ment as well as anginal pains. Rate of arrhythmia at discharge was minimal in streptokinase group. Alteplase required much more costs than streptokinase or treatment without thrombolitical therapy. ICER was 252,454.31 rubles ($7889.20) per absence of heart failure at discharge for alteplase vs streptokinase, and 166,720.5 rubles ($5210.02) for alteplase vs treatment without thrombolitical therapy. Still streptokinase was more cost-effective vs treatment without thrombolitical therapy: ICER was 4038.76 rubles ($126.21) per absence of heart failure at discharge. CONCLUSION: Alteplase is less cost-effective thrombolitical strategy for MI than streptokinase in spite of higher effectiveness.

PCV10
THE COST-EFFECTIVENESS OF CLOPIDOGREL IN PATIENTS UNDERGOING PERCUTANEOUS CORONARY INTERVENTION IN SWEDEN: AN ANALYSIS OF PCI-CURE
Lindgren P1, Stenestrand U1, Malmberg K1, Jonsson B1
1Stockholm Health Economics, Stockholm, Sweden; 2University Hospital of Linköping, Linköping, Sweden; 3Karolinska Hospital, Stockholm, Sweden; 4Stockholm School of Economics, Stockholm, Sweden

OBJECTIVES: We assessed the long-term cost-effectiveness of the use of clopidogrel on top of standard therapy (including aspirin) in comparison with ASA only in patients undergoing percutaneous coronary interventions in Sweden. METHODS: A Markov model was developed. Transition probabilities for relevant events were estimated based on RIKS-HIA, a register on patients treated in the coronary care units at 74 (out of 78) hospitals throughout Sweden. Patients were assumed to be treated for one year with an effect based on the PCI-CURE trial. Costs for the intervention and the defined events were collected from published sources and recalculated to 2003 prices. Life-years gained were used as the measure of effectiveness, with QALY's gained as a sensitivity analysis. The perspective was that of the Swedish society with a separate analysis using a health care cost perspective. Costs and effects were discounted at 3%. RESULTS: The model predicts a net gain in survival of 0.04 years when adding clopidogrel. This comes at a net increased cost of 441€ if only direct costs are included. Including indirect costs, the net increase is reduced to 326€. The resulting cost-effectiveness ratio was 10,782€ and 7971€ per life-year gained for the different definitions of cost. Assuming a 0.1 reduction in utility following a MI, the cost per QALY gained was 6381€. Cost-effectiveness ratios were even lower in diabetics compared to non-diabetics. Results were robust to changes in discount rate and variations in unit costs. CONCLUSIONS: The predicted cost-effectiveness ratios are well below the threshold values generally considered cost-effective. Adding clopidogrel to ASA thus appears cost-effective in this indication.

PCV11
COST EFFECTIVENESS OF ADDING NIASPAN TO ATORVASTATIN TREATMENT IN THE SECONDARY PREVENTION OF CARDIOVASCULAR DISEASE IN PATIENTS WITH DYSLIPIDEMIA IN THE UK
Berger W1, Roze S2, Valentine WJ2, Palmer AJ3
1Merck KGA, Darmstadt, Germany; 2CORE Center for Outcomes Research, Binningen/Basel, Switzerland

OBJECTIVES: High density lipoprotein-cholesterol (HDLC-C) is inversely and independently associated with increased risk of cardiovascular disease (CVD). The importance of HDLC-C as a risk factor for CVD is well accepted. We performed a modelling study to estimate the incremental cost per additional patient achieving target HDLC-C (≥1mmol/L) when Niaspan (extended release niacin) is added to stable statin therapy in CVD patients from the perspective of the National Health Service in the UK. METHODS: A 3-step probabilistic model was developed. Step 1: population of 10,000 patients with a normal distribution of lipid profiles defined by mean and standard deviation was created. Step 2: treatment effects of atorvastatin 10mg were applied to the population and those whose low density lipoprotein-cholesterol (LDL-C) was satisfactory (≤3.0mmol/L) but did not reach target HDLC-C (≥1.0mmol/L) received treatment with Niaspan. Step 3: treatment effects of Niaspan were applied in patients. Baseline lipid values and treatment effects were randomly sampled from distributions drawn from published epidemiological and clinical studies using second order Monte Carlo methodology. Cost for drugs and initiation of Niaspan treatment were taken from published sources. Results were presented for the initiation year, taking into account initiation costs and drop-outs, and maintenance year scenarios. RESULTS: In total, 16.3% of patients required Niaspan in addition to atorvastatin treatment to control dyslipidemia. Of these patients, 29.4% and 36.7% reached target HDLC-C after addition of Niaspan in the initiation and maintenance years respectively. Additional costs in Niaspan treated patients were £320.30 and £252.30 for initiation and maintenance years respectively, leading to incremental costs of £1089 and £687 per additional patient achieving HDLC-C target. CONCLUSIONS: The additional costs per patient treated to HDLC-C target by adding Niaspan to statin therapy are comparable to those reported in the literature for treating patients with statins to LDL-C or total cholesterol targets.

PCV12
SECONDARY PREVENTION AFTER PCI: THE COST-EFFECTIVENESS OF FLUVASTATIN THERAPY IN THE NETHERLANDS
Chaplin S1, Scuffham P1, Alon M2, Boom van den G1
1University of York; York, UK; 2Novartis Pharma, Arnhem, The Netherlands

OBJECTIVES: Little is known about the cost-effectiveness of secondary prevention after percutaneous coronary intervention (PCI). Aims of this study are to estimate 1) the cost-effectiveness of routine fluvastatin therapy after a first successful PCI in The Netherlands, and 2) the chance that fluvastatin therapy is cost-effective given a society’s willingness to pay as laid down in Dutch guidelines. METHODS: A cost-effectiveness analysis was performed using data from the Lescol Intervention Prevention Study (LIPS). In the LIPS trial, patients with normal blood cholesterol to moderate hypercholesterolemia who had undergone a first PCI were randomized to receive either fluvastatin 40mg twice-daily plus dietary counseling or dietary counseling alone. A Markov model (DataPro) was used to estimate the incremental costs per quality-adjusted life year (QALY) and life year gained (LYG). Costs were based on prices and reimbursed charges, utility data were drawn from literature. Hospital costs (admissions and procedures) were extracted from a database with complete national coverage. 10,000 Monte Carlo simulations and multivariate analysis were used to assess (2nd order) uncertainty. RESULTS: The mean net incremental costs of routine statin treatment were 734€ (SD: 686€) per patient over 10-years compared with controls. Treatment resulted in an incremental 0.078 (0.047) QALYs or 0.082 LYG (0.041). The incremental cost per QALY and LYG were 9312€ (14,648€) and 8954€ (16,617€) respectively. The sensitivity analysis revealed that the cost of fluvastatin and the discount rate had the largest effect on the ICER. Anticipating a willingness to pay of 20,000€ per QALY, there is a 75.1% chance that fluvastatin treatment is cost-effective. CONCLUSIONS: Statin therapy with fluvastatin
is economically efficient with regard to reducing heart disease in
The Netherlands when given routinely to all patients following PCI.

ECONOMIC ASSESSMENT OF EZETIMIBE CO-
ADMINISTRATION IN A HUNGARIAN CHD PATIENT COHORT
NOT AT CHOLESTEROL GOAL ON SIMVASTATIN
MONOTHERAPY
Hoffer G, Yin D, Alemao E, Nagy L, Monori M, Davies GM,
Cook JR
1University of Debrecen, Debrecen, Hungary; 2Merck & Co,
Whitehouse Station, NJ, USA; 3MSD Hungary Kft, Budapest XII,
Hungary; 4Schering Plough, Budapest, Hungary; 5Merck & Co, Inc, Blue
Bell, PA, USA
OBJECTIVE: To assess cost-effectiveness of ezetimibe 10mg
(EZ10) co-administration with simvastatin versus a simvastatin
dose titration strategy in CHD patients who do not attain cho-
lesterol goal (TC < 5 mmol/L) with simvastatin monotherapy.
METHODS: A decision-analytic model was developed to project
lifetime costs and benefits of lipid therapy. Clinical trial data
were used to estimate TC reductions for different treatment
strategies. The effect of TC reductions on CHD event rates was
estimated using Framingham equations and Hungarian National
Statistics data on nonCHD-related mortality. Direct costs of
CHD events in Hungary, Hungarian prices for simvastatin and
EZ 10 price (based on German EZ10 price) were used to project
costs.

RESULTS: For these patients (mean age 62.9 years, 51% male, lipid profile on simvastatin
LDL-C 3.53 mmol/L, TC 5.99 mmol/L, HDL 1.44 mmol/L, trigly-
cerides 2.40 mmol/L), EZ10 co-administered with simvastatin
compared to simvastatin titration is projected to increase life
expectancy by 0.69 years with a discounted C/LY of 14,891€
and the discounted C/QALY’s of 14,827€.

CONCLUSIONS: Catheter ablation treatment of VT becomes increasingly cost
effective compared to drug therapy as the time horizon increases
and after 3.6 years, ablation is less costly and more effective than
amiodarone therapy.