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Abstract
In this note we consider a nonlinear difference equation of the form
Xp41 = fn—s, xn—r), n=01,...,

under some certain assumptions, wheree {0, 1,2, ...} with s < ¢ and the initial valuesc_;,
X_t4+1,--..x0 € (0,4+00). We prove that the length of its finite semicycle is less than or equal to
and give sufficient conditions under which every positive solution of this equation converges to the
positive equilibrium. Some known results are included and improved.
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1. Introduction

Nonlinear difference equations of order greater than one are of paramount importance
in applications. Such equations also appear naturally as discrete analogues and as numer-
ical solutions of differential and delay differential equations which model various diverse
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phenomena in biology, ecology, physiology, physics, engineering and economics. Some
nonlinear difference equations, especially the boundedness, global attractivity, oscillatory
and some other properties of second order nonlinear difference equations have been inves-
tigated by many authors, see [1-3].
Amleh et al. [4] studied the characteristics of the difference equation
Xn—1

Xpt1=p+ . 1)
Xn

They confirmed conjecture.y 4 in [5] and obtained that the solutions of Eq. (1) with

positive initial conditions are globally asymptotically stable provided that1.
Fan et al. [6] investigated nonlinear difference equation of the form

Xn+1= f(xna Xp—k) (2)

under some certain assumptions. They showed that the length of finite semicycle of Eq. (2)
is less than or equal toand give sufficient conditions under which every positive solution
of this equation converges to the unique positive equilibrium.

To be motivated by the above studies, in this note, we consider the more general equation

Xp+1= f(Xn—s,Xn—y), n=0,12 ..., 3)

wheres, r € {0, 1, 2,...} with s < ¢, the initial valuesc_;, x_;11, ..., x0 € Ry = (0, +00)
and f satisfies the following hypotheses:

(H1) f € C(E x E,(0,400)) with inf,, weexe f(u,v) € E, where E € {(0, +00),
[0, +00)};

(H2) f(u,v) is decreasing im and increasing imw;

(H3) Eg. (3) has the unique positive equilibrium, denotedcby

First we give some definitions which can be found in [6].

Definition 1. The trivial solution of Eq. (3) is the solutiofx,}>2 _, with x, = x for all
n>—k.

Definition 2. If x, —x >0 foralln e {r,r +1,...,s} with x,_1 — X <0 andx;41 — x

< 0, then the termg;,, such that: € {r,r + 1, ..., s} form a positive semicycle of length
s —r + 1. Similarly, if x, —x <Oforallne{r,r +1,...,s} with x,_1 —x > 0 and
Xs+1 — X > 0, then the terms;,, such that: € {r,r + 1, ..., s} form a negative semicycle
of lengths — r + 1.

2. Main results

Theorem 1. Assume thatH1)—(Hz) hold and{x, };2 _, is a nontrivial positive solution of
Eq. (3).

(1) If {x,}c°_, contains an infinite semicycle, then it is the first semigycle

n=—t
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(2) If {x,}52_, contains a finite semicycle, then its length is less than or equaliith

n=

the exception of possibly the first semicycle.

Proof. (1) Without loss of generality, we suppose that the solufigi._, of Eqg. (3)

n=—t

contains a positive infinite semicycle, then there exists a smallest imeger+ such that
xp=xforalln>N.If N> —t,thenxy_1 < X, thus

XN+ = [(EN4r—1-5, XN-1) < f(X, %) =X.

This is a contradiction. Thereforg = —z¢.
(2) Without loss of generality, we suppose that, 1, x; 12, ..., xi+} IS @ positive finite
semicycle of the solutiofi,, }°°._. with x; < x andx;;;11 < . If [ > ¢, then

n=—t
X< Xipr1 = fXigr—s, %) < f(X, %) =X.
A contradiction, which implieg < ¢. Theorem 1 is proven. O

Let a =inf, weexke f(u,v) € E. Obviously,a > 0 andx, > a for all n > 0. In the
sequence, we assume that

(H4) The functionf (a, x) has only one fixed point in the interval, +00), denoted by;
(Hs) The functionf (a, x)/x is nonincreasing itia, +00) and f (x, x) /x is honincreasing
in E.

Theorem 2. Assume thafH1)—(Hs) hold and{x,}°2 _, is a positive solution of Eq(3),
then there exists a positive integrsuch that
f(A,a) <x, <A forn>=N.

Proof. Sincea =infy, vycexe f(u,v) € E, we have

xX=fx,x)> f(x+1,x)>a.
Claim 1. f(A,a) <% < A.

Proof of Claim 1. If A < X, then it follows from (H) and (H;) that
A=f(a,A)> f(x,A) = A,

this is a contradiction. Therefoie< A.
Sincex < A, we have that

f(A,a) < f(x,X)=x.
Claim 1 is proven. O

Clam2. Foralln>1t, x,41 < xp— if x,—y > Aandx,;1 < A if x,—; < A.

Proof of Claim 2. Obviously

Xpt1= f(Xn—s, Xn—r) < fla, Xn—).
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If x,—; <A, thenx, 1 < f(a, x,—) < f(a, A) = A.
If Xn—t > A, then
fla,xn—t) < fla, d) _
Xn—t = A

1?
which impliesx,, 11 < f(a, x,—;) < x,—;. Claim 2 is proven. O

Claim 3. For everyi € {0, 1, ..., ¢}, there exists a positive integé¥; such thatc, 1)+
< Aforalln > N;.

Proof of Claim 3. Assume on the contrary that there exists sera€0, 1, ..., ¢t} such that
Claim 3 does not hold. Then it follows from Claim 2 that foralf 1,

A < XD 4D+ S Xn(t+D)+i-

Letlim,— o0 Xp¢+1)+i = Ai, then4; > A.
We know from Claim 2 thafx,} is bounded. Let

B =lim SUPXy (7 4-1)4+i—s—1,
n—oo
thenB > a and there exists a sequenge— oo such that
lim X, (¢+1)+i-s—1 = B.
k—o00
By (3) we have that

X404 = X (4 +i—s—1s X(np—D)(t+ 1) +i)
from which it follows that

fla, Ay <A fla,A) _
A; A

This with (Hp) and (Hy) implies B = a andA; = A. Therefore lim_ oo X 4+1)+i—s—1 = 4.
Let

A= f(B,A) < fla,A) =A; A;.

C = limsupx, (;4+1)+i—2s—2,
n—o0

thenoo > C > a and there exists a sequerige> oo such that

lim x;.¢+1)4i—25—2=C.

k—o00
Again by (3) we have that

X (4D ti—s—1 = [ (4 ) +i—25—25 Xl —1) (1 +1)+i —s—1)
from which it follows that

a= f(C,a)> f(C+1a)>a.
This is a contradiction. Claim 3 is provenO

Let N =maxN;: 0<i <1t} + 2¢, then for alln > N we have that
x, <A
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and
Xp = f(Xn—s—1, Xn—1—1) = f(A,a).
Theorem 2 is proven. O

Lemma 1 (see [6]).Consider Eq(3). Let! = [c, d] be some interval of real numbers and
f eC( x I, 1) satisfy the following properties

(i) f(u,v)is decreasing i and increasing irv;
(i) If (x,y) €[c,d]is asolution of the system

x=f(y,x),
y=rfxy),
thenx = y.

Then Eq(3) has the unique positive equilibriumnand every solution of E¢3) converges
to x.

By Theorem 2 and Lemma 1, we obtain the following theorem.

Theorem 3. If (H1)—(Hs) hold and the system
x = f(y, x),
y=fxy

has the unique solutiofx, x) in [ f (A, a), Al x[f (A, a), A], then every solution of E{3)
converges ta.

(4)

3. Applications
In this section, we shall give two applications of the above results.

Application 1. Consider equation

Xpp1=——, n=0,1,..., 5

T s ®)
wheres,t € {0,1,2,...} with s < ¢, the initial conditionsx_;, ..., xg € (0, +0o0) and
p,q € (0,4+00). If ¢ > 1, then every positive solution of E¢p) converges to the unique
positive equilibrium.

Proof. Let E = [0, +00), it is easy to verify that (H)—(Hs) hold for Eqg. (5). In addition,
if
_ ptx
iy (6)
y=1E£2,
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then Eq. (6) has the unigue solution

1-qg+VA—q)?+4p
5 .

It follows from Theorems 2 and 3 that every positive solution of Eq. (5) converges to the
— /(1—a)2
unique positive equilibriunt = w. O

x:y:f:

Application 2. Consider equation

Xn—
Xny1=p+ nt, n=01,..., 7)
Xn—s
wheres,t € {0,1, 2,...} with s < ¢, the initial conditionsx_,, ..., xo € (0, 400) and p €
(0, +00). If p > 1, then every positive solutions of E@) converges to the unique positive
equilibrium.

Proof. Let E = (0, +00), it is easy to verify that (l)—(Hs) hold for Eq. (7). In addition,
if

x=p+73,

(8)
y=p+72,

then Eq. (8) has the unigue solution
x=y=x=p+1

It follows from Theorems 2 and 3 that every positive solution of Eq. (7) converges to the
unique positive equilibriumt = p+1. O
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