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Abstract

In this note we consider a nonlinear difference equation of the form

xn+1 = f (xn−s , xn−t ), n = 0,1, . . . ,

under some certain assumptions, wheres, t ∈ {0,1,2, . . .} with s < t and the initial valuesx−t ,

x−t+1, . . . , x0 ∈ (0,+∞). We prove that the length of its finite semicycle is less than or equat
and give sufficient conditions under which every positive solution of this equation converges
positive equilibrium. Some known results are included and improved.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear difference equations of order greater than one are of paramount impo
in applications. Such equations also appear naturally as discrete analogues and as
ical solutions of differential and delay differential equations which model various div
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phenomena in biology, ecology, physiology, physics, engineering and economics.
nonlinear difference equations, especially the boundedness, global attractivity, osc
and some other properties of second order nonlinear difference equations have bee
tigated by many authors, see [1–3].

Amleh et al. [4] studied the characteristics of the difference equation

xn+1 = p + xn−1

xn

. (1)

They confirmed conjecturex.y 4 in [5] and obtained that the solutions of Eq. (1) w
positive initial conditions are globally asymptotically stable provided thatp > 1.

Fan et al. [6] investigated nonlinear difference equation of the form

xn+1 = f (xn, xn−k) (2)

under some certain assumptions. They showed that the length of finite semicycle of
is less than or equal tok and give sufficient conditions under which every positive solu
of this equation converges to the unique positive equilibrium.

To be motivated by the above studies, in this note, we consider the more general e

xn+1 = f (xn−s , xn−t ), n = 0,1,2, . . . , (3)

wheres, t ∈ {0,1,2, . . .} with s < t , the initial valuesx−t , x−t+1, . . . , x0 ∈ R+ ≡ (0,+∞)

andf satisfies the following hypotheses:

(H1) f ∈ C(E × E, (0,+∞)) with inf(u,v)∈E×E f (u, v) ∈ E, where E ∈ {(0,+∞),

[0,+∞)};
(H2) f (u, v) is decreasing inu and increasing inv;
(H3) Eq. (3) has the unique positive equilibrium, denoted byx̄.

First we give some definitions which can be found in [6].

Definition 1. The trivial solution of Eq. (3) is the solution{xn}∞n=−t with xn = x̄ for all
n � −k.

Definition 2. If xn − x̄ � 0 for all n ∈ {r, r + 1, . . . , s} with xr−1 − x̄ < 0 andxs+1 − x̄

< 0, then the termsxn such thatn ∈ {r, r + 1, . . . , s} form a positive semicycle of lengt
s − r + 1. Similarly, if xn − x̄ < 0 for all n ∈ {r, r + 1, . . . , s} with xr−1 − x̄ � 0 and
xs+1 − x̄ � 0, then the termsxn such thatn ∈ {r, r + 1, . . . , s} form a negative semicycl
of lengths − r + 1.

2. Main results

Theorem 1. Assume that(H1)–(H3) hold and{xn}∞n=−t is a nontrivial positive solution o
Eq. (3).

(1) If {xn}∞n=−t contains an infinite semicycle, then it is the first semicycle;
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(2) If {xn}∞n=−t contains a finite semicycle, then its length is less than or equal tot with
the exception of possibly the first semicycle.

Proof. (1) Without loss of generality, we suppose that the solution{xn}∞n=−t of Eq. (3)
contains a positive infinite semicycle, then there exists a smallest integerN � −t such that
xn � x̄ for all n � N . If N > −t , thenxN−1 < x̄, thus

xN+t = f (xN+t−1−s , xN−1) < f (x̄, x̄) = x̄.

This is a contradiction. ThereforeN = −t .
(2) Without loss of generality, we suppose that{xi+1, xi+2, . . . , xi+l} is a positive finite

semicycle of the solution{xn}∞n=−t with xi < x̄ andxi+l+1 < x̄. If l > t , then

x̄ � xi+t+1 = f (xi+t−s , xi) < f (x̄, x̄) = x̄.

A contradiction, which impliesl � t . Theorem 1 is proven. �
Let a = inf(u,v)∈E×E f (u, v) ∈ E. Obviously,a � 0 andxn � a for all n > 0. In the

sequence, we assume that

(H4) The functionf (a, x) has only one fixed point in the interval(a,+∞), denoted byA;
(H5) The functionf (a, x)/x is nonincreasing in(a,+∞) andf (x̄, x)/x is nonincreasing

in E.

Theorem 2. Assume that(H1)–(H5) hold and{xn}∞n=−t is a positive solution of Eq.(3),
then there exists a positive integerN such that

f (A,a) � xn � A for n � N.

Proof. Sincea = inf(u,v)∈E×E f (u, v) ∈ E, we have

x̄ = f (x̄, x̄) > f (x̄ + 1, x̄) � a.

Claim 1. f (A,a) < x̄ < A.

Proof of Claim 1. If A � x̄, then it follows from (H2) and (H5) that

A = f (a,A) > f (x̄,A) � A,

this is a contradiction. Thereforēx < A.
Sincex̄ < A, we have that

f (A,a) < f (x̄, x̄) = x̄.

Claim 1 is proven. �
Claim 2. For all n � t , xn+1 � xn−t if xn−t > A andxn+1 � A if xn−t � A.

Proof of Claim 2. Obviously

xn+1 = f (xn−s , xn−t ) � f (a, xn−t ).
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If xn−t � A, thenxn+1 � f (a, xn−t ) � f (a,A) = A.

If xn−t > A, then

f (a, xn−t )

xn−t

� f (a,A)

A
= 1,

which impliesxn+1 � f (a, xn−t ) � xn−t . Claim 2 is proven. �
Claim 3. For everyi ∈ {0,1, . . . , t}, there exists a positive integerNi such thatxn(t+1)+i

� A for all n � Ni .

Proof of Claim 3. Assume on the contrary that there exists somei ∈ {0,1, . . . , t} such that
Claim 3 does not hold. Then it follows from Claim 2 that for alln � 1,

A < x(n+1)(t+1)+i � xn(t+1)+i .

Let limn→∞ xn(t+1)+i = Ai , thenAi � A.
We know from Claim 2 that{xn} is bounded. Let

B = lim sup
n→∞

xn(t+1)+i−s−1,

thenB � a and there exists a sequencenk → ∞ such that

lim
k→∞xnk(t+1)+i−s−1 = B.

By (3) we have that

xnk(t+1)+i = f (xnk(t+1)+i−s−1, x(nk−1)(t+1)+i )

from which it follows that

Ai = f (B,Ai) � f (a,Ai) = Ai

f (a,Ai)

Ai

� Ai

f (a,A)

A
= Ai.

This with (H2) and (H4) impliesB = a andAi = A. Therefore limn→∞ xn(t+1)+i−s−1 = a.
Let

C = lim sup
n→∞

xn(t+1)+i−2s−2,

then∞ > C � a and there exists a sequencelk → ∞ such that

lim
k→∞xlk(t+1)+i−2s−2 = C.

Again by (3) we have that

xlk(t+1)+i−s−1 = f (xlk(t+1)+i−2s−2, x(lk−1)(t+1)+i−s−1)

from which it follows that

a = f (C,a) > f (C + 1, a) � a.

This is a contradiction. Claim 3 is proven.�
Let N = max{Ni : 0� i � t} + 2t , then for alln > N we have that

xn � A
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and

xn = f (xn−s−1, xn−t−1) � f (A,a).

Theorem 2 is proven. �
Lemma 1 (see [6]).Consider Eq.(3). LetI = [c, d] be some interval of real numbers an
f ∈ C(I × I, I ) satisfy the following properties:

(i) f (u, v) is decreasing inu and increasing inv;
(ii) If (x, y) ∈ [c, d] is a solution of the system{

x = f (y, x),

y = f (x, y),

thenx = y.

Then Eq.(3) has the unique positive equilibrium̄x and every solution of Eq.(3) converges
to x̄.

By Theorem 2 and Lemma 1, we obtain the following theorem.

Theorem 3. If (H1)–(H5) hold and the system{
x = f (y, x),

y = f (x, y)
(4)

has the unique solution(x̄, x̄) in [f (A,a),A]×[f (A,a),A], then every solution of Eq.(3)
converges tōx.

3. Applications

In this section, we shall give two applications of the above results.

Application 1. Consider equation

xn+1 = p + xn−t

q + xn−s

, n = 0,1, . . . , (5)

where s, t ∈ {0,1,2, . . .} with s < t , the initial conditionsx−t , . . . , x0 ∈ (0,+∞) and
p,q ∈ (0,+∞). If q > 1, then every positive solution of Eq.(5) converges to the uniqu
positive equilibrium.

Proof. Let E = [0,+∞), it is easy to verify that (H1)–(H5) hold for Eq. (5). In addition
if {

x = p+x
q+y

,

y = p+y
,

(6)

q+x
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then Eq. (6) has the unique solution

x = y = x̄ = 1− q + √
(1− q)2 + 4p

2
.

It follows from Theorems 2 and 3 that every positive solution of Eq. (5) converges t

unique positive equilibrium̄x = 1−q+
√

(1−q)2+4p

2 . �
Application 2. Consider equation

xn+1 = p + xn−t

xn−s

, n = 0,1, . . . , (7)

wheres, t ∈ {0,1,2, . . .} with s < t , the initial conditionsx−t , . . . , x0 ∈ (0,+∞) andp ∈
(0,+∞). If p > 1, then every positive solutions of Eq.(7) converges to the unique positi
equilibrium.

Proof. Let E = (0,+∞), it is easy to verify that (H1)–(H5) hold for Eq. (7). In addition
if {

x = p + x
y
,

y = p + y
x
,

(8)

then Eq. (8) has the unique solution

x = y = x̄ = p + 1.

It follows from Theorems 2 and 3 that every positive solution of Eq. (7) converges t
unique positive equilibrium̄x = p + 1. �
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