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Let G be a group acting on a finite set Ω . Then G acts on Ω × Ω

by its entry-wise action and its orbits form the basis relations
of a coherent configuration (or shortly scheme). Our concern is
to consider what follows from the assumption that the number
of orbits of G on Ωi × Ω j is constant whenever Ωi and Ω j are
orbits of G on Ω . One can conclude from the assumption that the
actions of G on Ωi ’s have the same permutation character and
are not necessarily equivalent. From this viewpoint one may ask
how many inequivalent actions of a given group with the same
permutation character there exist. In this article we will approach
to this question by a purely combinatorial method in terms of
schemes and investigate the following topics: (i) balanced schemes
and their central primitive idempotents, (ii) characterization of
reduced balanced schemes.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a group acting on a finite set Ω with its orbits Ω1, . . . ,Ωn and its permutation character
π = ∑n

i=1 πi where πi(g) := |{α ∈ Ωi | αg = α}| for g ∈ G . One may think what happens if πi = π j

for all 1 � i, j � n and can say that the number of orbits of G on Ωi × Ω j by its entry-wise action is
constant for all 1 � i, j � n, which motivates us to define the following concepts whose terminology
is due to [3].

Definition 1.1. Let V be a finite set and R a set of non-empty binary relations on V . The pair C =
(V , R) is called a coherent configuration (for short scheme) on V if the following conditions hold:
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(C1) R forms a partition of the set V × V .
(C2) �V := {(v, v) | v ∈ V } is a union of certain relations from R.
(C3) For every R ∈ R, Rt := {(v, u) | (u, v) ∈ R} ∈ R.
(C4) For every R, S, T ∈ R, the size of {w ∈ V | (u, w) ∈ R, (w, v) ∈ S} does not depend on the choice

of (u, v) ∈ T and is denoted by cT
R S .

We say that the elements of V are points and those of R are basis relations.

Let C = (V , R) be a scheme and ∅ �= X ⊆ V . We say that X is a fiber of C if �X = {(x, x) | x ∈
X} ∈ R. We denote by Fib(C) the set of all fibers of C .

Definition 1.2. Let m,n and r be positive integers. We say that a scheme C is an (m,n, r)-scheme if
the following conditions hold:

(i) |{R ∈ R | R ⊆ X × Y }| = r for all X, Y ∈ Fib(C).
(ii) |X | = m for all X ∈ Fib(C).

(iii) | Fib(C)| = n.

A scheme C is called r-balanced if (i) holds, and balanced if it is r-balanced for some r. In Section 3
we will show that (i) implies (ii).

Example 1.3. (See [7, Section 12, p. 31].) Let (X, B, I) be a symmetric design with the set X of points,
the set B of blocks and the incidence relation I ⊆ X × B. Set V = X ∪ B (disjoint union) and define
the relations Ri (i = 1, . . . ,8) on V as follows.

R1 = �X , R2 = �B, R3 = (X × X) \ �X , R4 = (B × B) \ �B,

R5 = I, R6 = Rt
5, R7 = (X × B) \ I, R8 = Rt

7.

It is known that (V , {Ri}8
i=1) is an (m,2,2)-scheme where m = |X |.

Let us return to the topic in the first paragraph. Note that the orbits of G on Ω × Ω form the
basis relations of a scheme called the 2-orbit scheme of G on Ω and its fibers are Ω1, . . . ,Ωn . It is
straightforward to check that πiπ j coincides with the permutation character of G on Xi × X j for all
1 � i, j � n. It is known that the number of orbits of G on Xi × X j is equal to [πiπ j,1G ]3, which
coincides with [πi,π j], since πi ’s are real valued. Therefore, πi = π j for all 1 � i, j � n, if and only if
the 2-orbit scheme of G on Ω is balanced.

We denote by P (C) the set of all central primitive idempotents of the adjacency algebra of C (see
Section 2 for details). The following theorem shows a characterization of balanced schemes in terms
of their central primitive idempotents.

Theorem 1.1. Let C be a scheme. Then C is balanced if and only if for each X ∈ Fib(C) the mapping P (C) →
P (C X ) (P 	→ P X ) is bijective with nP = | Fib(C)|nP X .

One may conclude that |P (C)| = r if C is r-balanced and r � 5 (see Corollary 3.1). The following
theorem deals with the converse argument for r = 1,2.

Theorem 1.2. Let C = (V , R) be a scheme. Then the following hold:

(i) |P (C)| = 1 if and only if C is 1-balanced.
(ii) |P (C)| = 2 if and only if C is 2-balanced or C = C1 � C2 where Ci is i-balanced.

3 Here by 1G and [ , ] we mean the principal character of G and the inner product of characters, respectively.
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We have the following constructions of balanced schemes (see Sections 3, 4 for the details):

(i) Let U be a union of fibers of C . Then the restriction of C to U is r-balanced if C is r-balanced.
(ii) If Ci (i = 1,2) is an (mi,ni, ri)-scheme, then C1 ⊗ C2 is an (m1m2,n1n2, r1r2)-scheme.

We say that a balanced scheme C is reduced if there exist no X, Y ∈ Fib(C) such that C X∪Y �
C X ⊗ T2 where T2 is a (1,2,1)-scheme (in Section 4 you will see another equivalent condition for a
scheme to be reduced). Any r-balanced scheme is obtained by the restriction of the tensor product
of a reduced r-balanced scheme and a 1-balanced scheme (see Theorem 3.5). Now we focus our
attention on reduced balanced schemes. It seems a quite difficult problem to find possible n such
that there exists a reduced (m,n, r)-scheme for given m and r. Actually, D.G. Higman asked if there
exists a reduced (m,3,3)-scheme for some m (see [8, Section 8, p. 229]). Furthermore, H. Wielandt
conjectured that a transitive permutation group of prime degree p has at most two inequivalent
transitive representations of degree p (see [1]), though it can be solved by the classification of finite
simple groups.

Theorem 1.3. Let C be a reduced (m,n, r)-scheme and p a prime. Then we have the following:

(i) If m < 2r, then n = 1.
(ii) If p � m and C X is p-valanced4 for some X ∈ Fib(C), then n = 1.

The preceding theorem is applied to characterize (m,n, r)-schemes up to m � 11 as follows.

Theorem 1.4. Let m,n, r be positive integers and m � 11. Then a reduced (m,n, r)-scheme can exist only if
n � 2.

Let us show the organization of this article. In Section 2 we prepare some terminologies related
to schemes. Section 3 is devoted to balanced schemes. First we investigate the features of balanced
schemes. Indeed, we shall characterize a balanced scheme in terms of its central primitive idempo-
tents and we prove Theorem 1.1. Secondly we shall characterize schemes with at most two central
primitive idempotents and we prove Theorem 1.2. In Section 4 we shall extend the notion of inequiv-
alent permutation representations to schemes. Namely, we shall define reduced (m,n, r)-schemes and
then introduce some examples and known constructions of them to support our theory. Finally in
Section 5, first we prove Theorem 1.3, secondly we shall enumerate reduced (m,n, r)-schemes for
m � 11 in order to prove Theorem 1.4.

2. Preliminaries

According to [3] we prepare some terminologies related to schemes. For the remainder of this sec-
tion we assume that C = (V , R) is a scheme. One can see that V = ⋃

X∈Fib(C) X (disjoint union) and

R =
⋃

X,Y ∈Fib(C)

R X,Y (disjoint union), (1)

where R X,Y := {R ∈ R | R ⊆ X × Y }. We shall denote R X,X by R X .
Let X, Y ∈ Fib(C) and R be a non-empty union of basis relations in R X,Y . For (x, y) ∈ R we set

Rout(x) = {u | (x, u) ∈ R} and Rin(y) = {v | (v, y) ∈ R}. The size of Rout(x) and that of Rin(y) does
not depend on the choice of x ∈ X and y ∈ Y , respectively; so we shall denote them by dR and eR ,
respectively. It is easy to see that

|X |dR = |R| = |Y |eR . (2)

4 See Section 2 for the definition.
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We define the multi-set dX,Y := {dR | R ∈ R X,Y }. For D ⊆ R we define dD := ∑
R∈D dR as well as

eD := ∑
R∈D eR . For instance dR X,Y = |Y | and eR X,Y = |X |.

Note that dR = eR for each R ∈ R if and only if |X | = |Y | for all X, Y ∈ Fib(C). A scheme C is
called half-homogeneous if the latter condition holds. If C is a half-homogeneous scheme, then dR

(= eR ) is called the degree or the valency of R . Given a prime p a half-homogeneous scheme C is
called p-valenced if the degree of each basis relation of C is a power of p.

A basis relation R ∈ R is called thin if dR = eR = 1 and a scheme C is called a homogeneous scheme
or (association scheme) if | Fib(C)| = 1 or equivalently, if �V ∈ R (for more details regarding association
schemes we refer to [13]). Given X ∈ Fib(C) the pair C X = (X, R X ) is a homogeneous scheme called
the homogeneous component of C corresponding to X .

For each R ∈ R we define a {0,1}-matrix AR whose rows and columns are simultaneously indexed
by the elements of V such that the (u, v)-entry of AR is one if and only if (u, v) ∈ R . Then AR is
called the adjacency matrix of R . Note that the subspace of MatV (C) spanned by {AR | R ∈ R} is a
subalgebra called the adjacency algebra of C and denoted by A(C). Obviously,

(C′1) A(C) contains the identity matrix I V and the all-one matrix J V .
(C′2) ARt = At

R for every R ∈ R where At
R is the transpose of AR .

(C′3) For every R, S ∈ R, AR A S = ∑
T ∈R cT

R S AT .

A scheme is called trivial if all its fibers are singletons. We denote a trivial scheme on n points
by Tn . Note that A(Tn) ∼= Matn(C) and it is easy to see that a scheme is trivial if and only if it is
1-balanced.

By Fib∗(C) we mean the set of all non-empty unions of fibers of C . Given U ∈ Fib∗(C) we set
RU := {RU | R ∈ R} where RU = R ∩ (U × U ). Then the pair CU = (U , RU ) is a scheme on U called
the restriction of C to U . Note that CU is homogeneous whenever U ∈ Fib(C).

Given U , U ′ ∈ Fib∗(C) we define AU ,U ′ to be the subspace of A spanned by the set {AR | R ∈ R,

R ⊆ U × U ′}.
A basis relation S of C is called symmetric if St = S and C is called symmetric if each basis relation

of C is symmetric; and C is called commutative if cT
R S = cT

S R for all R, S, T ∈ R. This is equivalent to
AR A S = A S AR for all R, S ∈ R. It is known that symmetric schemes are commutative and that the
converse does not hold. Furthermore, one can see that a commutative scheme is a homogeneous one.

Lemma 2.1. (See [7, (4.2)], [13, Theorem 4.5.1].) If C = (V , R) is a homogeneous scheme and |R| � 5, then C
is commutative.

Given R, S ∈ R the complex product of them is defined to be R S = {T ∈ R | cT
R S > 0} and the

relational product R ◦ S is defined as follows.

R ◦ S := {
(u, v)

∣∣ ∃w ∈ V ; (u, w) ∈ R, (w, v) ∈ S
}
.

Note that R ◦ S = ⋃
T ∈R S T and dR◦S = dR S .

Lemma 2.2. Let C be a scheme and X, Y , Z ∈ Fib(C). Then for all R ∈ R X,Y , S ∈ RY ,Z and T ∈ R X,Z the
following hold:

(i) dRdS = ∑
T ∈R X,Z

cT
R SdT .

(ii) cT
R SdT = cR

T St dR = cS
Rt T dS and lcm(dR ,dS ) | cT

R SdT .

(iii) dR = ∑
S∈RY ,Z

cT
R S , eR = ∑

S∈RY ,Z
cS

Rt T , cT
R S � min{dR , eS} and R RY ,Z = R X,Z .

(iv) dRδS Rt = c�X
R S and eRδS Rt = c�Y

S R where δ denotes the Kronecker’s delta.
(v) dS � dR S � dRdS and eR � eR S � eR eS .

(vi) If dR = 2, then R Rt = {�X , S} where S ∈ R X is symmetric with dS � 2.
(vi) |R S| � gcd(dR ,dS ).
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Fig. 1.

Proof. The proof is done by the same procedure as [13, Lemma 1.4.2, 1.4.3, 1.5.2, 1.5.6]. �
Lemma 2.3. Let S ∈ R X,Y and L S := {R ∈ R X | R S = {S}}. Then

dL S | gcd
(|X |, eS

)
.

Proof. Let y ∈ Y and x ∈ Sin(y). The condition R S = {S} shows that
⋃

R∈L S
Rin(x) ⊆ Sin(y) and⋃

R∈L S
R is an equivalence relation on X . Since y ∈ Y and x ∈ Sin(y) are arbitrarily taken, all equiva-

lence classes have the same size dL S . It follows that dL S divides both dS and |X |. �
Lemma 2.4. Let X, Y ∈ Fib(C) with X �= Y and R, S ∈ R X,Y with R �= S. Then T ∈ Rt R ∩ St S for some
T ∈ RY with T �= �Y if and only if cT ′

R St � 2 for some T ′ ∈ R X .

Proof. Let us prove the necessity. By the assumption cT
Rt R �= 0 and cT

St S �= 0. Taking (y, y′) ∈ T
(of course y �= y′) there exist x, x′ ∈ X such that (x, y), (x, y′) ∈ R and (x′, y), (x′, y′) ∈ S . On the
other hand, there exists T ′ ∈ R X such that (x, x′) ∈ T ′ . It follows that cT ′

R St � 2 (see Fig. 1). Sufficiency

follows from Fig. 1 since cT ′
R St � 2 implies that y �= y′ . �

Let U , U ′ ∈ Fib∗(C) such that U ∩ U ′ = ∅ and V = U ∪ U ′ . Then we say that C is the internal direct
sum of CU and CU ′ if |R X,Y | = 1 for all X, Y ∈ Fib(C) with X ⊆ U and Y ⊆ U ′ . In this case we shall
write C = CU � CU ′ .

Let Ci = (V i, Ri) (i = 1,2) be schemes. We set

R1 ⊗ R2 = {R1 ⊗ R2 | R1 ∈ R1, R2 ∈ R2},

where R1 ⊗ R2 = {((u1, u2), (v1, v2)) | (u1, v1) ∈ R1, (u2, v2) ∈ R2}. Then C = (V 1 × V 2, R1 ⊗ R2) is
a scheme called the tensor product of C1 and C2 and denoted by C1 ⊗ C2. One can see that Fib(C) =
Fib(C1) × Fib(C2).

An isomorphism from C1 to C2 is defined to be a bijection ψ : V 1 ∪ R1 → V 2 ∪ R2 such that for all
u, v ∈ V 1 and R ∈ R1, (u, v) ∈ R if and only if (ψ(u),ψ(v)) ∈ ψ(R). We say that C1 is isomorphic to

C2 and denote it by C1 � C2 if there exists an isomorphism from C1 to C2.
Let A be the adjacency algebra of C . Since A is closed under the complex conjugate transpose

map, A is semisimple. By the Wedderburn theorem A is isomorphic to a direct sum of full matrix
algebras over C:

A =
⊕

P∈P(C)

A P ∼=
⊕

P∈P(C)

MatnP (C), (3)
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where nP is a positive integer and MatnP (C) is the full matrix algebra of complex nP × nP matrices.
A comparison of dimensions of the left- and right-hand sides of (3) shows that

|R| =
∑

P∈P(C)

n2
P . (4)

Obviously C is commutative if and only if nP = 1 for each P ∈ P (C), since P (C) is a basis of the
center of A(C). For each P ∈ P (C) we set mP := rank(P )/nP . Then

|V | =
∑

P∈P(C)

mP nP . (5)

The numbers mP and nP are called the multiplicity and the degree of P . Set P0 = ∑
X J X/|X | where

X runs over Fib(C) and J X = ∑
R∈R X

AR . Then P0 ∈ P (C), which is called principal. It is known that

(mP0 ,nP0) = (
1,

∣∣Fib(C)
∣∣). (6)

Below for X ∈ Fib∗(C) and P ∈ P (C) put P X = P I X and set

P X (C) = {
P ∈ P(C)

∣∣ P X �= 0
}

and Supp(P ) = {
X ∈ Fib(C)

∣∣ P X �= 0
}
.

Theorem 2.5. (See [4, Proposition 2.1].) Let C = (V , R) be a scheme. Then the following hold:

(i) For each X ∈ Fib∗(C) the mapping P 	→ P X induces a bijection between P X (C) and P (C X ).
(ii) For all P ∈ P (C) and X ∈ Supp(P ), nP = ∑

X∈Supp(P ) nP X and mP = mP X .

Lemma 2.6. Let C = (V , R) be a scheme. Then the following hold:

(i) P (C) = P X (C) for each X ∈ Fib(C) if and only if Supp(P ) = Fib(C) for each P ∈ P (C).
(ii) Supp(P ) �= ∅ for each P ∈ P (C), and

P(C) =
⋃

X∈Fib(C)

P X (C). (7)

Besides, P (C) = PU (C) ∪ PU ′ (C) where U , U ′ ∈ Fib∗(C) with U ∩ U ′ = ∅ and V = U ∪ U ′ .

Proof. (i) Let X ∈ Fib(C) and P ∈ P (C). Then P ∈ P X (C) if and only if X ∈ Supp(P ). This completes
the proof.

(ii) Let P ∈ P (C) such that Supp(P ) = ∅. Then for all X ∈ Fib(C), P I X = 0 and then P = P I V =∑
X∈Fib(C) P I X = 0, a contradiction. Therefore, Supp(P ) �= ∅. Let P ∈ P (C), as Supp(P ) �= ∅, there exists

X ∈ Fib(C) such that P I X �= 0. This means that P ∈ P X (C) and the proof of (7) is completed.
Let P ∈ P (C). Then P ∈ P X (C) for some X ∈ Fib(C). Since V = U ∪ U ′ , X ⊆ U or X ⊆ U ′ . It follows

that P ∈ PU (C) or P ∈ PU ′ (C). This completes the proof. �
Proposition 2.7. (See [8, p. 223], [7, p. 22 (8.1)].) Let C = (V , R) be a scheme. Then the following hold:

(i) Let X, Y ∈ Fib∗(C) such that X ∩ Y = ∅ and V = X ∪ Y . Then

dimC(A X,Y ) =
∑

P∈P X (C)∩PY (C)

nP X nP Y .

(ii) For all X, Y ∈ Fib(C), |R X,Y | = ∑
P∈P (C)∩P (C) nP X nP Y .
X Y
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Lemma 2.8. Let C = (V , R) be a scheme with the adjacency algebra A(C). If U , U ′ ∈ Fib∗(C) such that
U ∩ U ′ = ∅, then

∣∣Fib(CU )
∣∣∣∣Fib(CU ′)

∣∣ � dimC(AU ,U ′). (8)

Furthermore, the equality holds if and only if CU∪U ′ = CU � CU ′ .

Proof. The proof is a direct consequence of Proposition 2.7(i) and the definition of direct sum. �
Lemma 2.9. Let C = (V , R) be a scheme with the principal idempotent P0 and let U , U ′ ∈ Fib∗(C) such that
U ∩ U ′ = ∅ and V = U ∪ U ′ . Then C = CU � CU ′ if and only if PU (C) ∩ PU ′ (C) = {P0}.

Proof. Let us prove the sufficiency first. It is clear that P0 ∈ PU (C) ∩ PU ′ (C). By Lemma 2.8 and
Proposition 2.7(i) we have

∣∣Fib(CU )
∣∣∣∣Fib(CU ′)

∣∣ =
∑

P∈PU (C)∩PU ′ (C)

nPU nPU ′ .

Since nP0U = | Fib(CU )| and nP0U ′ = | Fib(CU ′ )|, it follows that

PU (C) ∩ PU ′(C) = {P0}. (9)

Conversely, if PU (C) ∩ PU ′ (C) = {P0}, then by Proposition 2.7(i),

dimC(AU ,U ′) = ∣∣Fib(CU )
∣∣∣∣Fib(CU ′)

∣∣.
It follows from Lemma 2.8 that C = CU � CU ′ . �
3. Characterization of balanced schemes

Proof of Theorem 1.1. First we prove the necessity. Let X, Y ∈ Fib(C). By Proposition 2.7, |R X,Y | =∑
P∈P X (C)∩PY (C) nP X nP Y . By the Cauchy–Schwarz inequality we have

|R X,Y |2 =
( ∑

P∈P X (C)∩PY (C)

nP X nP Y

)2

�
∑

P∈P X (C)∩PY (C)

n2
P X

∑
P∈P X (C)∩PY (C)

n2
P Y

�
∑

P∈P X (C)

n2
P X

∑
P∈PY (C)

n2
P Y

= |R X ||RY | = |R X,Y |2.

This implies that

( ∑
P∈P X (C)∩PY (C)

nP X nP Y

)2

=
∑

P∈P X (C)

n2
P X

∑
P∈PY (C)

n2
P Y

.

It follows that P X (C) = PY (C) and thus applying Lemma 2.6(i) we have P (C) = P X (C). Conse-
quently, the mapping P (C) → P (C X ) (P 	→ P X ) is well defined and bijective by Theorem 2.5. Since
the equality holds in the Cauchy–Schwarz inequality, we have 〈nP X | P ∈ P (C)〉 = α〈nP Y | P ∈ P (C)〉.
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However, α = 1 since |R X | = |RY |. Hence, nP X = nP Y for all P ∈ P (C). Therefore, by Theorem 2.5 and
Lemma 2.6(ii),

nP =
∑

X∈Supp(P )

nP X =
∑

X∈Fib(C)

nP X = ∣∣Fib(C)
∣∣nP X .

Now let us prove the sufficiency. Given X, Y ∈ Fib(C) the assumption along with Theorem 2.5 assert
that P (C) = P X (C) = PY (C) and nP X = nP Y for each P ∈ P (C). On the other hand, by Proposi-
tion 2.7(ii), we have

|R X,Y | =
∑

P∈P X (C)∩PY (C)

nP X nP Y =
∑

P∈P(C)

n2
P X

= |R X |.

Hence, C is balanced. �
Corollary 3.1. Let C be an r-balanced scheme. If C X is commutative for some X ∈ Fib(C), then so is C X for all
X ∈ Fib(C), and |P (C)| = r. In particular, the latter holds whenever r � 5.

Proof. Let X ∈ Fib(C). Since C X is commutative, |P (C X )| = |R X | = r. By Theorem 1.1, |P (C)| =
|P (C X )| = r. In particular, if r � 5, then by Lemma 2.1, C X is commutative and thus |P (C)| = r. �
Proof of Theorem 1.2(i). Let X ∈ Fib(C). By Theorem 2.5, |P (C X )| = 1. On the other hand, C X =
(X, R X ) is a homogeneous scheme, so |X | = mP0X nP0X = 1, by (6). Hence, every fiber of C is a sin-
gleton and thus C is trivial. Conversely, the adjacency algebra of a trivial scheme is the full matrix
algebra and thus it has only one central primitive idempotent. �

In order to prove Theorem 1.2(ii), we need the following theorem.

Theorem 3.2. Let C = (V , R) be a scheme. If C is homogeneous, then |P (C)| = 2 if and only if |R| = 2. If C is
not homogeneous and P (C) = {P0, P1} with P0 �= P1 , then the following hold:

(i) X /∈ Supp(P1) if and only if |X | = 1.

(ii) |R X | =
{

2 if X ∈ Supp(P1),

1 if X /∈ Supp(P1).

(iii) |R X,Y | = 2 for all X, Y ∈ Supp(P1).
(iv) nP1 = |Supp(P1)| and |X | = 1 + mP1 for each X ∈ Supp(P1).

Proof. For the first part we refer to [7, (4.2)].
(i) Since I V = P0 + P1, P1 = ∑

X∈Fib(C)(I X − J X/|X |). Let X ∈ Fib(C). Then X /∈ Supp(P1) if and only
if 0 = P1 I X = I X − J X/|X | if and only if |X | = 1.

(ii) If X ∈ Supp(P1), then P1 I X �= 0 and by Theorem 2.5, |P (C X )| = 2. Since C X = (X, R X ) is ho-
mogeneous, it follows from the first part of this theorem that |R X | = 2. If X /∈ Supp(P1), then by (i),
we have |X | = 1. It follows that |R X | = 1.

(iii) Let X, Y ∈ Supp(P1). Then by (ii), |RY | = |R X | = 2 and then by the first part of this theorem,
P X (C) ∩ PY (C) = P (C). Therefore, Proposition 2.7(ii) implies that |R X,Y | = 2.

(iv) Let X ∈ Supp(P1). By (ii), |R X | = 2 and thus by Lemma 2.1, C X is commutative. By Theorem 2.5
we have

nP1 =
∑

X∈Supp(P1)

nP1X = ∣∣Supp(P1)
∣∣.

Thus (5) implies that |X | = 1 + mP1 . �
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Proof of Theorem 1.2(ii). Let P (C) = {P0, P1} and set U := ⋃
X∈Supp(P1) X and U ′ := V \ U . If X ∈

Supp(P1) and Y /∈ Supp(P1), then |R X,Y | = 1, since |Y | = 1 by Theorem 3.2. Note that U �= ∅, since
C is not trivial. If U ′ �= ∅, then C = CU � CU ′ whereas if U ′ = ∅, then C = CU . Note that by Theo-
rem 3.2(ii), (iii), CU is 2-balanced and CU ′ is 1-balanced. Conversely, by Lemma 2.9 and Corollary 3.1,
|P (C)| = |P (C1 � C2)| = |P (C1)| + |P (C2)| − 1 = |P (C2)| = 2. �
Corollary 3.3. Any balanced scheme is half-homogeneous, and any two homogeneous component of it are
isomorphic as algebras over C.

Proof. (i) Let X ∈ Fib(C) and consider the scheme C X = (X, R X ). It follows from Theorem 1.1 that the
mapping P (C) → P (C X ) (P 	→ P X ) is bijective with nP = | Fib(C)|nP X . By (5) and Theorem 2.5(ii), the
size of X is computed as follows.

|X | =
∑

P∈P(C)

nP X mP X = 1

| Fib(C)|
∑

P∈P(C)

nP mP = |V |
| Fib(C)| .

Hence, the size of each fiber is constant and thus C is half-homogeneous.
(ii) By Theorem 1.1, nP X = nP Y for all X, Y ∈ Fib(C) and P ∈ P (C). It follows from (3), A X =⊕

P∈P (C) MatnP X
(C) ∼= ⊕

P∈P (C) MatnPY
(C) = AY . �

Given a scheme C we define a relation E C on Fib(C) as follows.

E C := {
(X, Y ) ∈ Fib(C)

∣∣ ∃R ∈ R X,Y ; dR = eR = 1
}
. (10)

Lemma 3.4. E C is an equivalence relation on Fib(C).

Proof. For each X ∈ Fib(C), �X is a thin basis relation in R X and thus E C is reflexive. If R ∈ R X,Y is
thin, then Rt ∈ RY ,X is also thin and then E C is symmetric. Let X, Y , Z ∈ Fib(C) and R ∈ R X,Y , S ∈
RY ,Z such that dR = dS = 1 and eR = eS = 1. It follows from Lemma 2.2(v) that R S is a thin basis
relation in R X,Z and thus E C is transitive. �
Theorem 3.5. Any balanced scheme C is isomorphic to a restriction of the scheme CU ⊗ Tn where U is the
union of fibers belonging to a transversal of E C and n = | Fib(C)|.

Proof. Let In := {1, . . . ,n} and En := {ei j | 1 � i, j � n} where ei j = {(i, j)}. Then Tn = (In, En).
Let {X1, . . . , Xs} be a transversal of E C and suppose that for each i ∈ {1,2, . . . , s}, E C (Xi) = {Xi1,

Xi2, . . . , Ximi } where Xi1 := Xi and Xij ’s are distinct fibers. In this case, V = ⋃s
i=1

⋃mi
j=1 Xij . For all

i ∈ {1, . . . , s} and j ∈ {1, . . . ,mi}, there exists Rij ∈ R Xi1,Xij with dRij = 1. Therefore, there exists a bi-
jection Rij : Xi → Xij, (xi 	→ x) where x is the unique element of Xij such that (xi, x) ∈ Rij . Indeed,
Rij(Xi) = Xij . Thus, for each x ∈ V , there exist unique i ∈ {1, . . . , s} and j ∈ {1, . . . ,mi} such that
Rij(Xi) = Xij and x ∈ Rij(Xi). Assuming that U = ⋃s

i=1 Xi we define the map ψ as follows.

ψ : V ∪ R −→ (U × In) ∪ (RU ⊗ En).

x 	−→ (xi, j); Rij(xi) = x,

R 	−→ Rij R Rt
kl ⊗ e jl; R ∈ R Xij ,Xkl .

Note that ψ is injective, since Rij is a bijection for all i ∈ {1, . . . , s} and j ∈ {1, . . . ,mi}. Let (x, y) ∈
R and R ∈ R Xij ,Xkl . Then there exists (xi, yk) ∈ Xi × Xk such that Rij(xi) = x and Rkl(yk) = y. This
means that (xi, yk) ∈ Rij R Rt

kl . It follows that, (ψ(x),ψ(y)) = ((xi, j), (yk, l)) ∈ ψ(R). This completes
the proof. �
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The following is an immediate consequence of the preceding theorem.

Corollary 3.6. Let C = (V , R) be an (m,n, r)-scheme. Then C � C X ⊗ Tn for X ∈ Fib(C) if and only if E C is
trivial, i.e., E C has one equivalence class.

4. Reduced (m,n, r)-schemes

Definition 4.1. An (m,n, r)-scheme C is called reduced if its equivalence relation E C is discrete, i.e., all
equivalence classes of E C are singletons.

Remark 4.1. Note that by Corollary 3.6, a balanced scheme C is reduced if and only if there exist no
X, Y ∈ Fib(C) such that C X∪Y � C X ⊗ T2 where T2 is a (1,2,1)-scheme.

In [9], strongly regular designs of the second kind were introduced and shown to be equivalent to
reduced (m,2,3)-schemes. Linked symmetric designs introduced in [1] are obviously identified with
(m,n,2)-schemes (see [7, Section 12, p. 31]).

Remark 4.2. Let G act on the sets Ωi , i = 1,2 with the same permutation characters. Recall that the
action of G on Ω1 is equivalent to that on Ω2 if and only if Gω1 = Gω2 for some ω1 ∈ Ω1 and ω2 ∈ Ω2
where Gω = {g ∈ G | ωg = ω}. It follows that the 2-orbit scheme of G on Ω1 ∪ Ω2 is reduced if and
only if the actions are inequivalent.

Example 4.2. (See [12], [1, p. 6, Example (i)].) Let G be the split extension of the translation group
of the vector space GF(2t)2k by the symplectic group Sp(2k,2t). Then G has 2t pairwise inequiva-
lent doubly transitive representations of degree 22kt with the same characters. If we denote them by

(G,Ωi), i = 1, . . . ,2t , then it follows from Remark 4.2 that the 2-orbit scheme of G on
⋃2t

i=1 Ωi is a
reduced (22kt ,2t ,2)-scheme.

Example 4.3. Let G = PGL(t,q) and Ωk the set of k-dimensional subspaces of the vector space GF(q)t .
Let πk denote the permutation character of G on Ωk . Then it is known that (see [2, Chapter 4]) for
each k � t

2 there exist irreducible characters χ0,χ1, . . . ,χk of G with χ0 = 1G such that

πt−k = πk =
k∑

i=0

χi . (11)

Moreover, the action of G on Ωk is inequivalent to that on Ωt−k if k < t
2 . Consequently, if r and t are

positive integers such that r − 1 < t
2 , then by (11) and Remark 4.2, the 2-orbit scheme of PGL(t,q)

on Ωr−1 ∪ Ωt−r+1 is a reduced
([ t

r−1

]
q,2, r

)
-scheme, say C . Moreover, as the actions of PGL(t,q) on

both Ωr−1 and Ωt−r+1 are multiplicity free, both CΩr−1 and CΩt−r+1 are commutative and hence by
Corollary 3.1, |P (C)| = r.

Lemma 4.3. Let Ci be an (mi,ni, ri)-scheme for i = 1,2. Then C1 ⊗ C2 is an (m1m2,n1n2, r1r2)-scheme.
Furthermore, C1 ⊗ C2 is reduced if and only if both C1 and C2 are reduced.

Proof. The first statement is obtained by the definition of C1 ⊗ C2. Let Ri be a basis relation of Ci
for i = 1,2. Then R1 ⊗ R2 is thin if and only if both R1 and R2 are thin. This implies that C1 ⊗ C2 is
reduced if and only if both C1 and C2 are reduced. �

Applying Lemma 4.3 for schemes given in Example 4.3 we can construct reduced r-balanced
schemes with more than two fibers for each composite r. But, it seems quite difficult to construct
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reduced p-balanced schemes with more than two fibers where p is an odd prime. As mentioned in
[8, Section 8, p. 229] it is still open whether or not a reduced (m,3,3)-scheme exists.

Problem 1. Given an odd prime p does there exist any reduced (m,3, p)-scheme for some m?

The following problem is inspired from a conjecture by H. Wielandt on permutation representa-
tions (see [1], Remark 5.3 and Lemma 5.4).

Problem 2. If C is a reduced (p,n, r)-scheme for some r and prime p, then n � 2.

5. Enumeration of (m,n, r)-schemes for m ��� 11

Proof of Theorem 1.3(i). Let C be a reduced (m,n, r)-scheme and X, Y ∈ Fib(C) with X �= Y . Then
2 � dR for each R ∈ R X,Y and

2|R X,Y | �
∑

R∈R X,Y

dR = m,

a contradiction. �
In order to prove Theorem 1.3(ii) we need the following lemma.

Lemma 5.1. Let C be an (m,n, r)-scheme and X, Y , Z ∈ Fib(C). If T ∈ R X,Y such that dT is prime to∏
R∈RY ,Z

dR , then dY ,Z coincides with dX,Z as multi-sets and dT � min{dR | R ∈ RY ,Z }.

Proof. For each R ∈ RY ,Z , gcd(dT ,dR) = 1. By Lemma 2.2(vii), |T R| = 1 and we may define the fol-
lowing map.

ψ : RY ,Z −→ R X,Z

R 	−→ S; T R = {S}.

By Lemma 2.2(iii), ψ is surjective. Since |RY ,Z | = |R X,Z |, ψ must be a bijection. Consequently,∑
R∈RY ,Z

dR = ∑
S∈R X,Z

dS = ∑
R∈RY ,Z

dT R . On the other hand, by Lemma 2.2(v), dR � dT R for each
R ∈ R X and thus dR = dT R for each R ∈ RY ,Z . Furthermore, by Lemma 2.2(v), dT � dT R = dR for each
R ∈ RY ,Z . �
Proof of Theorem 1.3(ii). Let C be a reduced (m,n, r)-scheme and let X ∈ Fib(C) such that C X is
p-valanced. Clearly m = ∑

T ∈R X,Y
dT where X, Y ∈ Fib(C) with X �= Y . Since p � m, so there exists

T ∈ R X,Y such that p � dT . Since C X is p-valenced, dT is prime to
∏

R∈R X
dR . As d�X = 1, it follows

from Lemma 5.1 that dT � min{dR | R ∈ R X } = 1, a contradiction. �
Lemma 5.2. Let C be an (m,n,2)-scheme and R ∈ R X,Y where X, Y ∈ Fib(C). Then dR(dR − 1) = λ(m − 1)

for some non-negative integer λ.

Proof. Let C be an (m,n,2)-scheme and X, Y ∈ Fib(C). For each R ∈ R X,Y we have by Lemma 2.2(i),

AR ARt =
∑

S∈R
cS

R Rt A S = dR I X + c
�c

X
R Rt ( J X − I X ),
X
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where �c
X = (X × X)\�X . It follows that R ∈ R X,Y is regarded as the incident relation of a symmetric

(m,dR , λ)-design where λ = c
�c

X
R Rt . A basic property of symmetric deigns implies that dR(dR − 1) =

λ(m − 1). �
Remark 5.3. Let m and t be positive integers and q an odd prime power such that m − 1 = 2tq. Then
there are exactly four d ∈ {1, . . . ,m − 1} such that d(d − 1) ≡ 0 (mod 2tq) by an elementary number
theoretical argument. It follows that if C is a reduced (m,n,2)-scheme, then dX,Y is uniquely deter-
mined for all X, Y ∈ Fib(C) with X �= Y . Moreover, if m is also prime, then there is γ ∈ {2, . . . ,m − 2}
such that gcd(γ ,m − γ ) = 1 and dX,Y = {γ ,m − γ } for all X, Y ∈ Fib(C) with X �= Y .

Lemma 5.4. Let C be a reduced (m,n,2)-scheme. Suppose that dX,Y = {a,b} with gcd(a,b) = 1 for all X, Y ∈
Fib(C). Then n � 2.

Proof. Suppose that X, Y and Z are distinct fibers of C and let R X,Y = {R, R ′}, RY ,Z = {S, S ′}, R X,Z =
{T , T ′} so that dR = dS = dT = a < b = dR ′ = dS ′ = dT ′ . By Lemma 2.2(i), (ii), (iii), a2 = dRdS = αa + βb
such that a | bβ and β < a. Since gcd(a,b) = 1, it follows that β = 0 and α = a. This implies that
cT

R S = a = dR . It follows that

Rout(x) ⊆ Sin(z), (12)

where (x, z) ∈ T . Now we take y1, y2 ∈ Rout(x) so that y1 �= y2. It follows from (12) that Tout(x) ⊆
Sout(y1)∩ Sout(y2). This fact along with Lemma 2.2(iii) assert that a = c

�c
Y

S St where �c
Y = (Y × Y ) \�Y .

Therefore, by Lemma 5.2, a(a −1) = a(a +b −1). It follows that ab = 0, a contradiction. This completes
the proof. �
Lemma 5.5. Let C be a reduced (m,n,2)-scheme. If m − 1 is a prime power, then n = 1.

Proof. Let p be prime such that m − 1 = pt for some t . In this case, p does not divide m and we are
done by Theorem 1.3(ii). �
Lemma 5.6. Let C be a reduced (m,n, r)-scheme and X, Y ∈ Fib(C) with X �= Y . If m = 2r, then the following
hold:

(i) For each T ∈ R X,Y , dT = 2.
(ii) For each R ∈ R X , dR ∈ {1,2,4} and

∣∣{R ∈ R X | dR = 1}∣∣ = 2
∣∣{R ∈ R X | dR = 4}∣∣.

Proof. (i) Let C be a reduced (m,n, r)-scheme and X, Y ∈ Fib(C) with X �= Y . Then as dT � 2 for each
T ∈ R X,Y , it follows from m = ∑

T ∈R X,Y
dT that 2r � m and the equality holds if and only if dT = 2

for each T ∈ R X,Y .
(ii) Let R ∈ R X and T ∈ R X,Y . Then by Lemma 2.2(i), (iii), there exist non-negative integers α and

β such that 2dR = dRdT = αdS +βdS ′ = 2α+2β and α,β � 2. This implies that dR � 4. By Lemma 5.1,
dR ∈ {1,2,4}. We set ki := |{R ∈ R X | dR = i}| for i ∈ {1,2,4}. Since k1 + k2 + k4 = |R X | = |R X,Y |, it
follows that m = k1 + 2k2 + 4k4 = 2(k1 + k2 + k4). Therefore, k1 = 2k4. �
Lemma 5.7. For each (m,n, r)-scheme, if m is prime, then r − 1 divides m − 1.

Proof. Let X ∈ Fib(C) and consider the homogeneous component (X, R X ). Since |X | = m is prime, by
[6, Theorem 3.3] dR = d for all R ∈ R X with R �= �X . Then m − 1 = ∑

R∈R X ,
�X �=R

dR = (r − 1)d. �
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Table 1

r
m

4 5 6 7 8 9 10 11

2 1 1 1 � 2 1 1 1 � 2
3 1 1 1 1 � 2 1 1 1
4 1 ∗ 1 1 � 2 1 1 ∗
5 ∗ 1 ∗ ∗ 1 1 ∗ ∗

Lemma 5.8. Let C = (V , R) be an (m,n, r)-scheme. If m is odd, then each non-reflexive symmetric basis
relation of C has even degree.

Proof. Let S ∈ R X \ {�X } be symmetric for some X ∈ Fib(C). Since S �= �X , |S| is even. By (2), |S| =
dSm and thus dS is even. �
Lemma 5.9. (See [9, (3.2)].) Let C be a reduced (m,n,3)-scheme. Then C X is symmetric for each X ∈ Fib(C).

Proof of Theorem 1.4. So far in this section we have been preparing some lemmas, which will be
applied to enumerate reduced (m,n, r)-schemes for m up to 11. The enumeration process leads to
Table 1 whose (r,m)’s entry characterizes n such that a reduced (m,n, r)-scheme can exist. The en-
tries (r,m) such that m < 2r are eliminated by Theorem 1.3(i) whereas (2,m)’s are eliminated by
Lemma 5.5 except (2,7) and (2,11). If C is a reduced (m,n,2)-scheme with m ∈ {7,11}, then by
Remark 5.3 and Lemma 5.4, n � 2. Thus we have eliminated the first row of Table 1.

Applying Lemma 5.6 for (r,m) = (5,10) we obtain that dX = {1,1,2,2,4}. According to [11,5]
there is no homogeneous scheme with dX = {1,1,2,2,4}. Note that we can prove this fact in a theo-
retical way.

The entries (4,11) and (5,11) are eliminated by Lemma 5.7 whereas (3,7) and (3,11) are elimi-
nated by Lemmas 5.8 and 5.9. An (r,m)-entry of Table 1 is denoted by ∗ if there exists no (m,1, r)-
scheme.

Table 2 shows the list of (r,m),
∑r

i=1 ai and
∑r

i=1 bi where m = ∑r
i=1 ai = ∑r

i=1 bi , 1 = a1 �
a2 � · · · � ar and 2 � b1 � b2 � · · · � br such that dX = {a1, . . . ,ar} and dX,Y = {b1, . . . ,br} for some
(m,1, r)-scheme (X, R X ) not satisfying the assumption of Theorem 1.3 (see [5,11]). The remaining
cases are processed by use of Table 2. This completes the elimination. �
Lemma 5.10. If C is a reduced (6,n,3)-scheme such that dX = {1,1,4} for some X ∈ Fib(C), then dX,Y �=
{2,2,2} for each Y ∈ Fib(C) with Y �= X.

Proof. Suppose by the contrary that dX,Y = {2,2,2} for some Y �= X . By Lemma 5.6, dY = {1,1,4}.
Taking R, S ∈ R X,Y with R �= S we obtain from Lemma 2.2(vi) that Rt R = St S = {�Y , T } where T ∈
RY with T �= �Y and dT = 1. By Lemma 2.2(i), (ii), (iv), 4 = dRdSt = α + 4β for some non-negative
integers α,β � 2. This implies α = 0 and β = 1, which contradicts Lemma 2.4. �
Lemma 5.11. If C is a reduced (8,n,3)-scheme such that dX = {1,1,6} for some X ∈ Fib(C), then we have
the following:

(i) For each Y ∈ Fib(C) with Y �= X, dX,Y �= {2,2,4}. Indeed, dX,Y = {2,3,3} for each Y ∈ Fib(C).
(ii) Let R X,Y = {R, S, S ′} such that dR = 2 and dS = dS ′ = 3. Let T ∈ R X with T �= �X and dT = 1. Then

T R = {R}, T S = {S ′} and T S ′ = {S}.

Proof. (i) Suppose by the contrary that dX,Y = {2,2,4} for some Y ∈ Fib(C), and take R ∈ R X and
S ∈ R X,Y so that dR = 6 and dS = 2. It follows from Lemma 2.2(i), (ii), (iii) that for some non-negative
integers α,β,γ we have

12 = dRdS = 2α + 2β + 4γ , 6 | 2α, 6 | 2β, 6 | 4γ , α,β,γ � 2.



2038 M. Hirasaka, R. Sharafdini / Journal of Algebra 324 (2010) 2025–2041
Table 2

(r,m)
∑

R∈R X
dR

∑
R∈R X,Y

dR

(3,6) 1 + 1 + 4 2 + 2 + 2 Not occur by Lemma 5.10

(3,8) 1 + 1 + 6 2 + 2 + 4 Not occur by Lemma 5.11
2 + 3 + 3 n � 2 by Lemma 5.12

1 + 3 + 4 2 + 2 + 4 Not occur by Lemma 2.2(vi)
2 + 3 + 3 Not occur by Lemma 2.2(vi)

(3,9) 1 + 2 + 6 2 + 2 + 5 Not occur by Lemma 5.1
2 + 3 + 4 Not occur by Lemma 5.13
3 + 3 + 3 Not occur by Lemma 5.13

(3,10) 1 + 1 + 8 2 + 3 + 5 Not occur by Lemma 5.1
3 + 3 + 4 Not occur by Lemma 5.1
2 + 4 + 4 Not occur by Lemma 5.14(i)
2 + 2 + 6 Not occur by Lemma 5.14(i)

1 + 3 + 6 2 + 3 + 5 Not occur by Lemma 5.1
3 + 3 + 4 Not occur by Lemma 5.14(ii)
2 + 4 + 4 Not occur by Lemma 5.1
2 + 2 + 6 Not occur by Lemma 2.2(vi)

1 + 4 + 5 2 + 3 + 5 Not occur by Lemma 5.1
3 + 3 + 4 Not occur by Lemma 5.1
2 + 4 + 4 Not occur by Lemma 2.2(vi)
2 + 2 + 6 Not occur by Lemma 2.2(vi)

(4,8) 1 + 1 + 2 + 4 2 + 2 + 2 + 2 n � 2 (see Lemma 5.16)

(4,9) 1 + 1 + 1 + 6 2 + 2 + 2 + 3 Not occur by Lemma 2.2(vi) and Lemma 5.8

1 + 2 + 3 + 3 2 + 2 + 2 + 3 Not occur by Lemma 5.17

(4,10) 1 + 2 + 2 + 5 2 + 2 + 2 + 4 Not occur by Lemma 5.1
2 + 2 + 3 + 3 Not occur by Lemma 5.1

1 + 1 + 4 + 4 2 + 2 + 3 + 3 Not occur by Lemma 5.1
2 + 2 + 2 + 4 Not occur by Lemma 5.18

This implies that γ = 0 and 12 = 2α + 2β � 8, a contradiction.
(ii) As dT = 1, Lemma 2.2(v), (vii) asserts that dT R = 2 and T R = {R}, since R is the unique basis

relation in R X,Y of degree 2. By the same observation dT S = 3 and T S ∈ R X,Y . If T S = {S}, then by
Lemma 2.2(i), cS

T S = 1 and Lemma 2.2(ii) implies that cT
S St = 3. Therefore, applying Lemma 2.2(i), (iv)

we have 9 = dSdSt = 3 + 3 + cT ′
S St 6 where T ′ ∈ R X with dT ′ = 6, a contradiction. �

Lemma 5.12. If C is a reduced (8,n,3)-scheme such that dX = {1,1,6} for some X ∈ Fib(C), then n � 2.

Proof. Suppose by the contrary that X, Y and Z are distinct fibers of C . Then by Lemma 5.11,
dX,Y = dY ,Z = dX,Z = {2,3,3}. Let R ∈ R X,Y and S ∈ RY ,Z with dR = 2 and dS = 3. It follows from
Lemma 2.2(i), (ii), (iii), there exist non-negative integers α,β,γ such that

6 = dRdS = 2α + 3β + 3γ , 6 | 2α, α � 2.

This implies α = 0 and R S = {S ′} where S ′ ∈ RY ,Z with dS ′ = 3. Since cS ′
R S = 2, by Lemma 2.4, Rt R ∩

S St = {�Y , T } for some T ∈ RY with dT = 1. Thus 9 = dSdS ′ = 3 + 3 + 6α. It follows that 3 = 6α,
a contradiction. �
Lemma 5.13. Let C be a reduced (9,n,3)-scheme and dX = {1,2,6} for some fiber X. Then dX,Y /∈
{{2,3,4}, {3,3,3}} for each Y ∈ Fib(C).
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Proof. Suppose that dX,Y = {2,3,4} and take the basis relations R ∈ R X and S ∈ R X,Y so that dR = 6
and dS = 2. It follows from Lemma 2.2(i), (ii), (iii), there exist non-negative integers α,β,γ such that

12 = dRdS = 2α + 3β + 4γ , 6 | 2α, 6 | 3β, 6 | 4γ , α,β,γ � 2.

This implies that γ = 0 and 12 = 2α + 3β � 10, a contradiction.
Suppose that dX,Y = {3,3,3} for some Y ∈ Fib(C) and take distinct R, S ∈ R X,Y . By Lemma 2.2(i),

(iv), for some non-negative integers α,β we have 9 = dRdSt = 2α + 6β = 2(α + 3β), a contradic-
tion. �

Let X, Y ∈ Fib(C) with X �= Y and R, S, S ′ ∈ R X,Y . Then Rt R ∩ St S ′ �= ∅ if and only if R St ∩ R S ′t �= ∅.
We use this fact in the proof of the following lemma.

Lemma 5.14. Let C be a reduced (10,n,3)-scheme. Then the following hold:

(i) If dX = {1,1,8} for some X ∈ Fib(C), then dX,Y /∈ {{2,2,6}, {2,4,4}} for each Y ∈ Fib(C).
(ii) If dX = {1,3,6} for some X ∈ Fib(C), then dX,Y �= {3,3,4} for each Y ∈ Fib(C).

Proof. (i) Suppose that dX,Y = {2,2,6} for some Y ∈ Fib(C). Take R, S ∈ R X,Y with R �= S and dR =
dS = 2. By Lemma 2.2(i), (iv), (iii), 4 = dRdSt = α + 8β for some non-negative integers α,β with
α,β � 2. It follows that α = 0 and 4 = 8β , a contradiction.

Suppose that R X,Y = {R, S, S ′} such that dR = 2 and dS = dS ′ = 4. By Lemma 2.2(i), (iv), 8 =
dRdSt = α + 8β for some non-negative integers α,β with 4 | α � 2. This implies that α = 0 and
then β = 1. Therefore, R St = {T ′} where T ′ ∈ R X with dT ′ = 8. By the same observation, R S ′ t = {T ′}.
Therefore, T ∈ St S ′ ∩ Rt R where T �= �Y . On the other hand, by Lemma 2.2(vi), dT = 1. It follows from
Lemma 2.2(i), (ii), (iv), (iii) that for some non-negative integers α,β we have 16 = dSt dS ′ = α + 8β

with 4 | α and 0 < α � 4. This implies that α = 4 and thus 12 = 8β , a contradiction.
(ii) Take R ∈ R X and S ∈ R X,Y with dR = 3 and dS = 4. By Lemma 2.2(i), (ii), (iii), for some non-

negative integers α,β,γ we have 12 = dRdS = 3α + 3β + 4γ with 12 | α and 12 | β and α,β,γ � 3.
This implies that α = β = 0 and γ = 3. Hence R S = {S}. By Lemma 2.3, dL S | gcd(10,4) = 2 which is
a contradiction, since dL S > dR = 3. �
Lemma 5.15. Let C be a reduced (8,n,4)-scheme such that dX = {1,1,2,4} for some X ∈ Fib(C). Then for all
X, Y ∈ Fib(C) with X �= Y , there exists R ∈ R X,Y such that R Rt = {�X , S} (resp. Rt R = {�Y , S ′}) where S is
the unique basis relation in R X with dS = 2 (resp. S ′ is the unique basis relation in RY with dS ′ = 2).

Proof. Let C be a reduced (8,n,4)-scheme such that dX = {1,1,2,4} for some X ∈ Fib(C). Then
dX,Y = {2,2,2,2} for all X, Y ∈ Fib(C) with X �= Y . Let T ∈ R X with T �= �X and dT = 1. Then dT R = 2
and |T R| = 1. Suppose that T R = {R} for each R ∈ R X,Y . Then T /∈ R St for all R, S ∈ R X,Y with R �= S .
Thus by Lemma 2.2(i), (iii), 4 = dRdSt = 2α + 4β for some non-negative integers α,β with α � 2. By
Lemma 2.4, β = 0 and α = 2. This implies that R RY ,X � R X , which contradicts Lemma 2.2(iii). Thus
there exists R ∈ R X,Y such that T R �= {R}. Equivalently, T /∈ R Rt . It follows from Lemma 2.2(vi) that
R Rt = {�X , S} where S is the unique basis relation in R X with dS = 2 �
Lemma 5.16. If C is a reduced (8,n,4)-scheme such that dX = {1,1,2,4} for some X ∈ Fib(C), then n � 2.

Proof. Suppose by the contrary that X, Y and Z are distinct fibers of C . Then by Lemma 5.15, there
exist R ∈ R X,Y and T ∈ RY ,Z such that Rt R = T T t = {�X , S} where S is the unique basis relation in
RY with dS = 2. It follows from Lemma 2.2(i) that cS

T T t = cS
Rt R = 1 (see Fig. 2). Let (y, y′) ∈ S . Then

there exists (x, z) ∈ X × Z such that Rin(y) ∩ Rin(y′) = {x} and Tout(y) ∩ Tout(y′) = {z}. As dT = 2,
we may assume that Tout(y) = {z, z1} and Tout(y′) = {z, z2}. Note that z1 �= z2, otherwise cS

T T t �
2, a contradiction. This means that (R ◦ T )out(x) = {z, z1, z2} and thus dRT = dR◦T = 3, which is a
contradiction, since dRT must be a sum of degrees in dX,Z = {2,2,2,2}. �
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Fig. 2.

Example 5.1. The association scheme as16 No. 122 as in [5] induces the thin residue fission (see
[10, Proposition 3.1]), which is a reduced (8,2,4)-scheme whose relational matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 3 3 3 3 4 4 5 5 6 7 6 7
1 0 2 2 3 3 3 3 4 4 5 5 7 6 7 6
2 2 0 1 3 3 3 3 5 5 4 4 6 7 7 6
2 2 1 0 3 3 3 3 5 5 4 4 7 6 6 7
3 3 3 3 0 1 2 2 6 7 6 7 4 4 5 5
3 3 3 3 1 0 2 2 7 6 7 6 4 4 5 5
3 3 3 3 2 2 0 1 6 7 7 6 5 5 4 4
3 3 3 3 2 2 1 0 7 6 6 7 5 5 4 4

4′ 4′ 5′ 5′ 6′ 7′ 6′ 7′ 0′ 1′ 2′ 2′ 3′ 3′ 3′ 3′
4′ 4′ 5′ 5′ 7′ 6′ 7′ 6′ 1′ 0′ 2′ 2′ 3′ 3′ 3′ 3′
5′ 5′ 4′ 4′ 6′ 7′ 7′ 6′ 2′ 2′ 0′ 1′ 3′ 3′ 3′ 3′
5′ 5′ 4′ 4′ 7′ 6′ 6′ 7′ 2′ 2′ 1′ 0′ 3′ 3′ 3′ 3′
6′ 7′ 6′ 7′ 4′ 4′ 5′ 5′ 3′ 3′ 3′ 3′ 0′ 1′ 2′ 2′
7′ 6′ 7′ 6′ 4′ 4′ 5′ 5′ 3′ 3′ 3′ 3′ 1′ 0′ 2′ 2′
6′ 7′ 7′ 6′ 5′ 5′ 4′ 4′ 3′ 3′ 3′ 3′ 2′ 2′ 0′ 1′
7′′ 6′ 6′ 7′′ 5′ 5′ 4′ 4′ 3′ 3′ 3′ 3′ 2′ 2′ 1′ 0′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Also the thin residue fission of the association scheme as16 No. 51 as in [5], is a reduced
(8,2,3)-scheme.

Let R, S, T ∈ R such that R S = T . If dT � dR , then it is known that R = T St . We use this fact in
the proof of the following lemma.

Lemma 5.17. Let C be a reduced (9,n,4)-scheme such that dX = {1,2,3,3} for some X ∈ Fib(C). Then dX,Y �=
{2,2,2,3} for each Y ∈ Fib(C).

Proof. Suppose by the contrary that R1, R2, R3 ∈ R X,Y with dRi = 2 for i ∈ {1,2,3}. For all i, j ∈
{1,2,3} with i �= j, by Lemma 2.2(i), (iv) we have 4 = dRi dRt

j
= 2α + 3β + 3γ . This implies that

β = γ = 0 and α = 2. Hence, for all i, j ∈ {1,2,3} with i �= j, Ri Rt
j = {T } where T ∈ R X with dT = 2.

It follows that {R1} = T R2 = {R3}, a contradiction. �
Lemma 5.18. Let C be a reduced (10,n,4)-scheme such that dX = {1,1,4,4} for some X ∈ Fib(C). Then
dX,Y �= {2,2,2,4} for each Y ∈ Fib(C).

Proof. Suppose by the contrary that dX,Y = {2,2,2,4} for some Y ∈ Fib(C) with Y �= X . According to
[11,5], dY ∈ {{1,1,4,4}, {1,2,2,5}}. It follows from Lemma 5.1 that dY = {1,1,4,4}. Take R, S ∈ R X,Y
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with R �= S and dR = dS = 2. By Lemma 2.2(i), (iv), (iii), there exist non-negative integers α,β,γ such
that

4 = dRdSt = α + 4β + 4γ , α,β,γ � 2.

This implies that 4 | α. Hence, α = 0 and β + γ = 1 which contradicts Lemma 2.4. �
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