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Abstract: Considerable effort on research in CO2 capture technologies has been directed towards steady state 

systems while less seems to have been done for the same systems in transient state. This work presents a dynamic 

model for CO2 absorption using aqueous mono-ethanolamine (MEA). Validation against experimental results both 

obtained at steady state and dynamic conditions is included. A parametric sensitivity study of the underlying model 

equations is carried out based alternative parameter correlations for the reaction rate constant. It is concluded that 

validated results for one specific pilot plant don’t necessarily apply to other plants of different sizes under other 

operational conditions. Furthermore, a parametric sensitivity study for the other parameters as well as for the rest of 

the CO2 capture process is also warranted.
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1. Introduction

Post-combustion CO2 capture using MEA is generally accepted as the most mature and documented technology. 

As such, it is widely regarded as some kind of standard against which other similar upcoming technologies are 

compared. Consequently, the quest to develop rigorous models appropriate for design and operation, in order to 

increase efficiency and reduce cost has naturally resulted in contributions of different parameter-correlations with 

varying degrees of complexity from various researchers. In a way, these parameter-correlations seem to be 

competing yet without comparison. The choice of which parameter to use in a particular model is largely subjective 

to the model-developer’s discretion, usually premised on a limited set of arguments. Even the commercial and 

popular software programs like ProTreat, Aspen HYSYS or gPROMS, just to mention a few, are as-a-matter-of-

factly based on one parameter or the other. Several works, where only the predicted results from such simulators 

have been compared and contrasted abound in literature. However, not much seem to have been done regarding 

comparative exploration of the resultant effects that arise from using different parametric models.
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Another important challenge related to modelling is the validation of the model. One thing is the lack of 

appropriate data in literature, especially obtained from dynamic tests. The other thing is lack of application on

large/full scale-facilities. In such cases, the usual approach is to compare the model with pilot-plant data and adjust 

the model parameters to make a proper fit. However, the model may not be valid for other plants operating at 

different conditions. 

While most efforts at present have focused on the development of steady state models, Kvamsdal et al. (2009)[1]

developed a dynamic absorber model (with appreciable rigorousness) to study problems inherent to transient 

operation, e.g. start-up, shut-down, load reduction, etc. The model was first validated against four different cases 

from an MEA campaign at the University of Texas at Austin (UT) in 2006. Unfortunately, only steady state data 

were available, but some of the model parameters were adjusted to fit: the steady state liquid phase temperature 

profile, the capture rate (%) and the rich loading. The gist of the present study is to validate this dynamic absorber 

model further and investigate the effect (on the general performance) of fitting different correlations of the same 

parameter. In essence, this could be construed as some kind of ‘sensitivity study’ based on parameter-correlations 

inputted from different literature sources. As an example, the effects of using four different correlations of the 

reaction rate coefficient compared against an appropriate steady state data-set (from the pilot plant at UT) as well as

against a dynamic data-set (from a pilot plant at NTNU/SINTEF) are shown in the present paper. 

2. Absorber Model 

A diagram illustrating the concept of an absorber column is 

shown in Figure 1. The liquid solvent and flue gas are in 

conventional counter flow. In this case, the packing material, 

which determines the specific absorption area is packed from Z=0 

to L. During operation, the packing material is assumed to be 

completely wetted by the liquid as it flows down the column, 

preferably at flow rates that maximize its contact surface area with 

the counter-flowing flue gas. In our case, plug flow is assumed 

since post-combustion CO2 capture is characterized by low gas 

velocities and low pressures: conditions under which chances for 

back-mixing and flooding are very low. The conceptual flows for a 

control volume are indicated; with the broken line representing the 

gas-liquid interface. 

The present model has been developed based on the following 

assumptions: axial differential mass and energy balances for both 

gas and liquid phases, linear pressure drop, ideal gas phase (owing 

to low pressure), mass and heat transport are based on the two film 

theory, no accumulation in gas and liquid films, MEA is the solvent 

(i.e. all thermodynamic issues are tailored accordingly), thermal 

equilibrium between the liquid and packing material, condensation of water vapour occurs at gas-liquid interface as

well as at the walls and that the effective contact area is equal to the specific area of the packing material. 

The dynamic model is described by Kvamsdal et al. 2009[1]. The model, which was originally implemented in 

gPROMS
1

has now been re-implemented in MATLAB
2

with a slight improvement of the approach described in

Astarita ([2]). The spatial discretization of the column is based on the orthogonal collocation method. An in-depth 

description of the orthogonal collocation method can be found in [3]. The resulting differential-algebraic equations 

are solved by the ode15s solver in MATLAB.

1 Process Systems Enterprise (PSE) Ltd
2 The MathWorks Inc.

Figure 1: Illustration of the absorber. dz is the height 

of the control volume.
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2.1. Reaction rate coefficient

The reaction-rate coefficient is generally described by an Arrhenius type of expression:

2 2, , ,0 exp A
r CO r CO

l

Ek k
RT

� ��
� � � 	


 �
(1)

Based on measurements, several values have been proposed for both the constant 
2, ,0r COk and the activation 

energy EA. Here, three different sets of values found in the literature have been compared to an adjustment based on 

the above mentioned measurements at the University of Texas at Austin (UT) ([4]).  The first is proposed by 

Versteeg et al. (1996) [5] and the second one is proposed by Hikita et al. (1977)[6]. Since both proposals were 

based on much lower concentration of MEA (less than 1 M), Freguia (2002)[7] adjusted the values from Hikita et al. 

[6] and Kvamsdal and Rochelle (2008) [4] adjusted the latter even further . The constants used in Equation 1, based 

on these 4 different references are given in Table 1.

Table 1: Constants used in Equation 1 based on different references.

Reference
, ,2 0r COk (m

3
/mol s) EA/R (K)

Versteeg et al (1996)[5] (Versteeg) 4.40·10
8

5400

Hikita et al. (1977)[6] (Hikita) 9.77·10
7

4955

Freguia (2002)[7] (Freguia) 3.20·10
3

1348

Kvamsdal and Rochelle (2008)[4]

(Kvamsdal)

2.95·10
3

1500

The reaction rate coefficient is included in the Enhancement factor:

(2)

Where kr,CO2 is the reaction rate coefficient for the reaction of CO2 with the aqueous MEA, C*
MEA is the liquid 

concentration of free MEA in the solution, DCO2 is the diffusivity of CO2 in the aqueous MEA solution, and kl
CO2 is 

the liquid mass transfer coefficient for CO2. The Enhancement factor is incorporated in the total mass transfer 

coefficient (for absorption of CO2) follows:

(3)
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HE,CO2 is the Henry’s Law constant and kg
CO2 is the gas mass transfer coefficient for CO2.

3. Model validation 

In the present work, the model has been validated against one steady state model implemented in an in-house

simulation tool (CO2SIM) as well as against both steady state and dynamic results obtained from an MEA campaign 

carried out at the VOCC (Validation Of Carbon Capture) rig, owned by NTNU and SINTEF.

3.1. Comparison with CO2SIM

CO2SIM is an in-house albeit professional 

(developed by SINTEF) software dedicated to 

research in post-combustion chemical CO2 capture 

processes at steady state. It uses a rigorous rate-

based approach for mass transfer. 

For convenience in comparing our model against 

CO2SIM, all the input data (for simulation) were 

taken from [1] (case 32) except for the packing 

material, which is at present limited to Mellapak 2X 

in CO2SIM. The discripancy in the corresponding 

input values means that the resulting temperature 

profiles are slightly different from those reported in 

[1]. As seen in Figure 2, there are some differences 

in the steady state temperature profiles and the 

capture level for the two models. The equilibrium 

model is based on the same approach in the two 

models so it is believed that the discrepancies are 

mainly related some simplifications in the energy 

balance of the dynamic model. All the same,

differences in liquid outlet temperature and the capture level are within an acceptable margin of less than 2 %.

3.2. Validation against Pilot Plant measurements

The NTNU and SINTEF laboratory has a pilot plant rig tailor-designed for the validation of CO2 capture (usually 

abbreviated VOCC by the users) both in steady state and dynamic mode. For the purpose of this study (CO2 

absorption), the stripper section was decoupled. Structured packing material (Mellapak 2X) was used. Temperature 

readings inside the column are assumed to approximate liquid temperature. The inlet liquid solution contained 30 

wt% MEA with a CO2 loading of 0.25 (i.e. mole fractions: x
2

co =0.0293, x
2

H O =0.8538, xMEA=0.1169). The gas 

temperature and pressure were fairly stable, thus assuming x
2

H O to be constant and that ideal gas laws applies, was 

considered good enough. The VOCC dimensions are summarized in Table 2.

Table 2 Dimensions of the VOCC rig.

Contact area Inside diameter Packing Height Hydraulic diameter Void fraction Liquid hold-

up

205 m
2
/m

3
0.5 m 5.4 m 0.019 0.98 0.07

Figure 2 Simulation at steady state - comparing the performance of the 

dynamic model against CO2SIM using input data from case 32 reported by 

Kvamsdal et al. (2009)[1] except for the packing material (Mellapak 2X).
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During the VOCC campaign, the plant was first run in steady state mode before shifting to the dynamic mode. 

That implies that both the liquid and gas flows were operated in a once-through fashion until stable output values 

and the associated profiles were achieved. In the dynamic mode, the rig was run under a set of two different 

conditions, dubbed case-A and case-B for reference. In case-A, the liquid and gas flows were changed as 

summarized in Table 3. The gas was recycled for case-A, so CO2 content at gas inlet was constantly decreasing with 

time. The rest of the gas was assumed to be saturated air.

Table 3: Summary of conditions and inlet/outlet values for Case-A

Time (min) Liquid flow rate (m
3
/h) Gas flow rate (m

3
/h) Average in- and out-let input values

0 1.56 1742 Tinlet , Toutlet (
o
C) 41, 40

2.5 1.98 1742 Inlet  xCO2,g 0.036

14 1.98 1090 Inlet   xH2O,g 0.085

21 1.98 1742 Inlet  xinerts,g 1-( xH2O,g + xCO2,g)

25 1.56 1742 pinlet , poutlet (kPa) 102.0,  101.4

An example of the steady state temperature profile for case 

A is shown in Figure 3. From these plots, it can be seen that 

the predictions (for both the liquid and gas phases) from our 

model compares very well with the rig measurements at 

steady state. 

On the other hand, the outcome of running the VOCC rig 

in the dynamic mode corresponding to the set of conditions 

for case-A as summarized in Table 3 are shown in Figure 4.

In this case, the discrepancy between the simulation and the 

measurements is much higher compared to the steady state 

mode. For the CO2 capture level, the margin is systematic and 

to the order of ������ Figure 4 (b) shows that the model 

generally over-predicts the rich loading, albeit, its values are 

acceptably within the neighbourhood of the VOCC 

measurements. 

Figure 4: Inlet conditions and flow rates for case-A (see Table 2): (a) shows the corresponding CO2 removed while (b) shows the corresponding 

loading.

4. Sensitivity Study based different parameter correlations for reaction rate

Figure 3: Plots showing the steady state gas/liquid temperature 

profile for case A predicted by the dynamic model versus VOCC 

1530 H.M. Kvamsdal et al. / Energy Procedia 4 (2011) 1526–1533



Kvamsdal et al. / Energy Procedia 00 (2010) 000–000

6

The governing equations (on which our dynamic model is based) are, as a matter of fact, subject to and affected 

(either weakly or strongly) by the parameters constituting them.  However, for each parameter, there exist in many 

cases, several alternatives. This implies that the existing models developed for CO2 absorption are based on rather 

arbitrary sets of these parameter correlations, the choice of which is largely dependent on the model-developer’s 

discretion and or experience.  Nevertheless, in this section we seek to explore the effects of inputting the different 

parameter correlations in the dynamic model and then compare the outcome.

The performance of using the four different correlations was first validated against case 32 from the UT 

campaign. Although there are some differences in the temperature profiles, the differences in other performance-

data are not significant as seen in Table 4.

Table 4: Sensitivity study based on parametric correlations (reaction rate coefficient) constituting model equations for CO2 absorption. Numbers 

in italics - corresponding % deviation (for loading & CO2 removal respectively) from UT measurements

* Correlation used in the dynamic model

The performance of the different parameters were also validated 

against case-B of the VOCC dynamic campaign, in which the flow 

rates (gas=2141 m
3
/h, liquid=1.98 m

3
/h) were kept constant while 

the CO2 content was changed as depicted in Figure 5. The in- and 

out-let temperatures were the same for case-A while the 

corresponding pressures were 103.6 and 101.3 kPa respectively. The 

change with temperature for the different parameter correlations is 

shown in Figure 6 (a) while Figure 6 (b) shows the resultant 

corresponding temperature (at steady state i.e. CO2 content is fixed 

before time=0) when the correlations are applied in the model for 

case-B conditions.

Correlation Bottom temp (
o
C) Rich loading CO2 Removal (%)

Pilot plant UT - 0.428 0 93.8 0
*Kvamsdal et al., (2009)[1] 54.0 0.436 1.8 94.9 1.2
Freguia, (2002) [7] 54.9 0.440 2.7 98.0 4.3
Hikita et al.,1977 [6] 54.0 0.434 1.4 93.4 -0.4
Versteeg et al., 1996 [5] 54.3 0.435 1.6 94.5 0.7

Figure 5: CO2 content at gas inlet for case-
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Figure 6: (a) Shows variation with temperature (b) shows the resultant (or corresponding) absorber temperature profiles. 

It can be seen that the correlation by Freguia et al. agrees better with pilot plant measurements compared to the other 

correlations regarding the temperature profile. However, this is not the case when considering the two most 

important indicators (CO2 capture level and rich loading) as is revealed by Figure 7 which showcases the situation in 

the dynamic mode.  

Although the difference in value of the reaction rate constant within the operating range of the absorber for 

correlations shown in Figure 6 (a) is not very big, the correlation by Versteeg shows better performance for CO2 

removal as depicted by Figure 7 (a). However, all four correlations are significantly but systematically (thus 

warranting further investigation to establish the cause) off-target regarding prediction of the rich loading. 

Figure 6: (a) Compares CO2 removal levels for the different correlations (b) the corresponding rich loading.

A tabulated overview of the resultants effects on the general performance of the model at steady state conditions 

(based on the parameter correlations selected for this study) is summarized in Table 5.

Table 5: Sensitivity study on parametric correlations (reaction rate coefficient) in model equations for CO2 absorption. Numbers in italics -

corresponding % deviation (for loading & CO2 removal respectively) from VOCC measurements

* Correlation used in model

5. Results and discussion.

The dynamic model performs satisfactorily, both in terms CO2 capture level (less than 5% relative difference) 

and the temperature profile when compared with corresponding outcomes from CO2SIM.  In regards to the VOCC 

measurements, it should be emphasized that running a campaign to obtain pertinent data for CO2 absorption in the 

dynamic mode is in general, a challenging task. This perhaps could be one of the factors why data for dynamic 

campaigns has hardly been reported elsewhere in literature to date. 

Correlation Bottom temp (
o
C) Rich loading CO2 Removal (%)

Pilot plant VOCC 43.75 0.317 0 60.5 0
*Kvamsdal et al., (2009) [1] 44.15 0.379 16 66.9 9.6
Freguia, 2002      [7] 44.16 0.394 20 75.4 20
Hikita et al.,1977 [6] 44.15 0.393 19 75.5 20
Versteeg et al., 1996 [5] 44.15 0.368 14 62.1 3.4
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The general performance of the dynamic model in comparison to the dedicated campaigns from the VOCC rig 

is reasonably good, with prediction of the temperature profile for both dynamic and steady state mode being quite 

satisfactory, but the results at steady state deviate more (the model over-predicts the CO2 removal level with 10% 

and rich loading with 16%) compared to the validation against the UT campaign. However, the model is tuned 

specifically to the data obtained at UT and as such, not necessarily applicable for direct simulation in regards to the 

VOCC rig. Further investigation is therefore needed to generalize the model while simultaneously minimizing the 

discrepancies between simulation and measurements.

The study on parametric sensitivity has been showcased using four different correlations for the reaction rate 

coefficient.  The difference in the absorber performance by simulation of the case 32 from the UT campaign is not 

significant. However, the corresponding scenario for case-B (based on the VOCC rig) exhibited deviations of 

appreciable margins the same correlations. Most likely, the reason is that the condition in the bottom at UT (for case 

32) was closer to equilibrium compared to those of the VOCC rig. Thus, the influence of the reaction rate coefficient 

is more important for the mass-transfer in the latter case. Another important factor is that; while the differences in 

the reaction rate itself (as seen in Figure 6a) are rather insignificant at typical absorption conditions (i.e. around 40 

oC) the differences are much larger at stripper conditions. The latter implies that, in any case, the whole process 

should be studied in the dynamic mode.

6. Conclusions

Validation of dynamic models for CO2 absorption is rather challenging due to lack of reported data in literature, and 

those which are available are limited to small scale pilot plants tested mainly at steady state conditions. This likely 

gives rise to scale-up problems when implementing full scale modelling. Agreement between the dynamic model 

and pilot plant measurements are reasonably good, but some further adjustments are necessary. The parametric 

sensitivity study based on the reaction rate coefficient correlations reveals that: conclusions based on results 

accredited from the validation one specific pilot plant don’t necessarily apply to other plants of different sizes under 

other operational conditions.
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