μm cell strainer (Becton Dickenson), and washed. Resulting single
cells were collected by centrifugation at 1600 rpm for 5 min.

2.3. Flow cytometry/FACS

Cell preparations were incubated with primary antibodies for
30 min at 4 °C in supplemented PBS containing 2 mM EDTA and 2%
FBS at ~3 × 107 cells/ml.We used the followingmonoclonal primary an-
tibodies: anti-CD31 (clones MEC13.3, Becton Dickenson, and 390,
Cedarlane Laboratories), anti-CD45 (clone 30-F11, Becton Dickenson),
anti-Sca-1 (clone D7, eBiosciences) and anti-α7 integrin (produced in-
house). Typical antibody dilutions used were: antiCD31, 1:100–400;
anti-CD45, 1:200–400, 1:200–400; anti-Sca-1, 1:2000–5000; anti-α7
integrin, 1:100–400. For all antibodies we performed fluorescence
minus one controls by staining with appropriate isotype antibodies.
Cells were stained Hoechst 33342 (2.5 μg/ml) and resuspended
at ~1 × 107 cells/ml immediately before sorting or analysis. Analysis
was performed on LSRII (Becton Dickenson) equippedwith three lasers.
Data were collected using Facs DIVA software. Biexponential analysis
was performed using FlowJo X (Treestar) software. Sorts were per-
formed on a FACS Vantage SE (Becton Dickenson) or FACS Aria (Becton
Dickenson), both equippedwith three lasers. Sorting gates were strictly
defined based on isotype control (fluorescence minus one) stains.

2.4. FAP cell culture

FAPs were FACS sorted from either wildtype or transgenic mice ex-
pressing EGFP under a collagen1a1 enhancer (Collagen1a1 3.6-EGFP)
and grown in high–glucose Dulbecco's modified eagle medium
(DMEM) (Invitrogen), supplemented with 10% FBS and 2.5 ng/ml
bFGF (Invitrogen) at density of 10.000 cell/well in a 48 well-plate. For
TGFβ treatment experiments, after 72 h in culture the cells were stimu-
lated with 1 ng/ml TGFβ (eBioscience) along with different concentra-
tions of Nilotinib (0.5, 1 and 3 mM). Cells were trypsinized and
resuspended in PBS containing 2 mM EDTA, 2% FBS and Hoechst
33342 (2.5 μg/ml). Col1-GFP levels in FAPs were evaluated by FACS
after 72 h of treatment.

2.5. Gene expression analysis

RNA isolation was performed using RNeasy mini kits (Qiagen) and
reverse transcription was performed using the Superscript Reverse
Transcriptase (Applied Biosystems). The cDNA was diluted ten times
in TE buffer and 5 μl was used in a reaction mix containing Droplet Dig-
ital PCR Supermix (Bio-Rad), 1. TaqMan assay and H2O. Droplets were
generated with a QX100 droplet generator (Bio-Rad), after mixing
20 μl of reaction mix and 70 μl of droplet generator oil (Bio-Rad). The
emulsified samples were loaded onto 96-well plates and endpoint
PCRs were performed in C1000 Touch thermal cycler (Bio-Rad) at the
following cycling conditions: 95 °C for 10 min, followed by 45 cycles
at 94 °C for 30 s and 60 °C for 1 min, followed by 98 °C for 10 min. The
droplets from each samplewere read through theQX100 droplet reader
(Bio-Rad). Resulting PCR-positive and PCR-negative droplets were
counted using QuantaSoft software (Bio-Rad). Expression levels were
normalized to hypoxanthine-guanine phosphoribosyltransferase
(HPRT). A similar approach was taken to assess the expression of
Tgfb1 and TNF in single cells. Briefly, singlemacrophageswere sorted di-
rectly into a 96-well plates containing 5.5 μl of lysis buffer (CellsDirect
Resuspension & Lysis Buffer, Life Technologies). After RNA isolation
and reverse transcription (High Capacity cDNA Reverse Transcription
Kit, Life Technologies), diluted cDNA was used for droplet generation,
endpoint PCRs, and droplet reading as discussed above. Resulting PCR-
positive and PCR-negative droplets were counted to calculate the abso-
lute number of transcripts per cell.

2.6. Isolation, culture and immunostaining of single myofibers

Singlemyofiberswere isolated and cultured ex vivo as previously de-
scribed (Collins and Zammit, 2009). Briefly, whole extensor digitorum
longus muscles from 6 to 8 week old C57BL6 mice were removed and
digested in 0.025% collagenase I for 1 h 45min at 37 °C. Liberated single
myofibers and their associated satellite cells were then maintained in
myofiber media (DMEM, 20% v/v FBS and 1% v/v chicken embryo ex-
tract, 1% v/v pren-strep) for up to 72 h. For immunostaining, single
myofibers were fixed in 4% paraformaldehyde (PFA) for 10 min and
then permeabilized with 0.5% v/v Triton X-100 in PBS for 6 min. Fibers
were incubated in blocking buffer (10% v/v goat serum and 10% v/v
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horse serum in PBS) for 1 h and then stained with primary antibodies
overnight at 4 °C with gentle rocking. Primary antibodies consisted of
mouse anti-MyoD (BD Bioscience, 5.8 A) and mouse anti-MyoG
(DSHB, F5D). The next day, myofibers were washed 3 times in 0.025%
Tween-20 in PBS and then incubated in species specificfluorescent-con-
jugated secondary antibodies for 1 h before being mounted with
Vectashield (Vector Laboratories, USA) mounting medium. Quantifica-
tion of MP numbers and percentages of MyoG+ MPs was performed
by manual counting of MP clusters (colonies of N3 cells positioned
above the basal lamina on single myofibers) on a minimum of 20 fibers
per replicate.

2.7. FAP-single fiber co-culture experiment

FAPswere FACs sorted (as above) from TAs of mice 3 days following
NTX injury, seeded into 24well plates at low (5000 cells/well), medium
(20,000 cells/well) and high (50,000 cells/well) density and cultured as
described above. Forty-eight hours after isolation, media was replaced
with DMEM supplemented with 0.5% (v/v) FBS, 0.5% (v/v) chicken em-
bryo extract and freshly isolated EDLmyofibers added to the FAPs using
a co-culture transwell system (24well, 1 μmpore size). After 72 h of co-
culture, myofibers were fixed in 4% PFA and processed for immunohis-
tochemical analysis.

2.8. EdU (5-ethynyl-2′-deoxyuridine)-labelling studies

For in vivo studies, EdU was administered by i.p. injection (1 mg/
mouse/day) starting the day after damage. For flow cytometric analysis,
cells were stained for surface markers as indicated. After the last post-
stainingwash, each sample was resuspended in 1% BSA PBS, transferred
to U-bottom 96-well plates. Samples were fixed in 4% PFA for 25min in
the dark, centrifuged 5 min at 1800 rpm, membranes were perme-
abilized in 0.2% saponin for 15min in the dark and, after 5min centrifu-
gation at 1800 rpm, incubated in dark with reaction mix, prepared
under kit indication Click-iT® EdUHCS Assays (Invitrogen). Afterwash-
ing with 1% BSA PBS, each sample was resuspended in FACS buffer.

2.9. Histology and imaging

Before tissue collection, animals were perfused transcardially with
20 ml PBS/2 mM EDTA, followed by 20 ml 4% PFA. Tissues were proc-
essed for cryosectioning or paraffin-embedding using standard
methods. Sections of muscle tissues were stained with hematoxylin
and eosin (H&E), and images were acquired using a bright field micro-
scope (Axioplan2, Carl Zeiss Microimaging), equipped with a charge-
coupled device camera (Retiga Ex, Axioplan2; qImaging), operated via
OpenLab4 software (Improvision). Images were captured using the
shortest possible exposure time, and manipulation of brightness and
contrast, coloring adjustments and assembly into figures were per-
formed using ImageJ, OpenLab4 (Improvision), Illustrator CS5 (Adobe)
and Photoshop CS5 (Adobe).

2.10. Statistical analysis

Statistical tests, including one-wayANOVA and Student's t-testwere
performed using Prism 6 (GraphPad Software). A probability of b5%
(p ≤ 0.05) or 1% (p ≤ 0.01) is considered statistically significant. Error
bars in all figures represent the mean ± standard deviation (SD).

3. Results

3.1. Nilotinib inhibits acute damage-triggered FAP proliferation

Following acute damage, FAPs proliferate and the population ex-
pands for a period of 72–96 h (Joe et al., 2010). Since FAPs constitute
the major cell population producing extracelluar matrix in the skeletal
muscle (Uezumi et al., 2011), we decided to study the effect of Nilotinib
on the fibrogenic activity of FAPs during regeneration. We first investi-
gated the effect of Nilotinib on FAP expansion. TAs were collected at
D0 (undamaged) and D4 (4 days) after damage and FAP proliferation
was analyzed by incorporation of EdU -a nucleotide analog- by flow cy-
tometry. Nilotinib delivery between D0 and D3 post-damage signifi-
cantly reduced the percentage of FAPs that incorporated EdU (Fig. 1A)
as well as a significantly reduced FAP numbers (Fig. 1B), providing evi-
dence that this compound inhibits FAP proliferation following acute
damage. Next we performed immunohistological analysis of muscle
sections from a mouse strain in which GFP expression identifies FAPs
(PDGFRa::H2B-EGFP) (Joe et al., 2010; Uezumi et al., 2010), 4 days fol-
lowing NTX damage. This analysis confirmed that Nilotinib blunted
the accumulation of GFP+ FAPs in skeletal muscle (Fig. 1C). Thus,
Nilotinib treatment reduces the capacity of FAPs to expand following
muscle injury.

3.2. Nilotinib prevents transient ECM deposition during muscle
regeneration

To assess the effects of Nilotinib on damage-induced fibrogenesiswe
took advantage of the Col1a1-EGFP transgenicmouse, inwhich collagen
1a1 expression can be traced by the intracellular presence of GFP. Anal-
ysis of GFP expression after damage indicated that FAPs actively synthe-
size extracellular matrix throughout the regenerative process, reaching
a peak on D7 post-damage (Fig. 2A). In order to test the effect of
Nilotinib on the fibrogenic activity of FAPs, we assessed collagen gene
expression in the TAs of mice that received Nilotinib daily between D0
and D4 post-damage. Consistent with a blockade of proliferation,
Nilotinib treatment resulted in a significant reduction of both the fre-
quency of Col1a1-expressing FAPs as well as the total number of FAPs
per TA on D7 post-damage (Fig. 2B). Histological analysis confirmed
that Nilotinib treatment reduced the number of Col1a1-GFP expressing
cells at D7 after damage, and revealed a concomitant reduction in the
deposition of COL1A1 protein, indicating that the drug reduces extracel-
lular matrix deposition (Fig. 2C).

Nilotinib is known to act by inhibiting PDGFRα, while its effects on
the TGFβ pathway are less characterized. To confirm that Nilotinib in-
hibits the pro-fibrogenic effect of TGFβ we purified GFP- FAPs from
TAs (D3 post NTX) of Col1a1-EGFP mice and stimulated differentiation
by addition of 1 ng/ml TGFβ. Nilotinib inhibited both Col1a1-driven
GFP and fibrogenic gene expression induced by TGFβ (Fig. 2D, E). Thus
Nilotinib acts directly on FAPs to inhibit their fibrogenic differentiation.

Altogether, our data indicate that Nilotinib blocks transient
fibrogenesis by blocking both FAP proliferation and extracellularmatrix
production.

3.3. Nilotinib indirectly inhibits myoblast expansion

Next we tested the effects of pharmacological blockage of FAP ex-
pansion and fibrogenesis on muscle regeneration in vivo. Mice received
a daily intraperitoneal injection of Nilotinib, from the day prior through
D4 after damage, and muscle regeneration was assessed histologically
on days 14 and 21 post-damage. Nilotinib treatment lead to a significant
reduction in myofiber cross sectional area and an accumulation of small
centrally nucleated myofibers after 14 and 21 days following damage –
indicative of impaired/delayed muscle regeneration (Fig. 3). Myofiber
regeneration beginswith satellite cells becoming activated and prolifer-
ating to generate a pool ofmyoblasts, which goes on to differentiate and
fuse to repair and replace damagedmyofibers.We investigatedwhether
Nilotinib affectsMP activation/expansion during regeneration. Quantifi-
cation of MP number on D4 post-NTX damage revealed a significant de-
crease in Nilotinib treated animals (Fig. 4A), suggesting a role for the
drug in influencingMP proliferation. Such an effect could be due to a di-
rect effect onMPs, or could be the result of dampening FAP proliferation
and thus reducing the trophic support they provide to myoblasts. To
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distinguish between these two possibilities we cultured isolated
myofibers and their associated satellite cells for 48 h in the presence
or absence of Nilotinib. In contrast with our in vivo results, Nilotinib
had no significant effect on EdU incorporation in satellite cells, indicat-
ing that a direct effect of Nilotinib on MP proliferation is unlikely (Fig.
4B). Next we purified proliferating FAPs from TAs three days after

Image of Fig. 1
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damage, plated them at different densities and co-cultured them with
myofiber-associated satellite cells for 72 h. The results show a clear
dose-dependent increase in the number of MPs (Fig. 4C) and a decrease
in the percentage of satellite cells expressing Myogenin (MyoG) (Fig.
4D), suggesting that FAPs act to expandMPs. Confirming the supportive
effect of FAPs, we observed a dose-dependent effect on MP clonal effi-
ciency, measured as the frequency of myofibers containing satellite
cell colonies (Fig. 4E). This result indicated a trophic effect of FAPs on
MPs. Lastly, we tested whether Nilotinib could inhibit the response of
satellite cells to FAP-derived trophic factors. To that end, we assessed
the effect of Nilotinib onmyofiber-associated satellite cells co-cultivated
with FAPs. Consistent with the previous result, we found that the num-
ber of MPs increased significantly in the presence of FAPs (Fig. 4F), and
importantly, Nilotinib had no effect on such increase (Fig. 4F), indicating
that this compound does not affect MP proliferation by blocking their
response to FAP secreted factors.

Taken together these results confirm that FAPs support the expan-
sion of MPs, and suggest that Nilotinib does not impair muscle regener-
ation by acting directly on the ability of satellite cells to respond to
trophic signals, but rather by reducing the trophic support provided
by FAPs.
4. Discussion

Here we took advantage of a well-characterized model of skeletal
muscle damage to study the effect of FAP ablation on skeletalmuscle re-
generation in vivo. Our results show that Nilotinib can effectively pre-
vent transient ECM deposition following acute muscle damage, by
inhibiting FAP activity. This was first evident in the Col1a13.6-GFP
mouse, in whichNilotinib treatment resulted in a large reduction of col-
lagen synthesis following acute damage aswell as reduced FAP number.
The direct cell autonomous effect of Nilotinib on TGFβ-induced synthe-
sis of Col1a1 in FAPswas further tested in vitro, confirming that Nilotinib
inhibits TGFβ signaling in those cells. Together these data strengthen
our understanding of the cellular mechanisms by which Nilotinib and
tyrosine-kinase inhibitors exert their anti fibrotic effect in fibrogenesis
in vivo targeting the expansion and ECM deposition of fibrogenic pro-
genitors. It is important tomention, however, that Nilotinib potently in-
hibits other tyrosine kinases, including the ABL kinases, BCR-ABL, KIT
and DDR1 (Hantschel et al., 2008), which play important roles in mito-
sis, cell growth, survival and differentiation. In this study we have not
assessed the effect of Nilotinib on those kinases, and therefore we can-
not rule out the possibility that their inhibition contributes to the block-
age of FAP activity.

In addition to their role in ECM production, FAPs have been sug-
gested to exert a ‘promyogenic’ effect on myogenic progenitors (Joe et
al., 2010; Mathew et al., 2011), however the precise details of this cellu-
lar relationship remain vague. Our co-culture experiments with FAPs
and myofiber associated MPs –i.e. quiescent MPs– indicated that FAPs
act to promote activation/proliferation ofMPs. During this stage, we ob-
served that MPs do not differentiate, a finding that is consistent with
those cells undergoing cell cycle. These results are consistent with pre-
vious attempts to ablate a phenotypically identical population of Tcf4+
fibroblasts in skeletal muscle –which lead to premature differentiation
and decreased numbers of Pax7+ and MyoD+ MPs following damage
(Murphy et al., 2011).

The positive effect of FAPs on satellite cell proliferation seems to con-
flict with previous data showing that FAPs promote MP differentiation
without affecting proliferation (Joe et al., 2010). The two seemingly dis-
parate results may stem from the different experimental settings. In Joe
Fig. 1. Nilotinib inhibits fibroadipogenic progenitor proliferation following acute skelet
progenitor proliferation at 0, and 4 days following NTX injury with/without Nilotinib adm
quantification of fibroadipogenic progenitor population as a percentage of the whole sample
mice in which FAPs can be traced by nuclear GFP expression, at 0, and 4 days following NTX in
et al. (2010) the FAPs were co-cultured with MPs isolated from post-
damage day 3 TAs and expanded on plastic substrates. This means
that the progenitor satellite cells had already gone through the stage
of activation and proliferation, and therefore the cells used were myo-
blasts going into the early stages of differentiation. In that scenario,
FAPs were shown to support differentiation. In the current study, we
used quiescent satellite cells associated with myofibers. In this setting,
we observed that FAPs favor satellite cell proliferation over differentia-
tion. It is important to consider that in this more “intact” experimental
setting, the satellite cells have not been exposed to the full plethora of
damage-associated signals and therefore, may be less prone to move
forward into the differentiation stages, compared to the MPs used pre-
viously (Joe et al., 2010).

Our data do not rule out the possibility that Nilotinib is influencing
additional cell types, such as immune cells, or blocking satellite cell au-
tonomous RTK signaling, induced by damage-associated signals and in-
flammatory cytokines in vivo, our in vitro data provide evidence for a
contribution of FAPs to satellite cell proliferation. Altogether, the results
indicate that a FAP-MP collaborative axis is important for effectivemus-
cle regeneration and provide further characterization of this cellular re-
lationship in the setting of tissue regeneration.

The precise paracrine signals responsible for the trophic effects of
FAPs remain unclear, although IL10 and IL6 present obvious candidates
as they are both highly expressed in FAPs and have established roles in
regulating satellite cells and muscle regeneration (Joe et al., 2010;
Lemos et al., 2012; Zhang et al., 2013; Serrano et al., 2008; Strle et al.,
2007; Deng et al., 2012; Judson et al., 2013). In vivo, it is likely that tem-
poral alterations in the ECM environment coordinated by FAP matrix
deposition may also play a role in influencingMP behavior. This regula-
tion could happen at the level of modifications in substrate elasticity/
stiffness for myoblasts (Gilbert et al., 2010) or changes in signaling
events, through interactions between the remodeling ECM and cell ad-
hesionmolecules such as integrins (H. Liu et al., 2011; Y. Liu et al., 2011;
Wilschut et al., 2011; Bröhl et al., 2012), both of which are important
regulators of MPs and muscle regeneration. Functional studies on
regenerating muscle based on macrophage depletion have been
shown to lead to a reduction of the diameter of regenerating myofibers
(Arnold et al., 2007). In conditions ofmousemodel of chronicmuscle in-
jury we previously demonstrated that, TGF-β-blockade by Nilotinib re-
stores FAP apoptosis and consequently reduces excess of matrix
deposition that lead to fibrosis (Lemos et al., 2015). Here, in condition
of acute muscle injury, we demonstrated that Nilotinib inhibits FAP ex-
pansion, impairing muscle reparative process. Suggesting that the cell-
cell communications as well as the composition of the ECM can influ-
ence the capacity of the skeletal muscle to regenerate properly.

5. Conclusion

While our in vivo data show that Nilotinib blocks fibrogenesis in the
context of skeletal muscle regeneration, our in vitromodel provides ev-
idence that mesenchymal progenitor cells prompt the expansion of tis-
sue-specific stem cells, strengthening the notion that fibrogenic cell
activity following acute damage is important for effective regeneration.
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Image of Fig. 2


Fig. 3. Nilotinib treatment negatively affects skeletalmuscle regeneration.A) Representative sections ofWT TAmuscles at 14, and 21 days followingNTX injurywith/without Nilotinib
administration. B) Frequency distribution for defined ranges of fiber cross-sectional area in WT TAs at 14, and 21 days following NTX injury with/without Nilotinib administration.
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Fig. 4. Nilotinib impairs FAP-inducedMP expansion. A) Representative FACs plots and quantification of total myogenic progenitor numbers at 0, and 4 days following NTX injury with/
withoutNilonitib administration (N=3, ANOVA: **p b 0.01, ***p b 0.001mean±S.D.). B)MPs associatedwith EDLmyofiberswere cultured ex vivo in the presence of 0 μM(control), 1 μM
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mean ± S.D.).

168 D. Fiore et al. / Stem Cell Research 17 (2016) 161–169
D.R.L. conceived, designed and carried out experiments, directed the
project and wrote the manuscript.

Acknowledgements

We thank The Biomedical Research Centre Animal Facility and Core
Staff aswell as theUniversity of British Columbia flow cytometry facility
staff for their technical assistance.
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2016.06.007.

References

Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., Gherardi, R.K.,
Chazaud, B., 2007. Inflammatory monocytes recruited after skeletal muscle injury

doi:10.1016/j.scr.2016.06.007
doi:10.1016/j.scr.2016.06.007
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0005
Image of Fig. 4


169D. Fiore et al. / Stem Cell Research 17 (2016) 161–169
switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204
(5), 1057–1069 (May 14).

Beyer, C., Distler, J.H., 2013. Tyrosine kinase signaling in fibrotic disorders: translation of
basic research to human disease. Biochim. Biophys. Acta 1832 (7), 897–904. http://
dx.doi.org/10.1016/j.bbadis.2012.06.008 (Jul).

Bröhl, D., Vasyutina, E., Czajkowski, M.T., Griger, J., Rassek, C., Rahn, H.P., Purfürst, B.,
Wende, H., Birchmeier, C., 2012. Colonization of the satellite cell niche by skeletal
muscle progenitor cells depends on Notch signals. Dev. Cell 23 (3), 469–481. http://
dx.doi.org/10.1016/j.devcel.2012.07.014 (Sep, 11).

Collins, C.A., Zammit, P.S., 2009. Isolation and grafting of single muscle fibres. Methods
Mol. Biol. 482, 319–330. http://dx.doi.org/10.1007/978-1-59745-060-7_20.

Deng, B., Wehling-Henricks, M., Villalta, S.A., Wang, Y., Tidball, J.G., 2012. Interleukin-10
triggers changes in macrophage phenotype that promote muscle growth and regen-
eration. J. Immunol. 189 (7), 3669–3680 (Oct 1).

Gilbert, P.M., Havenstrite, K.L., Magnusson, K.E., Sacco, A., Leonardi, N.A., Kraft, P., Nguyen,
N.K., Thrun, S., Lutolf, M.P., Blau, H.M., 2010. Substrate elasticity regulates skeletal
muscle stem cell self-renewal in culture. Science 329 (5995), 1078–1081. http://dx.
doi.org/10.1126/science.1191035 (Aug 27).

Hantschel, O., Rix, U., Superti-Furga, G., 2008. Target spectrum of the BCR-ABL inhibitors
imatinib, nilotinib and desatinib. Leuk. Lymphoma 49, 615–619.

Heredia, J.E., Mukundan, L., Chen, F.M., Mueller, A.A., Deo, R.C., Locksley, R.M., Rando, T.A.,
Chawla, A., 2013. Type 2 innate signals stimulate fibro/adipogenic progenitors to fa-
cilitate muscle regeneration. Cell 153, 376–388.

Joe, A.W., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M.A., 2010. Rossi FM
muscle injury activates resident fibro/adipogenic progenitors that facilitate
myogenesis. Nat. Cell Biol. 12 (2), 153–163. http://dx.doi.org/10.1038/ncb2015 (Feb).

Judson, R.N., Zhang, R.H., Rossi, F.M., 2013. Tissue-resident mesenchymal stem/progenitor
cells in skeletal muscle: collaborators or saboteurs? FEBS J. 280 (17), 4100–4108.
http://dx.doi.org/10.1111/febs.12370 (Sep).

Kantarjian, H., Giles, F., Wunderle, L., Bhalla, K., O'Brien, S., Wassmann, B., Tanaka, C.,
Manley, P., Rae, P., Mietlowski, W., Bochinski, K., Hochhaus, A., Griffin, J.D., Hoelzer,
D., Albitar, M., Dugan, M., Cortes, J., Alland, L., Ottmann, O.G., 2006. Nilotinib in ima-
tinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med. 354
(24), 2542–2551 (Jun 15).

Le Grand, F., Rudnicki, M.A., 2007. Skeletal muscle satellite cells and adult myogenesis.
Curr. Opin. Cell Biol. 19, 628–633.

Lemos, D.R., Paylor, B., Chang, C., Sampaio, A., Underhill, T.M., Rossi, F.M., 2012. Function-
ally convergentwhite adipogenic progenitors of different lineages participate in a dif-
fused system supporting tissue regeneration. Stem Cells 30 (6), 1152–1162. http://
dx.doi.org/10.1002/stem.1082 (Jun).

Lemos, D.R., Babaeijandaghi, F., Low, M., Chang, C.K., Lee, S.T., Fiore, D., Zhang, R.H.,
Natarajan, A., Nedospasov, S.A., Rossi, F.M., 2015. Nilotinib reduces muscle fibrosis
in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic
progenitors. Nat. Med. 21 (7), 786–794. http://dx.doi.org/10.1038/nm.3869 (Jul).

Liu, H., Niu, A., Chen, S.E., Li, Y.P., 2011a. Beta3-integrin mediates satellite cell differentia-
tion in regenerating mouse muscle. FASEB J. 25 (6), 1914–1921. http://dx.doi.org/10.
1096/fj.10-170449 (Jun).).

Liu, Y., Wang, Z., Kwong, S.Q., Lui, E.L., Friedman, S.L., Li, F.R., Lam, R.W., Zhang, G.C., Zhang,
H., Ye, T., 2011b. Inhibition of PDGF, TGF-β, and Abl signaling and reduction of liver
fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib.
J. Hepatol. 55 (3), 612–625. http://dx.doi.org/10.1016/j.jhep.2010.11.035 (Sep).
Mathew, S.J., Hansen, J.M., Merrell, A.J., Murphy, M.M., Lawson, J.A., Hutcheson, D.A.,
Hansen, M.S., Angus-Hill, M., Kardon, G., 2011. Connective tissue fibroblasts and
Tcf4 regulate myogenesis. Development 138 (2), 371–384. http://dx.doi.org/10.
1242/dev.057463 (Jan).

Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A., Kardon, G., 2011. Satellite cells,
connective tissue fibroblasts and their interactions are crucial for muscle regenera-
tion. Development 138 (17), 3625–3637. http://dx.doi.org/10.1242/dev.064162
(Sep).

Rhee, C.K., Lee, S.H., Yoon, H.K., Kim, S.C., Lee, S.Y., Kwon, S.S., Kim, Y.K., Kim, K.H., Kim, T.J.,
Kim, J.W., 2011. Effect of nilotinib on bleomycin-induced acute lung injury and pul-
monary fibrosis in mice. Respiration 82 (3), 273–287. http://dx.doi.org/10.1159/
000327719.

Rokosz, L.L., Beasley, J.R., Carroll, C.D., Lin, T., Zhao, J., Appell, K.C., et al., 2008. Kinase inhib-
itors as drugs for chronic inflammatory and immunological diseases: progress and
challenges. Expert Opin. Ther. Targets 12 (7), 883–903. http://dx.doi.org/10.1517/
14728222.12.7.883 (Jul).

Rosenbloom, J., Jiménez, S.A., 2008. Molecular ablation of transforming growth factor beta
signaling pathways by tyrosine kinase inhibition: the coming of a promising new era
in the treatment of tissue fibrosis. Arthritis Rheum. 58 (8), 2219–2224. http://dx.doi.
org/10.1002/art.23634 (Aug).

Saglio, G., Kim, D.W., Issaragrisil, S., le Coutre, P., Etienne, G., Lobo, C., Pasquini, R., Clark,
R.E., Hochhaus, A., Hughes, T.P., Gallagher, N., Hoenekopp, A., Dong, M., Haque, A.,
Larson, R.A., Kantarjian, H.M., 2010. ENESTnd Investigators. Nilotinib versus imatinib
for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 362 (24), 2251–2259.
http://dx.doi.org/10.1056/NEJMoa0912614 (Jun 17).

Serrano, A.L., Baeza-Raja, B., Perdiguero, E., Jardí, M., Muñoz-Cánoves, P., 2008. Interleu-
kin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy.
Cell Metab. 7 (1), 33–44. http://dx.doi.org/10.1016/j.cmet.2007.11.011 (Jan).

Shaker, M.E., Zalata, K.R., Mehal, W.Z., Shiha, G.E., Ibrahim, T.M., 2011. Comparison of ima-
tinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepat-
ic oxidative stress, injury and fibrosis. Toxicol. Appl. Pharmacol. 252, 165–175.

Strle, K., McCusker, R.H., Tran, L., King, A., Johnson, R.W., Freund, G.G., Dantzer, R., Kelley,
K.W., 2007. Novel activity of an anti-inflammatory cytokine: IL-10 prevents
TNFalpha-induced resistance to IGF-I in myoblasts. J. Neuroimmunol. 188 (1–2),
48–55 (Aug).

Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., Tsuchida, K., 2010. Mesenchymal pro-
genitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal
muscle. Nat. Cell Biol. 12 (2), 143–152. http://dx.doi.org/10.1038/ncb2014 (Feb).

Uezumi, A., Ito, T., Morikawa, D., Shimizu, N., Yoneda, T., Segawa, M., Yamaguchi, M.,
Ogawa, R., Matev, M.M., Miyagoe-Suzuki, Y., Takeda, S., Tsujikawa, K., Tsuchida, K.,
Yamamoto, H., Fukada, S., 2011. Fibrosis and adipogenesis originate from a common
mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124 (Pt 21), 3654–3664.
http://dx.doi.org/10.1242/jcs.086629 (Nov 1).

Wilschut, K.J., van Tol, H.T., Arkesteijn, G.J., Haagsman, H.P., Roelen, B.A., 2011. Alpha 6
integrin is important for myogenic stem cell differentiation. Stem Cell Res. 7 (2),
112–123. http://dx.doi.org/10.1016/j.scr.2011.05.001 (Sep).

Zhang, C., Li, Y., Wu, Y., Wang, L., Wang, X., Du, J., 2013. Interleukin-6/signal transducer
and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltra-
tion and myoblast proliferation during muscle regeneration. J. Biol. Chem. 288 (3),
1489–1499. http://dx.doi.org/10.1074/jbc.M112.419788 (Jan 18).

http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0005
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0005
http://dx.doi.org/10.1016/j.bbadis.2012.06.008
http://dx.doi.org/10.1016/j.devcel.2012.07.014
http://dx.doi.org/10.1007/978-1-59745-060-7_20
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0035
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0035
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0035
http://dx.doi.org/10.1126/science.1191035
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0045
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0045
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0050
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0050
http://dx.doi.org/10.1038/ncb2015
http://dx.doi.org/10.1111/febs.12370
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0080
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0080
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0080
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0085
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0085
http://dx.doi.org/10.1002/stem.1082
http://dx.doi.org/10.1038/nm.3869
http://dx.doi.org/10.1096/fj.10-170449
http://dx.doi.org/10.1096/fj.10-170449
http://dx.doi.org/10.1016/j.jhep.2010.11.035 (Sep)
http://dx.doi.org/10.1242/dev.057463
http://dx.doi.org/10.1242/dev.057463
http://dx.doi.org/10.1242/dev.064162
http://dx.doi.org/10.1159/000327719
http://dx.doi.org/10.1159/000327719
http://dx.doi.org/10.1517/14728222.12.7.883
http://dx.doi.org/10.1517/14728222.12.7.883
http://dx.doi.org/10.1002/art.23634
http://dx.doi.org/10.1056/NEJMoa0912614
http://dx.doi.org/10.1016/j.cmet.2007.11.011
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0155
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0155
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0155
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0160
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0160
http://refhub.elsevier.com/S1873-5061(16)30070-8/rf0160
http://dx.doi.org/10.1038/ncb2014
http://dx.doi.org/10.1242/jcs.086629
http://dx.doi.org/10.1016/j.scr.2011.05.001
http://dx.doi.org/10.1074/jbc.M112.419788

	Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associate...
	1. Introduction
	2. Materials and method
	2.1. Animals
	2.2. Skeletal muscle cells preparation
	2.3. Flow cytometry/FACS
	2.4. FAP cell culture
	2.5. Gene expression analysis
	2.6. Isolation, culture and immunostaining of single myofibers
	2.7. FAP-single fiber co-culture experiment
	2.8. EdU (5-ethynyl-2′-deoxyuridine)-labelling studies
	2.9. Histology and imaging
	2.10. Statistical analysis

	3. Results
	3.1. Nilotinib inhibits acute damage-triggered FAP proliferation
	3.2. Nilotinib prevents transient ECM deposition during muscle regeneration
	3.3. Nilotinib indirectly inhibits myoblast expansion

	4. Discussion
	5. Conclusion
	Disclosure of potential conflict of interest
	Author contributions
	Acknowledgements
	Appendix A. Supplementary data
	References


