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Despite the identification of a large number of disease-causing genes in recent years, it is still unclear what
disease mechanisms operate in the neuronal ceroid lipofuscinoses (NCLs, Batten disease). As a group they
are defined by the specific accumulation of protein, either subunit c of mitochondrial ATP synthase or SAPs
A and D in lysosome-derived organelles, and regionally specific neurodegeneration. Evidence from biochemical
and cell biology studies indicates related lesions in intracellular vesicle trafficking and lysosomal function. There
is also extensive immunohistological evidence of a causative role of disease associated neuroinflammation. How-
ever the nature of these lesions is not clear nor is it clear why they lead to the defining pathology. Several differ-
ent theories have proposed a range of potential mechanisms, but it remains to be determined which are central
to pathogenesis, and whether there is a mechanism consistent across the group, or if it differs between disease
forms. This review summarises the evidence that is currently available and the progress that has been made in
understanding these profoundly disabling disorders. This article is part of a Special Issue entitled: The Neuronal
Ceroid Lipofuscinoses or Batten Disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are devas-
tating neurodegenerative diseases of children, leading to severe mental
and physical decline, and finally death. These diseases were initially
grouped together because of their clinical similarities and broadly uni-
form neuropathological features, which include a similar progression
of clinical symptoms, lysosomal accumulation of fluorescent storage
material, with defining histochemical properties and ultrastructures,
as well as profound neurodegeneration and widespread gliosis within
the CNS.

Despite the identification of several disease causing genes and many
studies of the respective NCL proteins, the underlying pathological
mechanisms remain obscure. Even the fundamental question as to
whether there is a common pathway that unites all or some of the
NCLs remains unanswered.

A number of hypotheses have arisen over the years to explain NCL
disease progression. Until recently its downstream pathology was con-
sidered to be a consequence of storage body accumulation, but this idea
is no longer tenable. Furthermore, it has become apparent that no single
ronal Ceroid Lipofuscinoses or
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level of investigation will resolve all the issues of NCL pathogenesis, but
when the evidence from multiple disciplines is viewed collectively, it
becomes apparent that considerable progress has been made towards
understanding disease mechanisms.

2. Genetic considerations

Although it had been known for a long time that the diseases
which became known as the NCLs were genetically inherited, it was
not until the 1990s that any disease-causing genes were identified, and
it was unequivocally established that these were actually a group of ge-
netically distinct diseases. Since then there has been a comprehensive in-
crease in our knowledge of NCL genetics, starting with the discovery of
mutations underling classic forms, causing what are now regarded as
CLN1 and CLN3diseases, closely followed by CLN2 disease [1–3] and sub-
sequently followed by many others. It is now apparent that these dis-
eases occur far more widely than was originally thought and many
previous estimates of incidence are far too low. Aside from the addition
of CLN5, CLN6, CLN7, CLN8 and CLN10 to the NCL family, a number of
other genetic forms have been proposed recently, some with more se-
cure foundations than others. At the time of writing these include three
adult onset forms, CLN4/DNAJC5, CLN11/GRN, CLN13/CTSF [4–6], another
infantile form CLN14/KCTD7 [7], and another juvenile form, CLN12/
ATP13A2 [8].

While diagnoses of adult onset NCL have a strong historical basis
on clinical and neuropathological grounds and there are at least ultra-
structural similarities in the nature of the stored material, information

http://dx.doi.org/10.1016/j.bbadis.2013.05.014
mailto:david.palmer@lincoln.ac.nz
mailto:jon.cooper@kcl.ac.uk
http://dx.doi.org/10.1016/j.bbadis.2013.05.014
http://www.sciencedirect.com/science/journal/09254439
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2013.05.014&domain=pdf


1883D.N. Palmer et al. / Biochimica et Biophysica Acta 1832 (2013) 1882–1893
about other common differential classification markers is not complete
with these later additions, and none meet the full suite of classification
criteria. Furthermoremutations in some of the genes implicated are as-
sociated with other diseases, including a frontotemporal lobar degener-
ation in people heterozygous for mutations in CLN11/GRN [5] while
mutations inATP13A2 also cause a rare parkinsonism, Kufor–Rakeb syn-
drome [8]. A stated above little is known of the underlying pathogenic
mechanisms thatmay unite the NCLs, so it follows that a definitive dec-
laration ofwhich diseases should, andwhich should not, be grouped to-
gether in the NCLs is also not possible. Nevertheless abundant evidence
of defining similarities at the biochemical, cell biology, and neuropatho-
logical levels indicates where it should be productive to look for common
steps in the disease mechanisms, as reviewed below. Meanwhile the ad-
dition of more recent forms in the catalogue of NCLs should be treated
somewhat tentatively, relative to the collective identity of the classic
forms. At some point there will be a need for a reconsideration of the re-
quirements for a disease to be delineated as an NCL, for the general clas-
sification to be useful. Meanwhile it is interesting how little commonality
can be inferred from the diverse nature of the causative genes, shown in
comprehensive reviews of the genetic bases of these disorders [9,10].

3. Biochemical investigations

3.1. Storage body analyses

The last century saw the common assumption of a connection be-
tween thematerial stored in lysosomal storage diseases and the disease
pathogenesis. Until the 1960s the disorders that are now termed the
NCLswere usually grouped togetherwith some other lysosomal storage
diseases under a catch-all description of “amaurotic family (familial)
idiocies”. Two lines of enquiry led to theNCLs being considered as a sep-
arate category. Biochemical analyses of the material stored in the other
amaurotic family idiocies proved to be very informative. For a number
of diseases postulates of missing enzyme activities, derived from the
structures of the storedmaterial, were confirmedwhen the enzyme ac-
tivities were found in control individuals but not in patients. A number
of lysosomal enzymes with acidic pH optimawere discovered this way,
but this technique was unrewarding for what became the NCLs. The
second distinction was made on the basis of the now characteristic
histopathological and ultrastructural properties of the storage bodies,
which also indicated that the NCLs were a separate group of diseases
[11–13]. A historical perspective on these diseases and a detailed de-
scription of storage body ultrastructures are provided by other authors
in this special issue.

Because the storage bodies resembled the so-called lipopigments
ceroid and lipofuscin, an analogous argument for their origin was in-
ferred; that they arose from uncontrolled lipid peroxidation, leading
to the generation of reactive aldehydes assumed to cross link with
the amino groups of proteins, lipids and nucleic acids forming an in-
soluble intractable fluorescent complex. Although no such complex
has ever been characterised, these names have stuck and connected
thoughts that they might drive pathogenesis persist to this day.

Simple methods of isolating and characterising the storage bodies
were developed in studies on the CLN6 ovinemodel. Storage body prep-
arations from a number of tissues were found to contain around 2/3 of
protein, subsequently shown to be the c subunit of F1F0 ATP synthase
complex (subunit c), the rest being mainly lipids, with a profile attribut-
able to a lysosomal/endosomal origin, including lysobisphosphatidic
acid, also called bis(monoacylglycero)phosphate [14–17]. No sign of an
intrinsic fluorophore has been found among the components of these
isolates. Furthermore the fluorescence has been reconstructed by recon-
stitution of storage body-like structures from non-fluorescent subunit c
and sheep liver phospholipids, confirming that this is an aggregate, not
an intrinsic property [18,19]. Since then, subunit c has been identified
as themain storage protein inmost formsofNCL, including CLN2disease,
CLN3 disease, CLN5 disease, CLN7 disease, and CLN8 disease [20–25].
Subunit c storage is generalised in these diseases, this protein being the
major component of storage bodies in all tissues that contain them, in-
cluding liver, kidney and pancreas. It has also been confirmed that the
structure of the stored subunit c is identical to that mature protein func-
tional in intact mitochondria, including the trimethylation of lysine 43
[26], so this is not the storage of a partial degradation product of some
proteolytic pathway. The N-terminalmitochondrial import signalling se-
quences have been removed, indicating a history of importation into the
16 oligomer multimeric ATPase complex in the inner mitochondrial
membrane. Subunit c is packed into a ring of eight c subunits that drives
the rotation of the γ subunit forcing conformational changes in the F1
portion of the molecule and synthesis of ATP [27]. None of the other
ATP synthase subunits are stored [28], highlighting the specificity of
subunit c storage and its turnover pathway.

Different proteins are stored in CLN1 disease, CLN4 disease (Parry
disease) and CLN10 disease, as well as in miniature Schnauzer dogs
affected by NCL, where the storage of the sphingolipid activator pro-
teins (SAPs) A and D has been reported [26,29–31]. Some subunit c
storage has also been reported in cathepsin D (CTSD, CLN10) deficien-
cy [32]. Knowledge of the storage material and sites of storage in the
more recently classified forms of NCL is variable, although the ultra-
structures and fluorescent properties of the neuronal storage bodies
are consistent with being NCLs. In a sense the classic forms of NCL
are misnamed, the phrase ceroid lipofuscinosis being misleading be-
cause the storage bodies do not have the molecular composition usu-
ally attributed to ceroid or lipofuscin, as explained above. Whether or
not they should be called neuronal is also a moot point. On one hand
the neurological symptoms and neurodegeneration indicate a neuro-
nal disease, but on the other hand storage body accumulation is not
exclusively neuronal but generalised, with storage bodies accumulat-
ing in most cell types throughout the body.

Nothing is reported of the nature of themolecular composition of the
stored material, or of non-neuronal storage, in the novel adult forms,
CLN4/DNAJC5 [4], CLN11/GRN [5] or CLN13/CTSF [6]. There is evidence
for subunit c storage in neuronal tissue and lymphoblasts in the novel in-
fantile form CLN14/KCTD7 [7], while some uncharacterised non-neuronal
storage is indicated in the novel juvenile form, CLN12/ATP13A2 [8]. Some
accumulation of subunit c has also been noted in a number of other lyso-
somal storage diseases, including the mucopolysaccharidoses (MPS)
[33,34], recently well described in MPS III B [35]. However this accumu-
lation is restricted to some cells in specific areas of the brain while other
material accumulates in other cells, a very different circumstance to the
specific and generalised storage of subunit c in lysosome derived bodies
characteristic of the major forms of NCL described above.

3.2. Functions of the gene products

Identification of the protein lesions responsible for these NCLs
gave no immediate insight into why subunit c or SAPs A and D should
be specifically stored, nor did it provide any direct clues about the path-
ogenic cascade. CLN1 (PPT1), CLN2 (TPP1) and CLN10 (CTSD) have been
identified as bona fide soluble lysosomal enzymes. The catalytic mecha-
nism of protein palmitoyl protein thioesterase (PPT1, CLN1) has been
inferred from its 3-D structure which revealed a classical α/β serine hy-
drolase consisting of twomajor domainswith a fatty acid binding groove
down the centre [36]. Structural determination of the covalent fatty
acyl-enzyme intermediate showed that palmitate is bound in an extend-
ed conformation along a hydrophobic groove in the second domain of
PPT1. Metabolic labelling studies showed that the enzyme removes
fatty acids from fatty acylated proteins in cultured cells [37–39].

Recombinant tripeptidyl peptidase 1 (TPP1, the CLN2 protein) is ef-
ficiently delivered to the lysosomes bymannose 6-phosphate-receptor-
mediated endocytosis in CLN2 affected fibroblasts, which restores
normal enzyme activity and ameliorates the accumulation of mitochon-
drial ATP synthase subunit c [40–42]. Itswider in vitro substrate specificity
has been explored using combinational peptide libraries [43]. The CLN10
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protein (cathepsinD, CTSD), is a classical lysosomal aspartic proteasewith
the active site cleft located between two lobes, each lobe contributing an
aspartic acid residue to the catalytic centre [44]. Several proteins function
as substrates of CTSD in vitro, but the in vivo substrates are still unknown.
The presence ofmannose-6-phosphate residues on the CLN5protein, that
interact with the lysosome targeting mannose 6 phosphate receptors, in-
dicates that it is a soluble lysosomal protein [45–47], but its function is still
known.

The other gene products are all membrane bound proteins of un-
known function which have been tentatively localised to a number
of subcellular sites, residing in the lysosomal membrane or in com-
partments implicated in pre-lysosomal processing. The CLN3 protein
is probably a lysosomal or endosomal membrane protein [48–50], the
CLN7 protein a membrane protein [51], the CLN8 protein an endoplas-
mic reticulum–Golgi resident [52], and the CLN6 protein an endoplas-
mic reticulum resident [53–55].

Why deficiencies in these gene products result in similar clinical,
pathological and biochemical changes is a long-standing question. One
option is that the NCL proteins may participate in a common biological
pathway, in which shared protein associations may play an important
role. At a biochemical level this is certainly true for CLN2 disease, CLN3
disease, CLN5 disease, CLN6 disease, CLN7 disease and CLN8 disease
where subunit c storage is definitive and specific, suggesting a series of
related lesions in a turnover pathway [24]. However apart from experi-
ments showing that subunit c degradation is inhibited by the absence
of gene products for CLN2 [40–42], nothing definitive is known about
the mechanism of the dissociation of subunit c molecules from the olig-
omeric ATP synthase complex and their turnover.

Much has been inferred about the structures of the CLN2, CLN3,
CLN5, CLN6, CLN7 and CLN8 proteins from computer-generated pred-
ications of monomeric structures of these gene products. These infer-
ences should be treated with caution, not least because stand-alone
membrane bound proteins are a rarity, start sites for translation are
sometimes confused, and little is known of the post-translational pro-
cessing of these molecules.

Possible protein–protein interactions between PPT1, TPP1 and CLN3
encoded proteins were examined in a yeast two hybrid model study,
which provided no evidence that they interact with each other [56].
However a co-immunoprecipitation study of over-expressed proteins
in COS-1 cells reported interactions between the CLN2 and CLN3 pro-
teins with the CLN5 protein, but not with the CLN1 enzyme [57]. More
recent overexpressed recombinant protein studies reported interac-
tions between the CLN5 and the CLN1(PPT1), CLN2(TPP1), CLN3, CLN6
and CLN8 gene products [58]. However, the CLN5 protein used in
these studies was fused with GST and expressed in Escherichia coli, rais-
ing questions about the reported protein–protein interactions. It is like-
ly that expressing a highly modified protein such as CLN5 in E. coli does
not produce a native protein because proper glycosylation, cleavage of
the N-terminal sequence, and correct folding of the protein require
ER-processing. Furthermore the recombinant protein was made using
initiation from an incorrect ATG start site. Over-expression of CLN
(or any other) proteins, can affect their structure, resulting in inter-
actions that would not occur in vivo. Others have also studied the
transport and maturation of CLN5 protein [59–61].

There are other technical problems with these sorts of studies. The
purity of the proteins utilised and aggregation of hydrophobic pro-
teins are issues. Since cell extraction eliminates the spatial constraints
within cells that limit protein–protein interactions, it can result in in-
teractions not possible within intact cells. Lack of reliable antibodies
is also a problem, and antibody specificities are not validated or veri-
fied in most studies, causing further uncertainty.

3.3. Secondary biochemical defects

Other biochemical investigations include reports of deficits in ox-
idative phosphorylation, which have not been substantiated, principal
component analysis of the neuroactive amino acid concentrations
in mouse and sheep models and analysis of circulating antibodies.
Excitotoxicity was postulated to be involved in pathology of the
NCLs some time ago [62,63], and could represent a therapeutic target
[64].

Populations of γ-aminobutyric acid (GABA)ergic interneurons have
been shown to be affected in human, sheep andmouse NCLs [65–69]. A
regional and time dependent decline in γ-aminobutyric acid (GABA)
concentrations was notable among a number of changes revealed in
metabolomic studies of Cln3 affected mice and CLN6 affected sheep
brains [70,71]. These were consistent with glial cell activation and
neurodegeneration, beginning in the frontal and occipital lobes, in
agreement with histopathological data (see below). Changes in gluta-
mate and glutamine concentrations were also detected in mouse and
sheep cerebrospinal fluids (CSFs). However, these changes occurred
after clinical disease had become apparent, indicating that any changes
in glutamate/glutamine cycling occur as a consequence of the primary
deficits, and thus that excitotoxicity is unlikely to be their cause.

A comparison of CSF neuropeptide concentrations in patients with
the classic juvenile CLN3 disease, classic late infantile CLN2 disease
and neuropeptide and neuroactive amino acid concentrations in CSF
from sheep with CLN6 disease revealed marked disease related in-
creases in the concentrations of neuron specific enolase and tau protein
in CLN3 disease patients, but not in a severely affected CLN2 disease pa-
tient nor in CLN6 affected sheep [72]. No changeswere noted in S-100ß,
glial fibrillary acidic protein (GFAP) or myelin basic protein (MBP) in
patients, or of S-100ß, GFAP or insulin-like growth factor-1 (IGF-1) in
affected sheep. Furthermore no disease related changes in concentra-
tions of the neuroactive amino acids; aspartate, glutamate, serine, gluta-
mine, glycine, taurine and GABA were observed in CSF from affected
sheep. It was concluded that the changes in CLN3 disease patients
may be progressive markers of neurodegeneration, or of underlying
metabolic changes perhaps associated with CLN3 specific changes in
neuroactive amino acids. The lack of changes in the CLN2 disease and
CLN6 disease subjects indicates that these changes are not shared by
the CLN2 or CLN6 forms and changes in CSF concentrations of these
compounds are unreliable as general biomarkers of neurodegeneration
in the NCLs.

4. Histopathological changes

4.1. Neurodegeneration

A range of animal models have proved invaluable for studying
NCLs. These include colonies of animals established following the di-
agnosis of naturally occurring incidences of disease dogs, sheep and
cattle [73,74]. Naturally occurring mouse models are complemented by
others resulting from gene manipulation, to create null allele ‘knockout’
mice, or to recreate specific disease causing mutations in knock-in mice,
reviewed in [75–78]. Typically, thesemodels recapitulate the key features
of the corresponding human NCL diseases, including progressive loss of
neurons and synapses, widespread gliosis, and the accumulation of the
characteristic storage bodies. Neither affected sheep nor most affected
mice models exhibit spontaneous seizure activity to the same extent as
affectedhumans, but characteristically displaymovement andgait abnor-
malities, which sometimes progresses to hind limb paralysis. While the
large animals, and most of the mouse models, have a dramatically short-
ened lifespan, others (e.g. Cln3 and Cln5mutantmice) have a near normal
longevity. Thesemodels have proved to be valuable tools to study disease
progression and have yielded significant information about the regional
selectivity of neurodegeneration, and its relationship to other neuropath-
ological events.

Although neuron loss is widespread by the end of the disease, recent
studies have revealed the regionally selective nature of the initiation of
this loss. Overt atrophy in ovine NCL is similar to that in human NCLs
[68,74,79–83], but is not nearly as apparent in the mouse models
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[75–78] with the exception of Cln2/Tpp1 knockout mice [84]. Neverthe-
less, several examples of selective neuron loss, including differing
effects upon subpopulations of cortical and hippocampal neurons, tha-
lamic relay neurons, and Purkinje cells of the cerebellum have been doc-
umented inmurineNCLs [75–78]. Similar, butmore pronounced regional
selectivity is apparent in both ovine and human NCL, emphasising that
these more complex brains appear to be more severely affected.

It is now clear that functional neuron loss is not related to storage
body accumulation, as was first thought. Most visceral and CNS cells in
affected animals accumulate storage bodies, but only specific subsets of
neuronal cells are functionally affected. Even within these populations
there is no correlation between neurodegeneration, neuroinflammation
and storage body accumulation, aswas shown in studies of CLN6 affected
sheep and in various mousemodels [76,81,82,85]. Furthermore it is pos-
sible to clear significant amounts of this storage material without im-
proving the disease outcome [86].

Instead studies to date have revealed that the selective loss of specific
neuron populations is preceded by localised glial activation, and synaptic
pathology that is most pronounced in the same brain regions. Rather
than storagematerial accumulation, localised activation of glia is a better
predictor of the distribution of subsequent neuron loss [76,81,87]. Stud-
ies in ovine CLN6 disease have shown that the sites which show early re-
active changes display the most pronounced neuron loss, with selective
loss of different subtypes of GABAergic interneurons in these brain re-
gions [81,82]. This relationship also holds true in all characterised
mouse models [67,69,49,51,88–93], although the nature and extent of
this glial activation vary markedly between different forms of NCL. It is
not clear whether this glial activation actually contributes to neuron
loss or is a protective response, but as discussed below in more detail,
it appears that neuroinflammation is a key part of the pathogenesis in
many, if not all, forms of NCL.

A consistentfinding inmurinemodels is the particular vulnerability of
the sensory thalamocortical pathways early in disease progression [76].
Once again, the localised activation of astrocytes and microglia is closely
connected to disease pathogenesis, invariably preceding or accompany-
ing neuron loss in these brain regions [67,69,88–93]. For reasons that re-
main unclear, the thalamus appears to be one of the first sites to be
affected pathologically in most NCL mouse models, including Cln1/Ppt1,
Cln3, Cln8/mnd and Cln10/Ctsd mutant mice [67,88,90,94], with subse-
quent cortical pathology only apparent in the corresponding cortical re-
gion. This is not the case in the Cln5 mutant mice where cortical neuron
loss precedes that in the thalamus [93]. Cortical lesions are foremost in
the large animal and human NCLs, being particularly obvious early in
upper layers of the occipital and somatosensory cortices [74,79,80].

The selective loss of interneuron populations, has also been reported
in mouse models [65–67,52,91,95], but regional effects upon cortical
and hippocampal interneurons are more pronounced in human [96]
and ovine NCLs [82]. A comprehensive survey of interneuron pheno-
types in CLN6 affected sheep at different stages of disease revealed se-
lective effects upon interneuron populations that differed markedly
with time and between locations within the brain. This pattern of inter-
neuron loss follows the pattern of glial activation [82], whereas the spe-
cific loss of gonadotropin-releasing hormone (GnRH) secreting neurons
of the hypothalamus is not associatedwith glial activation [85]. Subcor-
tical nuclei and the cerebellum of affected CLN6 ovine brains also retain
a normal appearance, even at advanced stages of disease, despite wide-
spread storage body accumulation and glial activation. These findings
indicate that cellular location and connectivity are much more impor-
tant determinants of neuron survival than phenotypic identity [82],
and add a physiological dimension to the pathogenic process that we
will return to later.

4.2. Neuroinflammation

Over the last decade there has been a growing realisation of the
central role of neuroinflammation in the pathogenesis of a number
of neurological protein accumulating and lysosomal storage diseases,
including the NCLs. When the association between abnormal storage
of protein, neuroinflammation and neurodegeneration was first no-
ticed, it was assumed that the inflammation arose as a reaction to the
presence of the abnormally accumulating material. Subsequent studies
revealed a number of circumstances when this is not the case. For ex-
ample, the suppression of inflammation resulted in a delay of the clini-
cal progress in Sandhoff disease knockout mice, suggesting a causative
role for neuroinflammation in pathogenesis [97].

That neuroinflammation actually precedes neurodegeneration was
established in a series of studies on the well-characterised CLN6
ovine model [74,81,98]. Immunohistochemical analyses revealed
that glial activation begins prenatally, long before significant storage
body accumulation or neuron loss [81,87]. Proliferating perivascular
macrophages and activated astrocytes were present at 20 and 40 days
before birth respectively, progressing to focal clusters of activated
microglia and astrocytes in cortical regions at birth. This glial activation
proceeded in a progressive, regionally specific manner, with the visual,
parieto-occipital and somatosensory cortices being first and most af-
fected, followed by activation in the primary motor and entorhinal cor-
tices. Later neurodegeneration followed activation in the same regional
and temporal order [81].

As discussed above, glial activation has also been investigated in
mouse models of NCL [67,69,86–91]. In particular Cln3mutant mice ex-
hibit an early low-level activation of astrocytes and microglia prior to
the appearance of symptoms, but this appears to be attenuated with a
failure of the normal morphological transformation of these cell types
upon activation [69,91]. These data raise the possibility that the glia
are themselves dysfunctional and may exacerbate neurodegeneration.
Given the close functional relationship between neurons and glia, it
will be important to investigate how this may be compromised in
each form of NCL.

The mechanisms by which inflammation functions in neurode-
generative disease are a matter of debate. It is considered to have
both favourable and detrimental consequences, but when chronical-
ly sustained may be neurotoxic [99,100]. There is evidence that glia
could be actively involved in neurodegeneration or neuroprotection.
Microglial cells may mediate cell death via free radical, reactive oxy-
gen species (ROS), prostaglandin or cytokine production [101,102]
or be neuroprotective by scavenging free radicals, secreting trophic
factors and secreting anti-inflammatory cytokines [103]. In GM1
gangliosidosis and Sandhoff disease mouse models, concentrations of
the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), and anti-inflammatory transforming growth
factor-β (TGF-β), were found to increase with disease progression and
correlate with the increased expression of MHC-II, a marker of immune
upregulation [104]. The brains of Cln1/Ppt1 knock-out mice exhibit
widespread astrogliosis with increasing age [65,67,105]. Studies of post
mortem brain tissue from thesemice and a CLN1 disease patient reported
that PPT1-deficiency leads to more S100ß and receptors for advanced
glycation end products (RAGE), in turn mediating the activation of
nuclear factor-kappa B (NF-κB) and resulting in the production of
IL-1β, IL-6, monocyte chemotactic protein-1 (MCP-1) and TNF-α
pro-inflammatory cytokines [106], which most likely contribute to
neuroinflammation in CLN1 disease. Preliminary findings in sheep sug-
gest that the up-regulation of both pro- and anti-inflammatory cytokines
occurs early in CLN6 disease and prior to overt neurodegeneration [107].

4.3. Adaptive immune responses

Aside from the documented activation of the innate immune system
in different NCLmodels, adaptive immune responsesmay also contribute
to inflammation in the central nervous system (CNS). Under normal con-
ditions the blood–brain barrier (BBB) restricts the entry of plasma compo-
nents, such as leukocytes, into the brain. During neuroinflammation and
neurodegeneration the BBB canbe compromised, resulting in lymphocyte
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infiltration allowing immune cells tomigrate into the brain. Subsequently
these cells can become activated, releasing further inflammatory factors
and creating a positive feedback loop which can result in more neuronal
damage [108]. Size-selective breaches in the BBB have been reported in
CLN3 disease, allowing the passage of IgG and serum proteins with
pro-inflammatory properties into the brain [109], but therewas very little
evidence for lymphocyte infiltration of the CLN3 disease affected CNS
until late in disease progression. It will be informative to document
these adaptive responses in more detail in other forms of NCL. Recently
it was reported that CD4 + T-helper 17 (TH17) lymphocytes may medi-
ate the BBB disruption and neuroinflammation in CLN1 disease [110].

4.4. Immunosuppression

A recent study showed that immunosuppression can alter disease
severity in Cln3mutant mice [111], resulting in improvements inmotor
performance. This has led to a phase I safety trial of mycophenolate
mofetil (CellCept) in human CLN3 disease cases. In a study of eight
CLN3 disease patients treated with pulsed steroids for a year, an im-
provement was observed in motor symptoms in the oldest patient
and cognitive benefits in two of the younger patients [112]. Another
study in Cln1 knockout mice, crossbred to lack T- and B-lymphocytes,
indicated that although pathological measures were delayed and some
functional improvements were seen, these mice ultimately reached the
same disease end-point with only moderate extension of life-span
[113]. Hence, although neuroinflammation is strongly implicated in dis-
ease pathology, therapies targeting this phenomenon alone may not be
sufficient for disease suppression. Furthermore these interventions
may need to be targeted precisely. The neuroinflammatory cascade is a
complex network of feedback loops, and can be initiated at different
points. In many cases it is not clear where anti-inflammatory drugs act
in this cascade. Further investigations will be required to determine
which parts of the cascade are activated early in pathogenesis and to
select drugs targeted to those points for accurate pharmacological
intervention.

5. Abnormal lipid metabolism and myelination

While overt demyelination is not apparent, there have been a
number of reports of altered myelin structure, tissue lipid composi-
tion and lipid metabolism in different forms of NCL. The significance
of these changes is unclear and recent studies have continued to search
for molecular and mechanistic explanations for the role of lipids in NCL
diseases.

The apparent lipid nature of the stored lipopigment drew early at-
tention to the possible involvement of abnormal lipid metabolism in
the pathogenesis of the NCLs. Early biochemical studies concentrated
on the sphingolipids, i.e. cerebrosides and gangliosides, as these com-
pounds were implicated in the other forms of amaurotic idiocy, but
the work was abandoned as no useful information emerged. The most
notable general finding is an increase in esterified cholesterol in the in-
fantile and late infantile forms of the disease [114–117].

5.1. Abnormal phospholipid fatty acids

Specific changes in brain phospholipid fatty acids were also reported.
The fatty acid profiles of themajor brain phospholipids in advanced cases
of classic infantile CLN1 disease were different from controls. In particu-
lar, therewas an increase in 20:4(n − 6), a decrease in 22:4(n − 6) and
a large decrease in 22:6(n − 3) and the name “polyunsaturated fatty
acid lipidosis” was proposed to distinguish this disease from other
forms of ceroid-lipofuscinosis inwhich these changeswere not observed
[118]. Subsequently pronounced alterations in brain ganglioside and
neutral glycosphingolipid patterns in CLN1 disease were reported
[119]. However these changes were rationalised as a consequence
of the very large cellular and tissue changes associated with the
brain atrophy and astrocytosis, all of which are particularly promi-
nent in CLN1 disease. On the other hand only minor differences
were observed in the fatty acid profiles of grey matter phospholipids
from CLN6 affected sheep brains [120], and no differences in liver
phospholipids or abnormalities in storage body associated phospho-
lipids [14].

This issue has been revisited in recent analyses of the brain tissue
derived from patients and mouse models of NCL. In CLN1 disease brain
tissue, which had lost 65% of its phospholipids, the phosphatidylserine
species were most dramatically affected [121]. All remaining phospho-
lipid species contained an increased amount of long chain fatty acids,
but decreased amounts of long chain polyunsaturated fatty acids. Again
the lipid composition of human CLN3 disease brains was close to normal
[121]. Alterations in the polyunsaturated fatty acyl chains were found in
CLN8disease humanbrain tissue alongwith severely reduced concentra-
tions of ceramide, galactosyl- and lactosylceramide [122]. Studies in
Cln8/mndmutant mice revealed reduced concentrations of galactolipids,
typical components of myelin [88]. A recent genome-wide association
study indicated CLN8 as a modifier of Gaucher disease, and suggested
that CLN8 may function as a protective sphingolipid sensor and/or in
glycosphingolipid trafficking [123].

5.2. Cholesterol metabolism

Altered cholesterol metabolism has been revisited in studies of
Cln1/Ppt1 and Cln10/Ctsd deficient mice. Global transcript profiling
of Cln1/Ppt1Δex4 knock-out mouse neurons indicated that cholesterol
metabolism might be deregulated with sterol biosynthesis being en-
hanced and steady-state amounts of sterols altered at the cellular
level, but no changes in cholesterol concentrations were observed [124].
In addition, changes in the lipid composition of Cln1/Ppt1Δex4 knock-in
mouse serum and dysregulated uptake of apolipoprotein A-I by Cln1/
Ppt1Δex4 neurons were reported [125]. Increased amounts of unesterified
cholesterol and cholesteryl esters may occur in Cln10/Ctsd knock-out
mouse brains [125]. Abnormal expression of proteins that could be relat-
ed to cholesterol transport was noted, with an increase of apolipoprotein
E and a reduction of ATP-binding cassette transporter A1, and it was sug-
gested that the trafficking of cholesterol is altered in Cln10/Ctsd knock-out
brains.

Disease associated accumulation of bis(monoacylglycero)phosphate
(lysobisphosphatidic acid, LBPA) was also reported in Cln10/Ctsd knock
out mouse brains, but not in Cln6/nclf mouse brains, in contrast to the
original report of accumulation associated with storage body isolates
from CLN6 disease affected sheep [126,14]. In either case, accumula-
tion is not necessarily indicative of a metabolic defect. Originally
bis(monoacylglycero)phosphate was thought to be a marker of lyso-
somal membranes and has recently been identified as a component
of late endosomal membranes. Thus increases of it are likely to be
consequent to changes in the number of these vesicles, as a consequence
of trafficking disruptions, and of the presence of late endosome–
lysosome membranes in storage body isolations. Another study
of gene expression profiling in cultured CLN6 disease fibroblasts
also implicated disruptions of cholesterol dynamics, but although
increased non-specific histological filipin staining was observed, no cho-
lesterol accumulation could be found by physical high performance thin
layer chromatography analysis (HPTLC) [127].

5.3. Myelination

In Cln10/Ctsd mice, the molecular changes associated with lipid
metabolism were accompanied by complexmorphological alterations
of myelin structure, leading to the suggestion that myelination may be
disturbed in these mice [128]. Recently, myelination defects have also
been reported in Cln8/mnd mutant and Cln5 knock-out mice [88,92].
Loss of Cln5 was associated with defective myelination in vitro and
in vivo, and accompanied by early alterations in the serum lipid
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composition and lipid transport in Cln5 knockout mice [89]. Minor
delays in myelination-associated changes in oligodendrocyte matu-
ration were reported in Cln8/mnd mutant mice [88].

Taken together, brain lipids appear to be affected in most forms of
NCL, albeit not in the samemanner, but it would appear that this is as a
consequence rather than a cause of the disease process. Dysregulation
of the myelination process, suggested to occur in CLN10 disease, CLN5
disease and CLN8 disease, is consistent with pathological observations
in patients and animal models of NCLs. However it is conceivable that
altered lipid composition of membranes and altered lipid transport
may have implications formembrane fusion eventswithin and between
cells and for lipid based cell signalling.

6. Abnormalities in intracellular metabolism and trafficking

There have been numerous indications of disturbances in the
endosome–lysosome pathway and suggestions of problems with
autophagy in the NCLs. Determination of the intracellular resident
sites of the membrane bound CLN gene products (see 3.2 Functions
of the gene products) places them as likely components of the en-
doplasmic reticulum–Golgi–endosome–lysosome (GERL) pathway,
along with the other lysosomal storage diseases of non-lysosomal
origin. A number of pathological investigations and cell biology ex-
periments on isolated cells and in organisms of varying species re-
inforce this. There have also been suggestions that perturbations in
lipids may be involved.

6.1. Autophagy

Autophagy is a strictly regulated cellular process involving the degra-
dation ofmacromolecules and organelles via the lysosomal/vacuolar sys-
tem and the involvement of autophagy in triggering neuronal death in
the NCLs has been mooted, based on the observed abnormalities in au-
tophagic pathways [129]. An increase in the number of autophagic vacu-
oles in the brains of Cln10/Ctsd knock-outmicewas reported [130], along
with the simultaneous accumulation of classical storage inclusions and
autophagic vacuoles containing storage deposits. Therewas also a signif-
icant increase in the amount of autophagosome-associated LC3-II pro-
tein, and reduced colocalisation of LC3-II with the lysosomal associated
membrane protein, LAMP1.

LC3-II was also increased in Cln3Δex7/8 knock-in mice, and isolated
autophagic vacuoles from these mice had a less mature ultrastructur-
al morphology than those from wild-type mice [131]. Co-localisation
of LC3-positive vesicles with endocytic and lysosomal markers was
reduced in cerebellar cell lines from these mice compared to controls,
and the inhibition of autophagy led to cell death. The authors sug-
gested that autophagic vacuolar maturation is disrupted in CLN3 dis-
ease and that activation of autophagy may be a pro-survival feedback
response in the disease process. Further analysis of cerebellar cells
from both the Cln3Δex7/8 knock-in mice and Cln6/nclf mice showed
that the accumulation of the subunit c protein occurs within acidic or-
ganelles rather than in the mitochondria before transfer to lysosomes,
consistent with a defect in the autophagosome-lysosomal pathway in
these forms of NCL [132]. This could arise from distinct functions of
NCL proteins in specific biological pathways essential for proper neu-
ronal cell survival and also connected to the lysosome, the mitochon-
drion and subunit c turnover.

An age dependent increase in the amount of LC3-II in Cln6/nclf
mice was accompanied by the formation of neuronal p62 positive ag-
gregates, suggesting impaired fusion between autophagosomes and
lysosomes. This became apparent between 20 weeks and 40 weeks,
increasing again after a year [133]. The authors suggested that lysosom-
al dysfunction associated with CLN6 deficiency leads to an impairment
of constitutive autophagy, which may promote neuronal degeneration
via formation of the p62 positive aggregates that are toxic for cells.
Taken together, these data indicate that autophagy is induced in
CLN3 disease, CLN6 disease and CLN10 disease, but whether the ob-
served changes promote neuronal death or arise from a rescue attempt,
remains an unanswered question. It also remains unclear whether the
fusion between autophagosomes and lysosomes is impaired. Autopha-
gy is rapidly induced in particular metabolic circumstances such as
changes in nutritional status, and it is likely that these contribute to
the observations above. It is also pertinent that hyperactive autophagy
is not a feature noted in the large number of histological and ultrastruc-
tural studies of tissues from patients and animal models.

6.2. Endocytosis and intracellular trafficking

A defect in intracellular traffickingwas studied in CLN3 disease fibro-
blasts, in which impaired receptor-mediated endocytosis was discov-
ered, and Hook1, a protein involved in the regulation of endocytosis,
was identified as a potential mediator of this defect [134]. Studies in a
Cln3Δex7/8 cerebellar cell line also indicated disturbed endosomal/
lysosomal membrane trafficking. Lysosome and endosome sizes and
distributions were reported to be altered, and mitochondria elongated
and functionally compromised. These organelle defects were apparent
prior to subunit c accumulation, suggesting that storage does not result
in membrane trafficking defects, but instead that trafficking defects are
early events in the disease process [49]. CLN3 protein localization has
been reported to partially overlap with lysosomes, synaptosomes and
endosomes in neuronal cells [50,135,136], suggesting that the CLN3
protein resides in a number of vesicular compartments and may link
multiple membrane trafficking pathways. These trafficking defects
could particularly affect neuronal function through the importance of
membrane vesicle transport in neurotransmission [49]. A study in
Schizosaccharomyces pombe indicated that Btn1, the proposed yeast
CLN3 ortholog, affected not only endocytosis, but also polarization of
sterol-rich membrane domains and polarized cell growth [137].

A recent study in Saccharomyces cerevisiae suggested that Btn1 is
involved in regulating the retrograde transport from the endosomal
compartment to Golgi and in maintaining Golgi integrity [138]. The
authors concluded that Btn1 controls retrograde sorting by regulating
SNARE phosphorylation and assembly, possibly via modulating Yck3,
a palmitoylated endosomal kinase, and suggested that these pathways
may be adversely affected in CLN3 disease patients. These observations
were recently complemented by suggestions that the anterograde trans-
port of late endosomal/lysosomal compartments is affected by CLN3 de-
ficiency [139]. Experiments were interpreted to suggest that the CLN3
protein interacts with motor components driving microtubular traffick-
ing, including tubulin, dynactin, dynein and kinesin-2, as well aswith ac-
tive GTP-bound Rab7 and with the Rab7-interacting lysosomal protein
(RILP) that anchors the dynein motor. The CLN5 protein was also im-
plicated in endosomal trafficking recently, via its interaction with a
lysosomal sorting receptor, sortilin, because the ablation of the CLN5
protein in HeLa cells altered the retrograde trafficking from endosomes
to the Golgi [140].

Defective endocytosis has also been described in CLN1(PPT1) defi-
cient fibroblasts [141]. Colocalisation of PPT1 with growth associated
protein 43 and synaptophysin indicated specific targeting of PPT1 to
axons in mature neurons, and perhaps a role for PPT1 in the exocytic
pathway of neurons and in synaptic function. This observation in
mammalian cells was supported by findings in a Drosophila model of
CLN1 disease, with the identification of modifier genes which connected
PPT1 function to synaptic vesicle cycling, endosome-lysosomal traffick-
ing, synaptic development, and activity-dependent remodelling of the
synapse [142]. Another screen in a loss-of-function Drosophila model of
CLN1 disease identified modifier genes associated with cellular traffick-
ing and endocytosis [143]. In order to verify these observations, the
authors used Garland cells for assaying endocytosis in Drosophila, and
concluded that the loss-of-function Cln1/Ppt1 mutants exhibited a
decrease in fluid-phase endocytosis without major defects in the
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endosome-lysosomal compartment. Furthermore, ultrastructural anal-
ysis of the Garland cells revealed a reduction in uptake and suggested
that the loss of Cln1/Ppt1 impacts on an early step in vesicle formation
during endocytosis.

It is evident from the studies discussed above that the involve-
ment of the CLN proteins in intracellular trafficking and endocytosis
is complex. Although there is considerable evidence for disruptions
in these processes, particularly in CLN1 disease and CLN3 disease, the
exact mechanisms and interactions are unclear. Multiple models of
these diseases have suggested the involvement and interactions of
many different proteins. It is also unclear whether trafficking disrup-
tions are a cause or effect of the disease process, and the relevance of
the various model systems used is not always obvious.

It is also likely that neuronswould be especially sensitive to trafficking
and endocytic deficits. Neurotransmission is a high energy process and is
heavily dependent on membrane vesicle transport, hence disruption to
these processes could have significant impacts on proper neuronal func-
tion and survival (see below). The previouslymentioned regional suscep-
tibility of certain neuronal populations to neurodegeneration suggests
that any observed trafficking defects may have more severe conse-
quences within certain neurons and brain regions. Thus caution is
required when elucidating results from single cell models of the dis-
ease which do not accurately model the complexity of the disease
pathogenesis.
6.3. Synaptic trafficking

Pathological alterations, including synaptic loss and the abnormal
distribution of presynaptic proteins, occur in most forms of NCL.
Mouse model studies have indicated that changes in the presynaptic
proteins occur before indications of synaptic degeneration (see above).
Synaptic vesicle trafficking is really a special case extension of the intra-
cellular trafficking between the ER, Golgi and endosome-lysosomal com-
partments. An additional complication in neurons is the transport of
signals from receptors at the extremes of the axons and dendrites to
and from the nucleus, which also uses this machinery. Recent studies
providing such possible links are discussed below.

Synaptic vesicles contain several palmitoylated proteins, which facil-
itate fusion of the vesicle with the synaptic membrane, exocytosis and
recycling. These palmitoylated proteins are potential targets of PPT1.
Electron microscopic studies revealed alterations in the size of the
synaptic vesicle pool in neurons derived from Cln1/Ppt1 knock-out
mice, accompanied by a decrease in the frequency ofminiature synaptic
currents [144]. Another study showed that PPT1 deficiency led to per-
sistent membrane association of the palmitoylated synaptic vesicle
proteins, including synaptotagmin, synaptosomal-associated protein
25 (SNAP-25), and Syntaxin 1, and the authors hypothesized that this
caused the progressive decline in the total and readily releasable synap-
tic vesicle pool in Cln1/Ppt1 knockout mice [145]. Similar observations
were made in Cln6/nclfmice, suggesting a reorganisation of the presyn-
aptic compartment before synaptic loss occurs [146]. Modifier gene
screening in a Drosophila model of CLN1disease led to an observation
that both synaptotagmin and stoned A, which facilitate synaptotagmin
recycling, suppressed the CLN1 disease phenotype [142]. Together with
the identification of other modifiers, the authors concluded that PPT1
functions in both the regulation of synaptic vesicle endocytosis and the
regulation of endocytosis.

Electron microscopic analysis reported a marked and progressive in-
crease in the number of synaptic vesicles (particularly docked vesicles)
per bouton in brains of Cln10/Ctsd knock-out mice [147], accompanied
by a decrease in the frequency ofminiature synaptic currents, suggesting
impaired release of synaptic vesicles. However, no defect in the sponta-
neous release of synaptic vesicles was observed in electrophysiological
measurements. In addition, cathepsin D has been indirectly impli-
cated in synaptic vesicle trafficking via the regulation of α-synuclein
[148,149], thought to promote SNARE-complex assembly at presynaptic
terminals.

A recent study on CLN4 (CSPα) showed that the CSPα chaperone
complex binds SNAP-25 and dynamin 1, which are necessary for syn-
aptic vesicle fusion and fission respectively [150]. CSPα regulates syn-
aptic vesicle number and participates in synaptic vesicle endocytosis
in hippocampal cultures, leading the authors to suggest that it may fa-
cilitate exo- and endocytic coupling.

In summary, further to studies indicating that intracellular traf-
ficking and endocytosis are affected in CLN1 disease and CLN3 disease
there is increasing evidence of an early involvement of synaptic failure
and possibly defects in the recycling of synaptic vesicles as part of path-
ogenesis in CLN1 disease, CLN4 disease and CLN10 disease. The reports
discussed above suggest that vesicular fusion events controlled by SNARE
proteinsmay be involved. In addition endosomal trafficking is likely to af-
fect neural development and influence the polarity andmigration of neu-
rons as well as axon outgrowth and guidance, and is strongly linkedwith
synaptosomal vesicle recycling [151].

7. Pathways leading to apoptosis

Programmed cell death, or apoptosis, may originate from either ex-
tracellular or intracellular stimuli. Extracellular triggers include hor-
mones, growth factors, nitric oxide and cytokines, while intracellular
initiation may be a response to stress, caused for example by hypoxia,
increased intracellular calcium concentration, ER stress or membrane
damage. Independent of the apoptotic stimulus, cytochrome c release
and caspase activation can each play a role in the execution of apoptosis.
However the genetic modulation of the central apoptotic pathways in-
volving p53 or Bcl-2 failed to alter the disease course in a mouse model
of CLN2 disease, indicating that either neuronal death does not occur via
apoptosis in this disease, or if it does, it occurs via pathways not involv-
ing p53 or Bcl-2 [152].

7.1. The TNF-α pathway

The cytokine, tumour necrosis factorα (TNFα), can initiate ceramide
and sphingosine-mediated apoptosis. It was noted that fibroblasts de-
rived from patients with CLN1 disease or CLN2 disease were partially re-
sistant to TNFα-induced apoptosis, while CLN3 or CLN5 deficiency did
not protect fibroblasts from TNFα-induced apoptosis [153,154]. Such
protective effects were not observed in CLN10/CTSD deficient fibroblasts
[155]. Studies of Bax/cathepsin D double knock-outmice showed that the
suppression of the caspase dependent apoptosis by inactivation of Bax
prevented apoptosis, but not neuronal death, indicating that a caspase
dependent route is not responsible for neuronal death in Cln10/Ctsd
knock-out mice [156].

7.2. Phosphatidylinositol signalling

Phosphatidylinositol-3 kinase (PI3-K) regulates multiple cell signal-
ling events inmany pathways, including the apoptotic pathway activated
by survival factors, such as growth factors and cytokines. Disturbances of
the phosphatidylinositol signalling pathway have been reported in CLN10
and CLN3. A marked decrease in phosphoinositol PI-3-K signalling was
suggested to relate to autophagic stress in Cln10/Ctsd knock-out mice
[157]. Inositol monophosphatase inhibitors partially rescued the autoph-
agic process and reduced the neuronal vulnerability in Cln3Δex7/8 mouse
cerebellar cells, in which autophagy was impaired [131,158].

8. Other postulates

8.1. Oxidative pathways

Mitochondrial dysfunction and oxidative stress have been proposed
to be involved in the pathogenesis of NCLs. Elevated concentrations of
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reactive nitrogen species have been reported in Cln3Δex7/8 knock-in
mouse tissues [159]. Mitochondrial abnormalities and a decreased sur-
vival after oxidative stress were reported in cerebellar precursor cells
carrying the Cln3Δex7/8mutation [49]. Elevated amounts of reactive oxy-
gen species or of superoxide dismutases have also been reported in
CLN1 and CLN8 diseases [160,161].

8.2. ER stress response

An endoplasmic reticulum (ER) stress response is thought to be
triggered by an imbalance of intracellular homeostasis, and a contri-
bution to NCL pathogenesis has been suggested. Unfolded protein re-
sponse (UPR) markers were observed to be upregulated in Cln1/Ppt1
knock-out mouse brains [162]. Several early ER-stress indicators were
upregulated in Cln8/mnd mutant mice [163]. Mutations in the newly
discovered CLN12/ATP13A2/PARK9 gene have also been linked with
ER-stress-induced cell death [164].

8.3. Excitotoxicity

As mentioned in Sections 3.3 and 4.1 excitotoxicity has been pos-
tulated to be involved in the pathology of the NCLs and the biochem-
ical evidence is discussed there. Although there is no direct evidence
for any imbalance or metabolic disturbance that could lead to the onset
of neurodegeneration, a vulnerability of Cln3Δex1–6 cerebellar granule
neurons to glutamate has been reported [165]. This has led to the use
of different classes of glutamate receptor antagonists as potential thera-
peutic agents inmousemodels of classic juvenile CLN3disease, and small
influences of either NMDAor AMPA receptor antagonists on rotarod per-
formance and brain inflammation have been reported [166–168]. A sim-
ilar involvement of glutamate receptors has been proposed in CLN1
disease [166,169], but their antagonists are yet to be tested in vivo in
this form of NCL. In summary, multiple signalling pathways appear af-
fected in NCL diseases. Many of these pathways overlap and influence
each other. It appears intriguing, however, that some defects (CLN1
and CLN2) make cells more resistant to cell death stimuli than control
cells are [153,154].

9. The physiological dimension

Although biochemical and cell biology experiments have yielded
much information about neuropathogenesis in the NCLs, it is now
clear that there is a physiological dimension. This is apparent from
the regionality of neuroinflammation and the connections with
neurodegeneration and the development of symptoms observed in
the CLN6 sheep model [81,82,85,87] and in a number of mouse stud-
ies [76]. As stated earlier, the location and connectivity of neurons
are better determinants of disease development than their pheno-
typic identity. This is highlighted by the very specific loss of GnRH
secreting cells from the hypothalamus of CLN6 affected sheep with-
out neuroinflammation or any sign of dysfunction of any other cells
[85]. In a way it is remarkable howmuch of the CNS remains functional
despite the obvious burden of storage bodies across all forms of the dis-
ease. Whatever the intracellular lesions may be, most cells, including
most neurons, tolerate them reasonably well. The importance of circu-
lating factors including those secreted by other non-neuronal cells,
like glia, is not defined. These considerations also indicate that there
are major aspects of the diseases not accessible from single cell studies.

10. Conclusion

At the biochemical level the NCLs are classified as a group of lyso-
somal proteinoses in which specific proteins accumulate in lysosome
derived storage bodies, with characteristic ultrastructural and fluo-
rescent properties. Storage is not confined to neurons in the classic
forms but is generalised, with storage bodies accumulating in most
tissues throughout the body. Specific accumulation of the sphingolipid
activator proteins, SAP A and SAP D, results from mutations in CLN1
and CLN10 while subunit c of mitochondrial ATP synthase accumulates
in disease resulting frommutations in CLN2, CLN3, CLN5, CLN6, CLN7 and
CLN8. This specificity and generality of subunit c storage differentiate
this group from other lysosomal storage diseases where some storage
of subunit c has also been found, but only in subsets of neurons.

The composition of the storedmaterial and the generality of storage
are not so clear in the more recently classified forms, but there is evi-
dence of specific protein storage in some, and further work is required
to determine how these diseases fit in a grouping of lysosomal protein-
ases. It also follows that subunit c accumulation reflects a series of
breakdowns in the catabolic pathway for this molecule, but despite sev-
eral attempts to study this pathway little is known of it. Presumably the
SAP storing forms are a related subgroup.

What is also apparent is that storage body accumulation is not the
cause of the neurodegeneration characteristic of the NCLs, and that
this arises from some other manifestation of the mutations. The turn-
over of subunit c requires the removal of this highly hydrophobic
molecule from the inner mitochondrial membrane, either as part of
the oligomeric ATP complex or after disassembly from it, and transport
to the lysosome. Autophagy and intracellular vesicular trafficking are
central to this process. There is accumulating independent evidence
that aberrant vesicular trafficking plays a role in NCL pathogenesis
with defects along the endocytosis pathway, and in the vesicular traf-
ficking from Golgi to endosomes and back having been reported, but
nearly everything possible has been invoked in one study or another
and many studies contradict each other. Trying to tie all these reports
together into coherent whole would be amajor review in itself, certainly
beyond the scope of this article. Most reports concentrate on one aspect
exclusively,with little information of up- or down-streammodulators, or
of parallel pathways.

However taken together these studies allow little doubt that intra-
cellular trafficking and signalling abnormalities are important in the
NCLs. In neurons the intracellular transport system is interwoven
with transporting signalling molecules into the cell and to and from
the nucleus. This complexity may also be reflected in the recycling of
synaptic vesicles where the size of the readily releasable synaptic vesicle
pool is pathologically altered, as seen in the CLN1 and CLN10 disease
models. Possibly, the SNARE protein assembly may be affected by NCL
proteins indirectly; for example CLN10-(CTSD) and ATP13A2 may affect
SNARE assembly in synapses via α-synuclein.

Alterations in synaptic communication would affect neuronal con-
nectivity within defined circuits, as indicated by the histopathological
studies showing the degeneration of the somatosensory thalamocortical
system inmanymousemodels of NCL and regional cortical degeneration
in sheep. The exact neuronal circuitry andwhere the disease begins, may
vary between the different forms of NCL, but the basic principle could be
applicable across all disease forms and species.

The strong evidence that glial activation precedes neurodegeneration
in the NCLs, implicates interactions between neurons and glia. Studying
these interactions will be important for the future. There are also strong
indications of a physiological dimension, perhaps through neural circuitry
or the influence of circulating trophic factors. Although there is consider-
able evidence for defects in individualmetabolic processes (signalling, au-
tophagy), it has become apparent that no single level of investigationwill
resolve the pathogenesis of NCLs, but when the evidence from multiple
disciplines is viewed collectively, wemay understand which cellular pro-
cesses are affected and will begin to understand the consequences at a
physiological and functional level.
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