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Last Interglacial variability is commonly used as an analogue for variability in a future, warmer world.
Pervasive cycles are increasingly apparent in Last Interglacial archives, although studies in continental
regions are under-represented. Here we provide a new isotopic record of diatom silica (d18Odiatom)
spanning c. 127.5e115 ka BP from Lake Baikal in central Asia. Peak rain-fed discharge occurred c.
125.4 ka BP, shortly after July insolation maximum and initiation of Siberian soil development. Between
127 and 119.7 ka BP there are six marked fluctuations in d18Odiatom values, with a pacing of approximately
1.26 � 0.3 ka, similar to fluctuations of within lake productivity. Fluctuations in d18Odiatom values show
good agreement with patterns in Atlantic meridional overturning circulation (AMOC), supporting
hypothesis of strong teleconnections via the Westerlies between the North Atlantic and central Asia. Two
periods of low d18Odiatom values are especially notable. The earliest between c. 126.5 and 126 ka BP is
concurrent with the final stages of the Heinrich 11. The second between 120.5 and 119.7 ka BP is also
concurrent with an increase in ice-rafted debris in the North Atlantic. Aquatic productivity in Lake Baikal
increased between 119.7 and 117.4 ka BP before declining to the top of the record (115 ka BP)
concomitant with a shift to predominately cool steppe catchment vegetation. However, isotopic
composition of discharge into Lake Baikal provides evidence for strong penetration of Westerlies into
central Asia during the latter stages of the Last Interglacial. Variability in d18Odiatom values was compared
between the Last Interglacial and the Holocene. Millennial-scale variability was significantly more stable
during the Last Interglacial, possibly linked to diminished influence of freshwater discharge on AMOC
during periods of higher, global mean temperatures.

� 2012 Elsevier Ltd. Open access under the CC BY license.
1. Introduction

Climate variability and its potential impact on humanity is one
of society’s greatest concerns, yet substantial uncertainty exists as
to how the climate will vary in the future, especially within the
context of a warmer world. Considerable work has been under-
taken to address this uncertainty by investigating previous inter-
glacials which were either similar to the Holocene in terms of
orbital geometry e.g. Marine Isotope Stage (MIS) 19 (Tzedakis et al.,
; fax: þ44 (0)20 7679 0565.
eog.ucl.ac.uk (A.W. Mackay).

 BY license.
2009); MIS 11 (Berger and Loutre, 2003) or werewarmer e.g. MIS 5e
(Velichko et al., 1991; Kukla et al., 2002; CAPE Last Interglacial
Project Members, 2006). Of key interest is the occurrence and
tempo of instabilities in the climate system, such as pervasive 1.5 ka
cycles that have been determined during the Holocene (Bond et al.,
1997, 2001) the Last Glacial period (Bond et al., 1999), and the Last
Interglacial (c. 130e116 ka BP) (e.g. Bond et al., 2001). If models are
to accurately predict future climate, they need to incorporate these
pervasive cycles, and validation is best done on previous intergla-
cials where there has been no determinable anthropogenic activity.

Our knowledge of climate instability during previous intergla-
cials is poor because of the paucity of highly resolved and well
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constrained records (Tzedakis et al., 2009). For example, whilst the
Last Interglacial was previously considered a period of relative
stability (e.g. Grootes et al., 1993;McManus et al., 1994; Rioual et al.,
2001), many archives have since been shown to contain millennial
scale variability (Bond et al., 2001) with cool (Müller et al., 2005;
Couchoud et al., 2009) and sometimes abrupt events (Seidenkrantz
et al., 1995; Linsley, 1996; Maslin and Tzedakis, 1996; Rioual and
Mackay, 2005; Sirocko et al., 2005) linked to variability in Atlantic
meridional overturning circulation (AMOC) (Bond et al., 1999,
2001).

The Last Interglacial can be broadly defined as the penultimate
period when sea-levels were at, or above, those of the present
(CAPE Last Interglacial Project Members, 2006). The majority of the
Last Interglacial reconstructions have been mainly determined for
Atlantic regions, and a key challenge is to determine whether
AMOC variability had global influence, e.g. impacting continental
regions far from oceanic influences. Lake Baikal in central Asia is
therefore of great importance because it holds an uninterrupted
sedimentary archive spanning millions of years, which has been
shown to be very responsive to global changes in climate (see
Mackay, 2007 for a review).

Where preservation of carbonates is poor in fresh, lacustrine
systems, oxygen isotope analysis of diatom silica (d18Odiatom) has
Fig. 1. Map showing location of Core CON-01-603-2 from Lake Baikal, and of other principa
Iberian Margin; Dongge Cave, south China).
been used as a direct replacement for d18Ocarbonate e.g. tropical
Africa (Barker et al., 2011), Alaska (Hu and Shemesh, 2003), Europe
(Rioual et al., 2001; Shemesh et al., 2001; Rosqvist et al., 2004),
South America (Polissar et al., 2006; Hernández et al., 2008) and in
different regions of Russia (northwest: Jones et al., 2004; northeast:
Swann et al., 2010; and southeast: Morley et al., 2005;Mackay et al.,
2008, 2011). The majority of these studies span the Holocene
period, although older records exist for MIS 5e in France (Rioual
et al., 2001), the past 250 ka in NE Siberia (Chapligin et al., 2012),
and MIS 11 in Lake Baikal (Mackay et al., 2008).

The d18Odiatom record from Lake Baikal has been shown to be an
important proxy of hydrological variability in central Asia, linked to
AMOC and intensity of the Siberian High during the Lateglaciale
Holocene (Mackay et al., 2011). Using older sediment records from
Lake Baikal, this study has two aims: to characterise hydrological
instability during the Last Interglacial in central Asia, and to eval-
uate whether hydrological variability during the Last Interglacial
was greater than Holocene variability.

2. Study area

The region of central Asia that includes Lake Baikal (Fig. 1) is
characterized by the world’s highest degree of continentality
l sites mentioned in the text (core 980 from North Atlantic; core MD01-2444 from the
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(Lydolph, 1977). Summers are short, warm and wet, while winters
are long, cold and relatively dry. Rainfall and precipitation data are
given for the nearby city of Irkutsk (Fig. 2). Lake Baikal itself
moderates climate within the Baikal depression, resulting in cooler
summer temperatures by between 6 and 8 �C and warmer
temperatures during autumn and early winter by approximately 10
and 15 �C (Shimaraev et al., 1994). Water from the lake is mainly
lost via the Angara River outflow, with evaporation only accounting
for less than 20% water loss. Evaporation occurs mainly during the
autumn and early winter (SepteDec), whilst during summer
months evaporation is insignificant (Shimaraev et al., 1994). A
strong westerly progression of cyclones moves through west
Siberia to the Lake Baikal region during spring because of the
intensification of zonal circulation. Low-pressure systems form
along the Asiatic polar front in summer and as the strength of the
westerly transport weakens, cyclonic activity and rainfall increases.
Deep intrusions of cold Arctic air from the Kara Sea to the Lake
Baikal region during autumn bring widespread cooling throughout
eastern Siberia, which marks the beginning of the growth of the
Siberian High. This high pressure cell remains strong during winter
until the following April (Panagiotopoulos et al., 2005) and is
monthly maximum temperatures (°C)
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Fig. 2. Summary climate data for the city of Irkutsk, which lies on the Angara outflow,
70 km from Lake Baikal. (i) Monthly precipitation (mm); (ii) monthly temperature
minima (�C); (iii) monthly temperature maxima (�C).
responsible for the movement of cold winter air flowing over Asia
(Gong and Ho, 2002) resulting in a strong East Asian Winter
Monsoon (EAWM) and attenuated East Asian Summer Monsoon
(EASM) (D’Arrigo et al., 2005).

Lake Baikal is the world’s most voluminous lake, containing
approximately one fifth of global resources of surface freshwater
(Shimaraev et al., 1993). It has over 330 tributaries, the most
significant being the Selenga, Upper Angara and Barguzin Rivers,
contributing c. 50%, 14% and 7% of total annual river inflow
respectively (Fig. 1) (Shimaraev et al., 1994). The catchment of Lake
Baikal is over 540,000 km2, of which about half belongs to the
Selenga River basin, that drains much of northern Mongolia and
Buryatiya between 46e52� N and 96e109� E (Fig. 1) (Ma et al.,
2003). The Barguzin River has a catchment east of the lake, while
the Upper Angara drains a catchment to the northeast (Seal and
Shanks, 1998). Due to their latitudinal differences, rivers are fed
by varying amounts of precipitation and snowmelt.

3. Materials and methods

3.1. Site location, coring and dating

The core spanning the Last Interglacial was located in the north
basin of Lake Baikal (53�570 N, 108�540 E) on an isolated high called
the Continent Ridge (Fig. 1). Side-scan sonar and reflection seismic
data show a flat, featureless morphology that suggests low tectonic
activity and an undisturbed fine-grained sedimentation (Charlet
et al., 2005). Core CON-01-603-2 was recovered in July 2001 in
386 m water depth using a piston corer equipped with 12 cm
diameter aluminium liners. An independent chronology for the
section was constructed by Demory et al. (2005), based on
geomagnetic palaeointensities tuned to a well-constrained refer-
ence curve (ODP Site 984, Channell, 1999). Anchored by a geomag-
netic excursion (the Iceland basin event, dated at 186e189 ka) this
age model is constrained by 55 correlation points for a time span of
w200 ka. For the Last Interglacial period presented here, the
palaeomagnetic-derived age model was constrained by five of
these correlation points. Sediment accumulation rates varied
through the Last Interglacial period; between c. 127.5 and
117.3 ka BP the rate was approximately 9.5 cm/ka, but declined to
4.0 cm/ka between c. 117.3 and 115 ka BP. Full details are given in
Demory et al. (2005).

3.2. d18Odiatom analysis

Various methodologies for ensuring pure diatom samples for
d18Odiatom analysis have been reported (Morley et al., 2004; Leng
and Barker, 2006; Brewer et al., 2008; Mackay et al., 2011), and
involve the step-wise removal of contaminants using chemical and
physical separation techniques. Cleaned, dried samples were then
subjected to a pre-fluorination process to remove the unstable
hydrous silica layer from the diatom valves, before full reaction
with BrF5 (Leng and Sloane, 2008). Liberated oxygenwas converted
to CO2 and measured alongside BFCmod the NIGL diatom standard
with d18O analysis performed using an Optima dual inlet mass
spectrometer. The data are presented as per mil (&) deviations
from VSMOW with replicate analysis of sample material indicating
an analytical reproducibility of �0.34& (1 SD). The method has
been verified through an inter-laboratory calibration exercise
(Chapligin et al., 2011). Non-diatom components remaining after
sample preparation were compensated for using a geochemical
mass balance approach in which residual contaminants were
calculated using XRF from the amount of Al2O3 in individual
samples (Brewer et al., 2008; Mackay et al., 2011). The average
isotope value of silt from Lake Baikal is þ11.7 � 0.3& (Brewer et al.,
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2008) while Al concentrations in fully purified Last Interglacial
diatom samples from Lake Baikal are 0.08% [1 SD ¼ 0.02] (Swann,
2010). Although this level of diatom- bound Al typically only
alters modelled d18Odiatom within the limits of analytical repro-
ducibility (0.34&) it nevertheless remains important to account for
this contribution. Full details of mass-balance calculations are given
in Mackay et al. (2011).

4. Results and discussion

The main controls on d18O in Lake Baikal waters include relative
inputs from northern and southern basin rivers, atmospheric
circulation changes, changes in seasonal precipitation, temperature
dependent d18O in precipitation and evaporative enrichment (Seal
and Shanks, 1998; Morley et al., 2005). Interpretation of the
d18Odiatom record requires extensive knowledge of isotopic vari-
ability of the different hydrological inputs into Lake Baikal (Table 1).
The d18O composition of lake water is the same across the length of
the lake, highlighting that the waters are very well mixed
(d18O ¼ �15.9 to �15.7&) (Weiss et al., 1991). However, the d18O
composition of rivers flowing into the lake is considerably higher
for those with southern catchments, such as the Selenga (Seal and
Shanks, 1998) because they are fed by a lower proportion of
isotopically-lower snowmelt (Table 1). During periods of prolonged
winters, increased snow cover extent results in a reduction in
summer precipitation (especially over the Selenga catchment)
through increased anticyclonic activity and the strength of the
Siberian High (Lui and Yanai, 2002). Thus discharge from rivers
with higher d18O values to the south of Lake Baikal decline in
volume, while relative discharge from northern rivers increases
(Morley et al., 2005). These findings indicate that d18O values are
a weighted average of all input sources minus outputs (Morley
et al., 2005), and therefore have important implications in terms
of palaeoclimatic interpretations.

4.1. Confounding factors

Mackay et al. (2008) discuss the three main factors which can
have important impacts on the d18Odiatom values, as applied to Lake
Baikal sediments: (i) contamination from other oxygen-bearing
minerals in the sediment; (ii) diatom dissolution; and (iii) vital
effects from changing diatom communities. Brewer et al. (2008)
and Mackay et al. (2011) discuss in detail the use of sample Al2O3
concentrations as an estimator of contamination. The vast majority
of samples spanning the Last Interglacial period were extremely
pure (containing between only 1e3% Al2O3). We are very confident
therefore that any uncertainties around mass-balancing are
minimal. Levels of non-diatom material prior to 128 ka BP are high
(up to 75%), making robust interpretations uncertain (Fig. 3). We
Table 1
Mean d18O and dD � 2 SD (& versus SMOW) values for rivers flowing into the south,
central and north basins of Lake Baikal, and of lake water within those basins (Seal
and Shanks, 1998a; Morley et al., 2005b). 1Water samples taken from underneath the
ice of frozen Lake Baikal.

Source Date measured d18O dD

South basin riversa 1991e1992 �15.9 � 4.9 �120 � 31
Central basin riversa 1991e1992 �17.6 � 3.7 �132 � 21
North basin riversa 1991e1992 �20.4 � 2.2 �151 � 13
South basina June 1992 �15.8 � 0.1 �123 � 2
South basinb April 20001 �15.9 � 0.1 �123 � 2
South basinb July 2000 �15.7 � 0.1 �122 � 1
South basinb March 20011 �15.8 � 0.1 �125 � 1
Central basina June 1992 �15.8 � 0.9 �123 � 3
Central basina June 1992 �15.9 � 0.1 �123 � 2
North basina June 1992 �15.8 � 0.1 �124 � 1
therefore focus our discussion on hydrological variability during
the period between c.127.5 and 115 ka BP. Dissolution of Lake Baikal
diatoms at the surface sedimentewater interface is a significant
process, and only c. 1% of valves are eventually preserved in the
sedimentary record (Ryves et al., 2003). Dissolution of diatom silica
continues into the sedimentary pore-waters, until saturation is
reached (Conley and Schelske, 1989; Carter and Colman, 1994).
Despite diatom dissolution being a common process in freshwater
ecosystems, very little is known about its impact on d18Odiatom
values. Through experiments, Moschen et al. (2006) determined
that d18Odiatom values could become enriched if dissolution
occurred at high pH (pH 9.0) only, i.e. there was no significant
change on d18Odiatom values at near neutral pH. As the pH of Lake
Baikal is generally 7.1e7.2 (Votintsev, 1961), it is unlikely that
dissolution will have had an effect on the d18Odiatom values
observed. In comparison to some other organisms, the impact of
vital effects of diatoms on d18O values is not well known. Of the few
studies that have been carried out, the impact of differential species
fractionation appears to be very limited (e.g. Shemesh et al., 1995;
Swann et al., 2006), andwithin the range of reproducibility that can
be achieved using fluorination techniques (Swann et al., 2007).
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Although the diatom flora during the Last Interglacial is diverse,
diatom biovolume is dominated throughout the period by large
Stephanodiscus grandis valves (>100,000 mm3) (Rioual and Mackay,
2005). Biogenic silica from other species is therefore relatively low;
thus possible effects of changing assemblage composition on
d18Odiatom values are likely to be low too.

4.2. Intra-interglacial variability

During the early stages of the Last Interglacial (127.5 e c.
124 ka BP), peak d18Odiatom values of þ33.1& at 125.4 ka BP, are
concurrent with peak July insolation in central Asia at 65 �N (Berger
and Loutre, 1991), marked increase in North Atlantic SSTs and
lowest global ice volume (Fig. 5) (Kukla et al., 2002). Boreal taiga
forest rapidly expanded in the Lake Baikal region (Granoszewski
et al., 2005), linked to significant increase in pollen-inferred
annual precipitation, followed by increase in temperature of the
coldest month (Fig. 4) (Tarasov et al., 2005, 2007). Chemical
weathering was only recorded after 125 ka BP (Fagel and Mackay,
2008), corresponding to the initiation of Siberian soil chernozem
development (Chlachula et al., 2004). High d18Odiatom and
increasing C/N indicate a significant increase in discharge and
allochthonous transport into Lake Baikal from the Selenga River,
linked to a weak Siberian High (Velichko et al., 1991).

d18Odiatom gradually declined from the onset of the Last Inter-
glacial to lowest level of þ29.0& at 119.7 ka BP. Deviations in
d18Odiatom from the mean progressively declined after 125.4 ka BP
(Fig. 4). However, superimposed upon this trend are severalmarked
fluctuations, similar to fluctuations in lake productivity (Fig. 4)
(Fietz et al., 2007; Mackay, 2007), and further afield to variations in
deep ocean circulation (Fig. 5) (Oppo et al., 2006). Notable minima
occurred at 126.0 ka BP (þ30.0&), 124.7 ka BP (þ30.9&),
123.7 ka BP (þ30.5&), 122.6 ka BP (þ30.4&), 121.4 ka BP (þ29.9&).
Pacing between these minima was approximately 1.26 � 0.3 ka,
which was less frequent than Last Interglacial IRD events in the
North Atlantic (these occurred approximately every 1.48 ka; Bond
et al., 2001), although values are within uncertainty limits.
Millennial-scale variability has also been found to occur during the
Last Interglacial in the form of European pollen-inferred cold events
(Müller et al., 2005; Binka and Nitychoruk, 2011) and diatom
variability in Ribains maar in the French Massif Central (Rioual
et al., 2007).

4.3. Palaeoclimatic interpretation

The minimum in d18Odiatom values at c. 126 ka BP occurs at the
same time as marked declines in pollen-inferred temperatures of
the warmest and coldest months in the Lake Baikal region. Cooler
temperatures are likely responsible for decline in diatom BVAR, and
also for lowest C/N values for the complete sequence, which
highlights the importance of autochthonous sources of carbon to
the lake (Meyers, 1994). Low d18Odiatom values at c. 126 ka BP are
also concurrent with an increase in IRD associated with the final
stages of Heinrich 11 (Skinner and Shackleton, 2006), a decline in
North Atlantic SST and AMOC (Oppo et al., 2006) (Fig. 5) and
a proposed southern shift of the North Atlantic drift which resulted
in a period of reduced rainfall in south-western France (Couchoud
et al., 2009). Elsewhere, the d18O from Dongge Cave indicates
a decline in precipitation linked to reduced summer monsoon
intensity in southern China (Yuan et al., 2004), while a shift to more
arid climate has been observed from the Greek Ioannina sequence
between c. 127 and 126 ka BP (Tzedakis et al., 2003). Sun et al.
(2012) determined that strengthened winter monsoon (i.e.
increase in strength of the Siberian High) was caused by a slow-
down of AMOC during the Last Glacial period, influencing the
northern Westerlies. Given that cyclicity in monsoon variability
spanned glacialeinterglacial cycles, the decline in d18Odiatom values
during the Last Interglacial was likely linked to the decline in AMOC
influencing the Westerlies, which resulted in increased intensity of
the Siberian High, and greater proportion of isotopically depleted
snowmelt discharge into Lake Baikal.

The shift to lowest d18Odiatom values between 120.5 and
119.7 ka BP occurs at the same time as an increase in North Atlantic
IRD, lower SSTs (Oppo et al., 2006) and a small increase in global ice
volume (McManus et al., 2002) (Fig. 5), Shifting AMOC and
concomitant increase in intensity of the Siberian High likely led to
prevailing cooler regional temperatures (Tarasov et al., 2005) and
the observed increase in proportion of snowmelt inflow to Lake
Baikal, together with depressed primary productivity in the lake
(Karabanov et al., 2000; Prokopenko et al., 2002; Rioual and
Mackay, 2005; Fietz et al., 2007) (Fig. 4). This cool event has been
observed elsewhere in many other records, including European
lakes (Field et al., 1994; Rioual et al., 2001; Tzedakis et al., 2003;
Sirocko et al., 2005) and Chinese archives which highlight a marked
decline in summer monsoon intensity (Fig. 5) (Zhisheng and Porter,
1997; Yuan et al., 2004).

Cool steppe and tundra vegetation expanded in the catchment
around Lake Baikal between 119.7 and 117.4 ka BP (Tarasov et al.,
2005), although taiga biome still dominated the landscape. After
the 120.5e119.7 ka BP cool event, diatom productivity in Lake
Baikal increased, although at lower rates, until 117.4 ka BP (Fig. 4).
During this period, d18Odiatom values increased overall
from þ29.0& at 119.7 ka BP to þ31.6& by 117.6 ka BP, indicative of
sustained isotopically higher hydrological input into the lake,
concurrent with elevated allochthonous carbon (Fietz et al., 2007)
and persistent high effective moisture (Tarasov et al., 2005). A shift
in diatom assemblage composition occurred from large extinct
Stephanodiscus species, which likely required strong spring mixing,
to extant Cyclotella species that today are most abundant during
autumn overturn (Rioual and Mackay, 2005). There were also
notable d18Odiatom minima at 118.7 ka BP (þ29.5&), 118.0 ka BP
(þ29.7&) and 117.4 ka BP (þ30.4&), which occurred more
frequently than the sequence of minima earlier in the record.
Proxy evidence for deep-water circulation is very poor at this time
(Oppo et al., 2006) although in general periods of elevated rain-fed
discharge into Lake Baikal occurred when AMOC was higher
(Fig. 5).

The final stage of the Last Interglacial, leading to the MIS 5e/
5d transition (117.4e115 ka BP) (Kukla et al., 2002; McManus
et al., 2002), was complex with growth of northern ice sheets
linked to declining insolation. Continental interior regions are
especially sensitive to changes in declining insolation, with major
falls in summer temperature predicted by energy balance models
(Short et al., 1991). Around Lake Baikal, cool steppe vegetation
dominated the landscape, with minor contributions from boreal
trees and shrubs (Tarasov et al., 2005). Primary productivity
within the lake also declined (Fig. 4), concurrent with a marked
decline in North Atlantic SSTs (Oppo et al., 2006) (Fig. 5).
Reconstructed temperatures showed that mean temperature of
the warmest and coldest month remained low (Tarasov et al.,
2005, 2007).

During the Last Interglacial, Gulf Stream currents extended past
the Bering Sea, along the coast of northern Siberia as far as 140 �E
(Velichko, 1984). Despite low insolation, full interglacial conditions
took place in Nordic seas and high Arctic only after 118 ka BP (Van
Nieuwenhove et al., 2011). In the North Atlantic at this time, AMOC
strengthened considerably (Fig. 5) (McManus et al., 2002),
concurrent with sustained input of rain-fed discharge into Lake
Baikal, increased inputs of allochthonous carbon and very active
catchment pedogenesis (Fagel and Mackay, 2008). Strong AMOC
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Table 2
Measures of central tendency and spread of d18Odiatom data from Last Interglacial
(this study) and the Holocene (Mackay et al., 2011). Differences between the dataset
were tested for significance using the non-parametric KruskaleWallis test (chi-
square ¼ 34.086; p ¼ 0.000).

LIG full LIG 10 ka Holocene 10 ka

Mean 30.9 30.4 28.7
SD 1.4 0.65 1.34
Range 7.9 2.8 5.6
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also resulted in strengthened summer monsoon intensity (Yuan
et al., 2004; Fig. 5). At the MIS 5e/5d transition, glacial inception
commenced in northwest Siberia because of the deep penetration
of warm Atlantic currents across the northern coastline of Siberia
and to declining temperatures linked to the MIS 5d insolation
minimum (Karabanov et al., 1998). Thus while summer tempera-
tures were very cold, leading to changes in catchment vegetation,
moisture was still being transported to the region.

4.4. Comparison of interglacial hydrological variability

The Last Interglacial is not a terribly good analogue for Holocene
climate because of differences in its orbital setting and insolation
trends in particular (Berger and Loutre, 2003). In the Lake Baikal
region, these differences contributed to consistently warmer
pollen-inferred temperatures and elevated precipitation in the Lake
Baikal region between 128 and 119 ka BP in comparison to the
Holocene (Tarasov et al., 2007). A key question to ask therefore is
whether differences in hydrological variability also existed
between these two time periods.

Bond et al. (1999) proposed that increased freshwater discharge
to the North Atlantic from glacier melt during interglacials were
not enough to push circulation over a threshold into a new state.
Thus pervasive cycles during the Holocene, and other long inter-
glacials, were diminished in comparison to glacial periods. Here we
extend this analogy and test the hypothesis that isotopic variability
during the Last Interglacial in Lake Baikal was also diminished in
comparison to the Holocene, because of higher global mean
surface temperatures (Otto-Bliesner et al., 2006). Isotopic records
were initially synchronized by aligning precession maxima
(10.1 ka BP Holocene; 126.0 ka Last Interglacial). The Holocene
record between 10.1 ka BP and AD 1910 (34 samples) was
compared with the Last Interglacial period between 126.0 and c.
115.9 ka BP (43 samples) (Fig. 6). d18Odiatom values during the Last
Interglacial in Lake Baikal were significantly higher, with less
spread and uncertainty than during the Holocene (Fig. 6; Table 2).
Both records show distinct millennial-scale variability. However,
while fluctuations during the Holocene frequently exceeded 1&,
this was rarely the case during the Last Interglacial, except prior to
129 ka BP and after 118 ka BP. These data clearly demonstrate that
Lake Baikal hydrology was much more stable during peak Last
Interglacial than during the Holocene. Furthermore, actual minima
in d18Odiatom during the Last Interglacial were all higher than
Holocene d18Odiatom, indicative of sustained isotopically-higher
discharge into Lake Baikal. This concurs with persistent high
regional precipitation and effective moisture in comparison to the
Holocene (Tarasov et al., 2007).

Hydrological variability has previously been investigated for an
MIS 11 sequence from Lake Baikal (Mackay et al., 2008). Unfortu-
nately MIS 11 isotope data cannot be directly compared to the data
from MIS 5e and MIS 1 as improvements in the handling of the
effects of contamination were only made during the work on the
latter two sections. Considering MIS 11 by itself, relative changes
highlighted at least one major decline in d18Odiatom values between
396 and 390 ka BP, which was shown to corroborate decreases in
primary productivity (Prokopenko et al., 2010) as well as reductions
in greenhouse gas concentrations (Spahni et al., 2005), major
increases in North Atlantic IRD (McManus et al., 1999) and
the penetration of polar foraminifera assemblages off the Iberian
Peninsula (de Abreu et al., 2005). Thus abrupt events in AMOC
during previous interglacials also likely influenced Lake Baikal
hydrology. Although d18Odiatom analyses have yet to be undertaken
on other Lake Baikal interglacial sequences, during the Last Glacial
period Heinrich Events were shown to have impacted lake
productivity during MIS 3 (Prokopenko et al., 2001; Swann et al.,
2005). Because Heinrich events are closely coupled with
DansgaardeOeschger cycles they are also an integral component of
the pervasive 1e2 ka cycle (Bond et al., 1999). We believe therefore
that there is substantial evidence for variations in AMOC impacting
on central Asian environments during both glacial and interglacial
states, and that these cycles may be a persistent feature of
Quaternary climates in general. This supports the idea that
modern-day strong climatological teleconnections between North
Atlantic/Europe and Siberia are a permanent feature of the Earth’s
climate state.
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5. Conclusions

Isotopic evidence for hydrological input into Lake Baikal shows
that discharge was sensitive to variations in AMOC during the Last
Interglacial. Increased influence of isotopically lower snowmelt
occurs with a periodicity similar to Bond events, with an early event
linked to the final stages of Heinrich Event 11. Therefore it is
apparent that the sediments of Lake Baikal are sensitive indicators
of millennial-scale climate variability during interglacial periods. In
general, there is very good concordance between hydrological
variability and aquatic productivity in the lake, until the latter
stages of the interglacial, after 117.4 ka BP. Prevailing cooler climate
resulted in reduced productivity, but persistent strong penetration
of Westerlies into central Asia resulted in sustained input into Lake
Baikal from rivers such as the Selenga. Hydrological variability was
statistically lower during much the Last Interglacial than the
Holocene, which was likely linked to globally warmer tempera-
tures. Tentative evidence exists for millennial-scale variability
during earlier interglacials, and future work should focus on those
that have similar orbital configurations to the Holocene and the
near future so that potential impacts of future climate change can
be robustly modelled.
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