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Abstract 

Numerous analytical methods are available to predict the stability of milling processes. Most of these methods base on the 
assumption, that the dynamics of the machine tool are time invariant. This assumption seems to be valid in many cases. 
However, in case of huge translational or rotatory axes movements or process-induced changes in the work piece’s mass and 
elasticity a time variant dynamic model might be needed. This paper presents a method to model the axis position dependent 
dynamics of a multi-axis milling machine. According to this method, the modal parameters of the machine tool are 
predetermined in different discrete axis positions. An interpolation strategy allows calculating the modal parameters in arbitrary 
resolution along arbitrary tool paths. Here, an exemplary 2.5-dimensional milling process serves as an example. The 
conventional step-by-step time domain simulation procedure is complemented by the modal interpolation strategy to account for 
changing machine dynamics. The effect of changing dynamics on the process is determined and a comparison to a cutting test is 
performed. 

© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Vibrations during machining can have different reasons. One 
of the reasons is the regenerative effect that can cause 
excessive chatter vibrations [1]. This kind of vibration has 
already been described by Tlusty, Tobias and Opitz [2, 3, 4]. 
They have introduced the so called stability chart that 
separates all possible combinations of revolution speed and 
depth of cut into stable and instable combinations. In the 
recent decades research has focused on the development of 
algorithms to efficiently calculate such stability charts for 
turning and milling processes. Altintas and Budak [5] have 
presented the so-called zero order approximation, where the 
time-periodic unperturbed milling force is averaged out and 
the stability chart is efficiently approximated in the frequency 
domain. This method is particularly useful for modelling high 
immersion milling processes. For low immersion milling with 
only few teeth in cut Merdol and Altintas [6] presented the 
multi frequency solution which was later extended by 

Bachrathy [7] to cope with more complex tool geometries. 
Besides the methods in frequency domain several time 
domain approaches are available. In time domain, the 
vibrational perturbation of the cutting process can be 
described by a system of delay differential equations (DDE). 
These DDE can be solved approximately with help of 
discretization techniques. Bayly and his colleagues have 
presented the temporal finite element method [8]. For each 
temporal element they parameterize polynomial functions to 
approximate the vibration of the tool during the cut. Insperger 
and Stépán have introduced the semi-discretization method 
[9]. According to this method the delay term is kept constant 
for a short time. For this small time the resulting ordinary 
differential equation (ODE) is solved under the restriction, 
that its solution is compatible to the solution of the preceding 
and subsequent ODEs. Besides solving the DDEs 
approximately, a numerical step-by-step time-domain 
approach is possible. For each time step the force acting on 
the tool and work piece is calculated based on the present 
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cutter-work piece engagement. The deflection response of the 
machine structure to this force is determined. This deflection 
influences the engagement and thus the force changes. The 
new force is used to repeat the calculations in the next time 
step. This step-by-step approach has been adopted by several 
authors, e.g. [10, 11, 12]. 
The abovementioned research works are announced here to 
represent the large amount of work carried out on modelling 
regenerative chatter in cutting processes. Most of the 
documented models are built for time invariant structural 
dynamics. This approximation seems to be valid in many 
cases. However, the dynamic properties of machine tool 
structures can vary for various reasons. Tool and work piece 
exchanges alter the dynamic system. Moreover the removal of 
material from the work piece can have a noticeable effect. As 
soon as a machine tool undergoes excessive axis movements 
or synchronous movements of several axes, the changing 
stiffness and mass distributions lead to changing dynamics 
which might influence the process vibrations. 
According to [13], modal parameters can be interpolated to 
describe the dynamics of a work piece, whose dynamic 
properties change remarkably, when material is removed. Law 
and his colleagues [14] set up a reduced three axis milling 
machine model that can be moved to different positions. 
Based on this model Frequency Response Functions (FRFs) 
are determined for different axes positions and are fed to 
frequency domain stability simulations. Moreover [15] has 
developed a method to interpolate FRFs, that can represent 
crossing eigenmodes. 
As far as we now, time domain process simulations that 
account for changing dynamics due to axes movements have 
not been studied excessively so far. However, time domain 
approaches can handle more aspects (e.g. nonlinearities, 
changing cutter-work piece engagements) than frequency 
domain approaches. As a consequence, this paper deals with a 
method that allows incorporating the time variant structural 
dynamics in the step-by-step time domain simulation of 
process vibrations. A three axis milling machine serves as an 
application example and an exemplary 2.5-dimensional 
milling process is simulated. 

2. Time and positon variant dynamics of machine tool 

Changes of the machine axes positions can affect the dynamic 
properties. Here, a method to account for the resulting time 
variant machine dynamics is presented. The proposed method 
interpolates the modal parameters (poles and eigenvectors) 
between a set of spatial sampling points. The interpolation 
strategy can be used to calculate FRFs or time domain forced 
responses for complex tool paths accounting for changing 
dynamics. The following paragraph describes how FRFs have 
been determined experimentally for a three axis milling 
machine. The FRFs determined for different axis positions are 
compared. The subsequent paragraph presents the basic idea 
of modelling time or axis position dependent dynamics. The 
issue of changing mode orders is addressed as well as the 
extension of a time domain simulation approach of forced 
responses.

2.1. FRFs measured in different axis positions 

The dynamic compliance of a three axis milling machine is 
determined experimentally by measuring frequency response 
functions in two axis positions. In each of the axes positions 
the 3 by 3 FRF-matrix 

xx xy xz

yx yy yz

zx zy zz

G G G
G G G
G G G

H (1) 

is determined. This frequency dependent matrix describes the 
relative dynamic compliance between tool and work piece. 
Figure 1 shows a picture of the measurement setup that is 
used to determine Gxx. The force excitation is done with a 
hydraulic exciter that is positioned between a dummy tool and 
a dummy work piece. The generated force F = Fstat + Fdyn is 
measured as well as the accelerations on the work piece and 
the tool side ( wpx , toolx ). Moreover the relative displacement 

relx  between work piece and tool is directly captured by an 
inductive sensor. 

Figure 1: Measurement setup for determination of Gxx.

The sketch in Figure 2 shows the two different y-positions 
that have been considered. The absolute values of the direct 
FRFs Gxx, Gyy and Gzz are plotted with a linearly scaled 
ordinate for the two different y-positions. Naturally the 
dynamic compliance differs between the Cartesian directions, 
but noticeable differences appear between the tested 
y-positions as well. The filled areas give a good impression of 
the differences due to the y-position-variation. The 
differences in the static compliances are easy to explain by 
considering the changing leverages. The changes in the 
dynamic properties cannot be explained just as intuitively. 
Especially in the frequency range between 60 and 90 Hz the 
dynamic compliance in x-directions seems to be sensitive to 
modifications of the y-position. The z-direction seems to 
show a major sensitivity in the range between 120 and 
150 Hz. The dynamic properties between the discrete set of 
measured positions is unknown. Although the filled areas 
illustrate the range between the measured compliances, it is 
theoretically possible, that positions in between show 
compliances that exceed the filled areas. This issue can be 
resolved by considering the modal parameters instead of the 
frequency dependent compliance as is explained in the 
following paragraph. 
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Figure 2: Measurement of direct FRFs in different y-positions. 

2.2. Modelling time-variant dynamics 

Being only limited by the resolution of the translational or 
rotatory encoders a machine tool can move its axes to a vast 
amount of different axis positions. The determination of the 
dynamic properties in either all the possible axis positions or 
at least in all positions along the different tool paths would be 
expensive regarding the number of necessary calculations or 
measurements. Thus we propose to determine the modal 
properties (they can be used to synthesize the FRF-matrix) in 
several discrete positions and then use an interpolation 
procedure to predict the dynamic properties between these 
discrete points. The mentioned procedure was presented in 
[15, 16] and is used there to predict the position dependent 
dynamics of a single linear axis. Here, the method is adapted 
for use with multiple axis. Now the interpolation is performed 
along an arbitrary multi-dimensional path. Positions on this 
path can be selected by a single path parameter s. The basic 
idea is presented in Figure 3. The modal parameters are 
calculated for the first position (s=0). They are arranged 
according to the increasing eigenfrequencies. To account for a 
possible change of the mode order between subsequent tool 
path increments a MAC correlation (see [17], for example) 
between the current and the preceding eigenvector matrix is 
performed. As soon as such mode switches appear, this is 
indicated by two off diagonal entries in the MAC matrix with 
values close to one. The modal parameters of the current 
position are then reordered according to the switch indicated 
by the MAC correlation. This procedure is repeated for all the 
discrete sampling positions. 
Exemplary trends of eigenfrequencies over position s are 
plotted in the lower part of Figure 3 for the tracked and for the 
untracked case. The eigenfrequencies show several 
discontinuities that are related to the edge length of the finite 
elements in the direction of the axis movement. As soon as 
the modal parameters are tracked properly, a smoothing can 
be performed to minimize this discontinuities. Finally an 
interpolation can be performed to increase the number of 
sampling points along the tool path. Thus, in the time domain 
step-by-step simulation, a new set of modal parameters is 
available for every time step. The changing dynamics are 
modeled by means of digital filters. The digital filter approach 
for the calculation of forced responses is presented in [18] as a 

more accurate alternative to common finite-difference 
approaches. According to [18] the filter coefficients b0…p and 
a1…q of the recursive relationship 

0 1 1

1 1 2 2

...
...

n n n p n p

n n q n q

x b f b f b f
a x a x a x (2) 

can be efficiently calculated from modal parameters. Thus the 
deflection xn at the current time step n is calculated based on 
the deflections at q preceding time steps and the forces at the 
current and p preceding time steps. The number of preceding 
time steps involved (q and p) depend on the strategy (e.g. 
ramp invariant, step invariant or impulse invariant approach) 
that is used to determine the filter coefficients. As soon as 
multiple structural modes are considered, the deflections are 
calculated for each mode separately before they are summed. 
Moreover if multiple degrees of freedom (DOF) are 
considered, e.g. if multiple forces act on the structure, cross 
compliances are taken into account. For this purpose, filter 
coefficients are calculated for all the considered direct and 
cross compliances and the total deflection at a selected DOF 
results from the superposition of all responses at this DOF 
that result from the different force components. 

Figure 3: Principle of mode tracking along tool path positions s.

3. Application to machine tool 

3.1. Component models 

In this paper the method of modal interpolation is extended to 
cope with multi-axis machines. Although the modal 
parameters are only calculated in several discrete axis 
positions, a model reduction on component level is performed 
to speed up the calculations. The Dual Craig Bampton [19] 
method is adopted to reduce the number of component DOF. 
The original component DOF u are approximated by a limited 
number of free vibration modes  and residual flexibility 
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attachment modes r. The former are weighted by modal 
amplitudes , the latter are weighted by boundary forces gb
that act on the boundary DOF. Constraints can be put on the 
boundary forces to connect different components with each 
other or to prevent a component from floating, for example. 
As a formula the reduction writes 

DCB
r

b b b

u
R

g g g0 I
. (3) 

The huge number of displacement DOFs are replaced by a 
few modal amplitudes. This way, the system size is drastically 
reduced. The boundary forces (only a small number) remain 
accessible after the reduction. The reduction basis of the quite 
new Dual Craig Bampton Method [19] is physically more 
intuitive than the basis of the common Craig Bampton method 
[20]. The latter includes the constraint flexibility modes which 
are experimentally difficult to identify. Moreover, using the 
Dual Craig Bampton Method, modal damping can be 
introduced on component level to account for the inner 
damping of the component. For a welded steel component 
0.1 % modal damping led to a good correlation with 
experiments as documented in [21]. Although several parts of 
the machine tool considered are made of cast iron, the same 
damping ratio is chosen here, for now. After the reduction 
process mass, stiffness and damping matrices are available for 
each structural component. 
Figure 4 shows the finite element model of the machine 
column. All nodes that are meant to be connected to 
neighboring components are defined as boundary nodes. 
Consequently their DOF remain accessible even after the 
component reduction. The most expensive part of the 
component reduction is the calculation of the residual 
flexibility attachment modes, since an inversion of the full 
stiffness matrix is necessary. 

Figure 4: Modelling structural components and joints between components. 

3.2. Realization and updating of multi point constraints 

The different components are connected by multi-point 
constraints (MPCs) and three dimensional linear spring-
damper elements. This component connection is presented in 
Figure 4 for the case of a linear guide rail-guide shoe 
connection. A three dimensional spring-damper element 
connects two nodes, that are positioned on top of each other in 
the center of the rail-shoe connection (in the figure, a gap is 
present to show the spring-damper element). The motions of 
the nodes of the spring-damper element are determined as a 
weighted average of the movement of a set of slave nodes, 
which are subsets of the boundary nodes of the connected 

structural components. Here, the multi-point interpolation 
constraint formulation presented in [22] is implemented. The 
DOFs of the single node that is connected to the spring-
damper element are the slave DOFs (uS). Their motion is 
related to the motion of the master DOFs (uM) via 

M M S SR u R u 0 ,

S Su B u , M Mu B u .
(4) 

The relation between the DOFs is put in the matrices RM and 
RS, respectively. The DOFs affected by the MPC are selected 
from the total DOFs (u) with help of the Boolean matrices BS
and BM, respectively. Further details on the realization of 
constraints for finite element models can be found in [23], 
[24] or [25], for example. 
Regarding the machine tool assembly, the connection to the 
component to which the shoe is mounted remains unchanged, 
when the machine axis moves. The connection to the rail, by 
contrast, is updated, when the corresponding machine axis 
moves. For each time step or position increment, respectively, 
the boundary nodes in the node search volume are identified, 
and the MPC is updated. Consequently the subsets of 
boundary nodes that serve as master nodes in the MPC change 
depending on the machine axis positions. As the boundary 
nodes are all the nodes that will become MPC master nodes 
during the machine axis movements, the component reduction 
process has to be done only once for each structural 
component. 

Figure 5: Machine assembly. 

3.3. Machine assembly 

The studies presented her aim at the introduction of the 
method of modal interpolation for multiple machine axes. As 
a subject of study, a three axis milling machine as depicted in 
Figure 5 is chosen. This machine consists of different 
structural components, whose finite element models are 
reduced as explained above. Here, only the guide-shoe 
connections and foundation elements are taken into account. 
They are modeled as spring-damper elements. Ball-screw nuts 
and spindles, motors and drives are neglected, so far. All in 
all, the machine model is kept simple for the assessment of 
the simulation of the time-variant machine dynamics. For the 
assembly, the reduced component models and the linear 
spring-damper models are arranged in block diagonal form. 
The assembly is realized by relating the unassembled not 
unique DOFs to a unique set of DOFs: 

d dau Lu (5) 
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The DOFs ud and uda contain modal amplitudes, 
displacements and boundary forces. More details on the 
formulation of these vectors and the assembly matrix L can be 
found in [16] or [25]. 
The machine model considered here has not yet undergone a 
model updating process. The spring-damper elements of 
guides and foundation elements are parameterized with 
stiffness and damping coefficients that are known for other 
machines of similar dimensions. Consequently a perfect 
match between simulation and experiment cannot be expected 
at this point of research. The modal parameters are calculated 
as the solution of an eigenvalue problem. The eigenvalue 
problem is formulated in state-space form with the reduced 
mass, stiffness and damping matrices. Thus, complex 
eigenvectors and poles are the results of the eigenvalue 
problem. 

Figure 6: Steps for the time domain simulation of machine tool with time-
variant dynamics. 

3.4. Mode tracking along tool path 

The method of modal interpolation can easily be extended to 
multiple machine axis. The necessary steps are presented in 
Figure 6. First, a “modal grid” along the tool path is defined. 
Then, the machine model is moved to the first grid point and 
the MPC are formulated for the master nodes within the 
search volumes. The modal parameters for the current 
position are determined as the solution of an eigenvalue 
problem. If the last point of the modal grid is not reached, the 
machine moves to the next grid point and again, the modal 
parameters are computed. If the last grid point is handled a 
database with modal parameters for all the modal grid points 
along the tool path is available. Using this database, mode 
tracking is performed according to Figure 3. Next, a 
“temporal grid” is defined. The resolution of this grid depends 
on the feed rate of the considered process and the selected 
sampling frequency. If the feed rate is constant, the distance 
between the nodes of the temporal grid are equidistant along 
the tool path. The modal grid is refined according to the 
temporal grid. This refinement is done via a simple one 
dimensional (linear) interpolation. For every time step the 
digital filter coefficients are determined from the current set 
of modal parameters and the current deflections at the tool 
center point are determined according to Equation (2). 

4. Extension of process machine simulation and 
application to a reference process 

Most of the studies related to the simulation of regenerative 
chatter and machine tool vibrations neglect the changing 
machine dynamics. Figure 6 illustrates with a dashed line how 
the process machine simulation can be done by taking into 
account the changing machine dynamics. Based on the current 
cutter-work piece engagement, the current process forces are 
calculated and the current modal parameters are read from the 
database. The digital filter coefficients and the acting forces 
are updated and the deflections for the next time increment 
are simulated. 

4.1. Dynamics along exemplary tool path 

Here, a 2.5-dimensional reference process is defined to 
evaluate the method of modal interpolation for multiple axis 
movements. The work piece and the tool path are depicted in 
Figure 8. The movements of the y- and x-axis of the machine 
both cover approximately 280 mm. The generation of the 
depicted tool path is realized by a synchronous movement of 
slide and column. In the top of Figure 7 the absolute value of 
the residues Rxx are plotted over the eigenfrequency and the 
tool path position s. From this graph it can be seen, that major 
differences in the magnitudes of the residues occur for 
different positions on the tool path. The eigenfrequencies do 
not change as much, but still a few mode switches occur. 
According to the relationships 

, ,

1

n
xx k xx k

xx
k k k

R R
G

j p j p
, (6) 

definition of the
“modal grid“

computation of 
modal parameters

final grid point
reached?

movement to first grid
point

update of MPCs

mode tracking

movement to next
grid point

definition of the
“temporal grid“

refinement of the
“modal-grid“ considering

the “temporal grid“

synthesis of the
time response for one

increment using
digital filters

final increment
reached?

reading of modal 
parameters for
next increment

update of
process force

reading of CWE 
data for next

increment

update of
filter coefficients



513 C. Brecher et al.  /  Procedia CIRP   31  ( 2015 )  508 – 514 

, , ,
tool wp

xx k xx k xx kR R R ,

, , ,
tool tool tool
xx k x k x kR v v , , , ,

wp wp wp
xx k x k x kR v v ,

the relative FRF in x-direction between tool and work piece 
can be determined as a sum over n modes. The contribution of 
each mode depends on the residue Rxx,k and the pole pk. The 
residue results from summing the residues of tool and work 
piece side. Each of these residues is calculated as a product of 
eigenvector entries. Here the DOF at the TCP in x-direction 
are selected. It is assumed that the eigenvectors have been 
scaled to unity modal A, as described in [26], for example. 
Figure 7b shows the magnitude of Gxx along the tool path. 

Figure 7: a) Magnitude of residues Rxx and eigenfrequencies along tool path. 
b) Magnitude of Gxx along tool path. 

4.2. Simulation and measurement of in-process forces and 
accelerations 

The work piece features three holes, which lead to changes of 
the cutter work piece engagement. The entry and exit angles 
of the milling cutter with respect to the tool coordinate system 
are depicted on the right hand side of Figure 8. The theoretical 
cutting force on the work piece in x-direction is plotted in the 
bottom of Figure 8. This simulated force signal is determined 
based on the cutter-work piece engagement and a linear force 
model. Changes of chip thickness due to vibrations are not 
considered. It can be seen, that the force depends on the tool 
path positon s. If the cutter (four inserts, z = 4) is fully 
immersed, the simulation shows no periodic influence from 
the inserts entering and leaving the material. This periodic 
influence can clearly be seen if there is no full immersion, e.g. 
if the tool enters the material or it comes to intermittent cuts at 
holes in the material. 
A time domain milling process simulation is performed for 
the example process. Figure 9 presents the simulated 
deflections of the tool in x-direction. On the one hand the 
dynamic properties of the machine are kept constant. In this 
case the modal parameters are determined only once in the 
initial tool path position (s = 0). On the other hand the 

changing dynamics are considered. The machine vibrates in a 
similar fashion, but differences can clearly be seen. First of 
all, the static compliance changes along the tool path which 
leads to low frequency changes of the deflections. Moreover, 
the forced vibrations resulting from the intermittent cuts differ 
between the two considered cases. 
The differences in the simulated deflections motivate to 
consider the changing dynamics, when searching for stability 
limits as a small difference in the dynamic compliance might 
change the process stability state. 

Figure 8: Reference process and undisturbed cutting forces. 

Figure 9: Simulated tool x-deflection with constant and variant machine 
dynamics. 

In order to assess, how big the gap between simulation and 
experiment is, the reference process is conducted 
experimentally and the acceleration of the tool is measured in 
x-direction. This acceleration signal is high-pass filtered using 
a FIR filter with a cutoff frequency of 5 Hz and integrated 
twice using a IIR filter, according to [27]. The simulated x-
deflections from Figure 9 are also high-pass filtered. The 
three signals are compared in Figure 10. The overall 
amplitudes of the signals are comparable, but remarkable 
differences between measurement and simulation are obvious. 
In practice the four inserts seem to produce a remarkable 
varying cutting force, when there is full immersion, although 
they should not according to theory. At present it is not clear 
if these vibrations are due to geometric tolerances or a 
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feedback of the vibrations on the cutter work piece 
engagement, for example. 

Figure 10: Comparison of simulated and measured deflections along the tool 
path. 

5. Summary and outlook 

Much research has already been carried out to optimize the 
prediction of regenerative chatter vibrations and the 
construction of the well-known stability charts. In many cases 
the machine dynamics is represented in terms of modal 
parameters that are assumed to remain constant during the 
simulations. Theoretically this assumption is rarely true, as 
movements of machine axes mean changes of the dynamic 
properties. This paper presents the method of modal 
interpolation that allows accounting for the changing machine 
dynamics during time domain process simulations. The modal 
parameters are calculated for discrete sample points along the 
considered tool path. An interpolation refines the grid of 
modal parameters to the resolution that is needed for a step-
by-step time domain simulation. The extended simulation 
method is used to model a 2.5-dimensional milling process. 
The machine model used for the studies presented here has 
not been updated by comparison to measurements. 
Consequently the correlation between simulated and 
measured accelerations is low. Moreover, the sample process 
treated in Figure 10, does not show better correlation with 
measurement for the case where changing dynamics have 
been taken into account. Nevertheless, the presented method 
seems to be appropriate to model the changing dynamics and 
motivates further investigations. 
The machine model will be supplemented by models for the 
ball-screw spindles and drives. A model updating process will 
increase the quality the machine model’s quality. Several 
cutting tests will be performed to verify the new simulation 
model. Guidelines should be worked out giving advice 
whether to take into account changing dynamics or not. 
Moreover, the efficiency of the algorithms needs to be 
improved. 
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