=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

Journal of Algebra 324 (2010) 2025-2041

Contents lists available at ScienceDirect

JOURNAL OF

Journal of Algebra

www.elsevier.com/locate/jalgebra

Characterization of balanced coherent configurations

Mitsugu Hirasaka*'!, Reza Sharafdini !-?

Department of Mathematics, College of Natural Sciences, Pusan National University, Busan 609-735, South Korea

ARTICLE INFO ABSTRACT
Article history: Let G be a group acting on a finite set £2. Then G acts on 2 x 2
Received 3 February 2010 by its entry-wise action and its orbits form the basis relations

Available online 11 June 2010

) of a coherent configuration (or shortly scheme). Our concern is
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to consider what follows from the assumption that the number
of orbits of G on £2; x £2; is constant whenever £; and £2; are

é(z{lv:;:gi-conﬁgurations orbits of G on £2. One can conclude from the assumption that the
(m, n, r)-Schemes actions of G on £2;'s have the same permutation character and
Balanced schemes are not necessarily equivalent. From this viewpoint one may ask
Central primitive idempotents how many inequivalent actions of a given group with the same

permutation character there exist. In this article we will approach
to this question by a purely combinatorial method in terms of
schemes and investigate the following topics: (i) balanced schemes
and their central primitive idempotents, (ii) characterization of
reduced balanced schemes.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a group acting on a finite set 2 with its orbits §21, ..., £2; and its permutation character
7 =Y 1 m where 7;(g) = |{a € 2i |« = «}| for g € G. One may think what happens if 7; = i
for all 1 <1, j<n and can say that the number of orbits of G on £2; x £2; by its entry-wise action is
constant for all 1 <1, j <n, which motivates us to define the following concepts whose terminology
is due to [3].

Definition 1.1. Let V be a finite set and R a set of non-empty binary relations on V. The pair C =
(V,R) is called a coherent configuration (for short scheme) on V if the following conditions hold:
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(C1) R forms a partition of the set V x V.

(C2) Ay :={(v,v) | v €V} is a union of certain relations from R.

(C3) For every ReR, R :={(v,u)| (u,v) eR} e R.

(C4) For every R, S, T € R, the size of {w e V | (u, w) € R, (w,v) € S} does not depend on the choice
of (u,v) €T and is denoted by c}.

We say that the elements of V are points and those of R are basis relations.

Let C = (V,R) be a scheme and ¥ # X C V. We say that X is a fiber of C if Ax ={(x,x) | x €
X} € R. We denote by Fib(C) the set of all fibers of C.

Definition 1.2. Let m,n and r be positive integers. We say that a scheme C is an (m,n,r)-scheme if
the following conditions hold:

(i) {RER|RC X xY}| =r forall X,Y eFib(C).
(ii) |X]=m for all X € Fib(C).
(iii) |Fib(C)| =n.

A scheme C is called r-balanced if (i) holds, and balanced if it is r-balanced for some r. In Section 3
we will show that (i) implies (ii).

Example 1.3. (See [7, Section 12, p. 31].) Let (X, B,Z) be a symmetric design with the set X of points,
the set B of blocks and the incidence relation Z C X x B. Set V = X U B (disjoint union) and define
the relations R; (i=1,...,8) on V as follows.

Ri=Ax, Ra=Ap, R3=XxX)\Ax, Rs=[BxB)\Ap,
Rs =T, Re=R.,  Ry=(XxB)\T, Rg = RY.

It is known that (V, {Ri}?zl) is an (m, 2, 2)-scheme where m = | X]|.

Let us return to the topic in the first paragraph. Note that the orbits of G on £ x £ form the
basis relations of a scheme called the 2-orbit scheme of G on §2 and its fibers are £21,..., £2,. It is
straightforward to check that ;7 coincides with the permutation character of G on X; x X; for all
1<i,j<n. It is known that the number of orbits of G on X; x Xj is equal to [m;7], 1¢]?, which
coincides with [7;, 7], since 7;'s are real valued. Therefore, 7r; = 7r; for all 1 <1, j <n, if and only if
the 2-orbit scheme of G on §2 is balanced.

We denote by P(C) the set of all central primitive idempotents of the adjacency algebra of C (see
Section 2 for details). The following theorem shows a characterization of balanced schemes in terms
of their central primitive idempotents.

Theorem 1.1. Let C be a scheme. Then C is balanced if and only if for each X € Fib(C) the mapping P(C) —
P(Cx) (P + Px)is bijective with np = | Fib(C)|np,.

One may conclude that |P(C)| =r if C is r-balanced and r < 5 (see Corollary 3.1). The following
theorem deals with the converse argument for r =1, 2.

Theorem 1.2. Let C = (V, R) be a scheme. Then the following hold:

(i) |P(C)| =1 ifand only if C is 1-balanced.
(ii) |P(C)| =2 if and only if C is 2-balanced or C = C1 B Cy where C; is i-balanced.

3 Here by 1¢ and [, ] we mean the principal character of G and the inner product of characters, respectively.
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We have the following constructions of balanced schemes (see Sections 3, 4 for the details):

(i) Let U be a union of fibers of C. Then the restriction of C to U is r-balanced if C is r-balanced.
(i) If C; (i=1,2) is an (m;, nj, rj)-scheme, then C; ® C, is an (mymy, nyny, riry)-scheme.

We say that a balanced scheme C is reduced if there exist no X,Y € Fib(C) such that Cxyy >~
Cx ® T, where 75 is a (1,2, 1)-scheme (in Section 4 you will see another equivalent condition for a
scheme to be reduced). Any r-balanced scheme is obtained by the restriction of the tensor product
of a reduced r-balanced scheme and a 1-balanced scheme (see Theorem 3.5). Now we focus our
attention on reduced balanced schemes. It seems a quite difficult problem to find possible n such
that there exists a reduced (m,n,r)-scheme for given m and r. Actually, D.G. Higman asked if there
exists a reduced (m, 3, 3)-scheme for some m (see [8, Section 8, p. 229]). Furthermore, H. Wielandt
conjectured that a transitive permutation group of prime degree p has at most two inequivalent
transitive representations of degree p (see [1]), though it can be solved by the classification of finite
simple groups.

Theorem 1.3. Let C be a reduced (m, n, r)-scheme and p a prime. Then we have the following:

(i) If m < 2r, thenn=1.
(ii) If ptm and Cx is p-valanced* for some X € Fib(C), thenn = 1.

The preceding theorem is applied to characterize (m, n, r)-schemes up to m < 11 as follows.

Theorem 1.4. Let m, n, r be positive integers and m < 11. Then a reduced (m, n, r)-scheme can exist only if
n<2.

Let us show the organization of this article. In Section 2 we prepare some terminologies related
to schemes. Section 3 is devoted to balanced schemes. First we investigate the features of balanced
schemes. Indeed, we shall characterize a balanced scheme in terms of its central primitive idempo-
tents and we prove Theorem 1.1. Secondly we shall characterize schemes with at most two central
primitive idempotents and we prove Theorem 1.2. In Section 4 we shall extend the notion of inequiv-
alent permutation representations to schemes. Namely, we shall define reduced (m, n, r)-schemes and
then introduce some examples and known constructions of them to support our theory. Finally in
Section 5, first we prove Theorem 1.3, secondly we shall enumerate reduced (m,n,r)-schemes for
m < 11 in order to prove Theorem 1.4.

2. Preliminaries

According to [3] we prepare some terminologies related to schemes. For the remainder of this sec-
tion we assume that C = (V,R) is a scheme. One can see that V = UXepibw) X (disjoint union) and

R = U Rx.y (disjoint union), (1)
X,Y€eFib(C)

where Rx,y :={Re€R|RC X x Y}. We shall denote Rx, x by Rx.

Let X,Y € Fib(C) and R be a non-empty union of basis relations in Rx y. For (x, y) € R we set
Roue(X) = {u | (x,u) € R} and Rj;(y) ={v | (v, y) € R}. The size of Ry :(x) and that of R;;(y) does
not depend on the choice of x € X and y €Y, respectively; so we shall denote them by dg and eg,
respectively. It is easy to see that

IX|dr =R =1Yleg. (2)

4 See Section 2 for the definition.
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We define the multi-set dx y := {dg | R € Rx,y}. For D C R we define dp :=) p.pdr as well as
ep =) pep €r. For instance dr, , =|Y| and erxy = I1XI.

Note that dgr = ep for each R € R if and only if |X|=|Y]| for all X,Y € Fib(C). A scheme C is
called half-homogeneous if the latter condition holds. If C is a half-homogeneous scheme, then dg
(=eg) is called the degree or the valency of R. Given a prime p a half-homogeneous scheme C is
called p-valenced if the degree of each basis relation of C is a power of p.

A basis relation R € R is called thin if dg =eg =1 and a scheme C is called a homogeneous scheme
or (association scheme) if | Fib(C)| = 1 or equivalently, if Ay € R (for more details regarding association
schemes we refer to [13]). Given X € Fib(C) the pair Cx = (X, Rx) is a homogeneous scheme called
the homogeneous component of C corresponding to X.

For each R € R we define a {0, 1}-matrix Ag whose rows and columns are simultaneously indexed
by the elements of V such that the (u, v)-entry of Ag is one if and only if (u, v) € R. Then Ap is
called the adjacency matrix of R. Note that the subspace of Maty (C) spanned by {Ag | R e R} is a
subalgebra called the adjacency algebra of C and denoted by .A(C). Obviously,

(C'1) A(C) contains the identity matrix Iy and the all-one matrix Jy.
(C'2) Age = A% for every R € R where A} is the transpose of Ag.
(C'3) For every R,S € R, ARAs =Y 1. ChsAT.

A scheme is called trivial if all its fibers are singletons. We denote a trivial scheme on n points
by 7,. Note that A(7,) = Mat,(C) and it is easy to see that a scheme is trivial if and only if it is
1-balanced.

By Fib*(C) we mean the set of all non-empty unions of fibers of C. Given U € Fib*(C) we set
Ry :={Ry | R € R} where Ry = RN (U x U). Then the pair Cy = (U, Ry) is a scheme on U called
the restriction of C to U. Note that Cy is homogeneous whenever U € Fib(C).

Given U, U’ € Fib*(C) we define Ay y to be the subspace of A spanned by the set {Ag | R € R,
RCUxU'}.

A basis relation S of C is called symmetric if S* =S and C is called symmetric if each basis relation
of C is symmetric; and C is called commutative if CES = ch for all R, S, T € R. This is equivalent to
ARAs = AsAg for all R, S € R. It is known that symmetric schemes are commutative and that the
converse does not hold. Furthermore, one can see that a commutative scheme is a homogeneous one.

Lemma 2.1. (See [7, (4.2)], [13, Theorem 4.5.1].) If C = (V, R) is a homogeneous scheme and |R| < 5, then C
is commutative.

Given R, S € R the complex product of them is defined to be RS ={T e R | CES > 0} and the
relational product R o S is defined as follows.

RoS:={,v)|3IweV; (u,w)eR, (w,v) €S}
Note that Ro S =Jregs T and dgos = dgs.

Lemma 2.2. Let C be a scheme and X,Y,Z € Fib(C). Then forall R €e Rxyy, S € Ry z and T € Rx, 7 the
following hold:

(l) deS = ZTERX’Z CESdT'
(ii) chodr =R dr = cpepds and lem(dg, ds) | cfgdr.

(i) dgr =Y scr, , che eg = Y seRy s Cpeps Chs < Min{dg, es} and RRy 7 = Rx.z.
(iv) drdgp: = cﬁg‘ and egdspt = CSAl{ where § denotes the Kronecker’s delta.

(v) ds <dgs < dgds and eg < egs < eges.

(vi) Ifdg =2, then RR' = {Ax, S} where S € Ry is symmetric with ds < 2.

(vi) |RS| < ged(dg, ds).
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Fig. 1.

Proof. The proof is done by the same procedure as [13, Lemma 1.4.2, 1.4.3, 1.5.2, 1.5.6]. O

Lemma 2.3.Let S € Rx,y and Ls :={R € Rx | RS ={S}}. Then

dis | ged(|X], es).

Proof. Let y € Y and x € Sj;(y). The condition RS = {S} shows that UReLS Rin(x) C Sin(y) and
UReLS R is an equivalence relation on X. Since y € Y and x € Sj;(y) are arbitrarily taken, all equiva-
lence classes have the same size di. It follows that d;; divides both ds and |[X|. O

Lemma 24. Let X,Y € Fib(C) with X #Y and R,S € Rx.y with R #S. Then T € R'R N S'S for some

T € Ry with T # Ay if and only ifc?st > 2 forsome T’ € Ry.

Proof. Let us prove the necessity. By the assumption CITN # 0 and Cgrs # 0. Taking (y,y)eT
(of course y # y’) there exist x,x’ € X such that (x,y),(x,y) € R and (¥, y),(x',y’) € S. On the
other hand, there exists T’ € Ry such that (x,x’) € T’. It follows that cT . > 2 (see Fig. 1). Sufficiency

RSt
follows from Fig. 1 since Cgsf >2 implies that y #y’. O

Let U, U’ € Fib*(C) such that UNU’=¢ and V = U U U’. Then we say that C is the internal direct
sum of Cy and Cyr if [Rx,y| =1 for all X,Y € Fib(C) with X CU and Y C U’. In this case we shall
write C =Cy BCy.

Let C; = (Vi, R;) (i=1,2) be schemes. We set

R1®R2={R1 ®Ry | Ry € R1, Ry € Ry},

where R1 ® Ry = {((u1,u2), (v1,v2)) | (u1,v1) € Ry, (uz,v2) € R2}). Then C = (V1 x V3, R1 ® Ra) is
a scheme called the tensor product of C; and C, and denoted by C; ® C,. One can see that Fib(C) =
Fib(C1) x Fib(C3).

An isomorphism from C; to C, is defined to be a bijection v : V{ UR{ — V3 UR, such that for all
u,veVyand R e Rq, (u,v) € R if and only if (v (u), ¥ (v)) € ¥(R). We say that Cy is isomorphic to
C, and denote it by C; >~ C, if there exists an isomorphism from C; to C.

Let A be the adjacency algebra of C. Since A is closed under the complex conjugate transpose
map, A is semisimple. By the Wedderburn theorem A is isomorphic to a direct sum of full matrix
algebras over C:

A= EB AP = EB Maty, (C), (3)

PeP(C) PeP(C)
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where np is a positive integer and Maty, (C) is the full matrix algebra of complex np x np matrices.
A comparison of dimensions of the left- and right-hand sides of (3) shows that

RI= ) np. (4)

PeP(C)

Obviously C is commutative if and only if np =1 for each P € P(C), since P(C) is a basis of the
center of A(C). For each P € P(C) we set mp :=rank(P)/np. Then

V= Y mpnp. (5)

PeP(C)

The numbers mp and np are called the multiplicity and the degree of P. Set Po =)y Jx/|X| where
X runs over Fib(C) and Jx = ZRERX Ag. Then Py € P(C), which is called principal. It is known that

(mpy,npy) = (1, [Fib(C)]). (6)
Below for X € Fib*(C) and P € P(C) put Px = PIx and set
Px(C)={PeP()|Px+#0} and Supp(P)={X €Fib(C) | Px #0}.
Theorem 2.5. (See [4, Proposition 2.1].) Let C = (V, R) be a scheme. Then the following hold:

(i) Foreach X € Fib*(C) the mapping P — Py induces a bijection between Px (C) and P(Cx).
(ii) Forall P € P(C) and X € Supp(P), np =3y csupp(p) Px GNd Mp = Mpy.

Lemma 2.6. Let C = (V, R) be a scheme. Then the following hold:

(i) P(C) =Px(C) foreach X € Fib(C) if and only if Supp(P) = Fib(C) for each P € P(C).
(ii) Supp(P) # @ for each P € P(C), and

PO = |J Px©. (7)

XeFib(C)
Besides, P(C) = Py (C) U Py/(C) where U, U’ € Fib*(C) withUNU' =@ and V =UUU'.

Proof. (i) Let X € Fib(C) and P € P(C). Then P € Px(C) if and only if X € Supp(P). This completes
the proof.

(ii) Let P € P(C) such that Supp(P) = . Then for all X € Fib(C), PIx =0 and then P = Ply =
ZXEFib(@ Plx =0, a contradiction. Therefore, Supp(P) # @. Let P € P(C), as Supp(P) # @, there exists
X € Fib(C) such that PIx # 0. This means that P € Px(C) and the proof of (7) is completed.

Let P € P(C). Then P € Px(C) for some X € Fib(C). Since V=UUU’, X C U or X C U’. It follows
that P € Py(C) or P € Py (C). This completes the proof. O

Proposition 2.7. (See [8, p. 223], [7, p. 22 (8.1)].) Let C = (V, R) be a scheme. Then the following hold:

(i) Let X, Y € Fib*(C) suchthat XNY =@ and V = X U Y. Then

dimc(Axy)= ) neypy.
PePx(C)NPy(C)

(ii) Forall X, Y € Fib(C), [Rx.v| = Xpepyc)npy ) MPxMPy-
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Lemma 2.8. Let C = (V,R) be a scheme with the adjacency algebra A(C). If U, U’ € Fib*(C) such that
UNU’' =, then

|Fib(Cy) ||Fib(Cy+)

<dime (Ay,u). (8)
Furthermore, the equality holds if and only if Cyuy = Cy B Cyr.
Proof. The proof is a direct consequence of Proposition 2.7(i) and the definition of direct sum. O

Lemma 2.9. Let C = (V, R) be a scheme with the principal idempotent Py and let U, U’ € Fib*(C) such that
UNU =Wand V =UUU’. Then C = Cy B Cy ifand only if Py (C) NPy (C) = {Po).

Proof. Let us prove the sufficiency first. It is clear that Py € Py(C) NPy /(C). By Lemma 2.8 and
Proposition 2.7(i) we have

|Fib(Cy) ||Fib(Cy1)

= Z npynp,,.

PePy (C)NPy/ (C)

Since npy, = |Fib(Cy)| and np,,, = [Fib(Cy/)|, it follows that

Pu(C) NPy (C) ={Po}. 9)
Conversely, if Py (C) NPy (C) = {Po}, then by Proposition 2.7(i),
dimc (Ay,y/) = |Fib(Cy)||Fib(Cy»)|.
It follows from Lemma 2.8 that C=Cy HCy. O

3. Characterization of balanced schemes

Proof of Theorem 1.1. First we prove the necessity. Let X, Y € Fib(C). By Proposition 2.7, |[Rx y| =
Y pePy(C)nPy () MPx1Py - By the Cauchy-Schwarz inequality we have

2
IRx.y|* = ( Z Tlpxnpy) < Z nfax Z n%Y

PePx(C)NPy (C) PePx(C)NPy (C) PePx(C)NPy(C)
2 2
<Y oB Yo,
PePx(C) PePy(C)
=|Rx||Ry| = |Rx vI*.
This implies that
2
(X )= X ow T,
PePx(C)NPy(C) PePx(C) PePy(C)
It follows that Px(C) = Py(C) and thus applying Lemma 2.6(i) we have P(C) = Px(C). Conse-

quently, the mapping P(C) — P(Cx) (P — Pyx) is well defined and bijective by Theorem 2.5. Since
the equality holds in the Cauchy-Schwarz inequality, we have (np, | P € P(C)) = a(np, | P € P(C)).
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However, o =1 since |Rx| = |Ry|. Hence, np, =np, for all P € P(C). Therefore, by Theorem 2.5 and
Lemma 2.6(ii),

np= Y npy= Y  npy=]|FbC)[npy.

XeSupp(P) XeFib(C)

Now let us prove the sufficiency. Given X, Y € Fib(C) the assumption along with Theorem 2.5 assert
that P(C) = Px(C) = Py(C) and np, =np, for each P € P(C). On the other hand, by Proposi-
tion 2.7(ii), we have

Rx,y|= Z NpyNp, = Z n%X =|Rx|.
PePx(C)NPy(C) PeP(C)

Hence, C is balanced. O

Corollary 3.1. Let C be an r-balanced scheme. If Cx is commutative for some X € Fib(C), then so is Cx for all
X € Fib(C), and |P(C)| =r. In particular, the latter holds whenever r < 5.

Proof. Let X € Fib(C). Since Cx is commutative, |P(Cx)| = |Rx| = r. By Theorem 1.1, |P(C)| =
|P(Cx)| =r. In particular, if r <5, then by Lemma 2.1, Cx is commutative and thus [P(C)|=r. O

Proof of Theorem 1.2(i). Let X € Fib(C). By Theorem 2.5, |P(Cx)| = 1. On the other hand, Cx =
(X,Rx) is a homogeneous scheme, so |X|=mpynp,, =1, by (6). Hence, every fiber of C is a sin-
gleton and thus C is trivial. Conversely, the adjacency algebra of a trivial scheme is the full matrix
algebra and thus it has only one central primitive idempotent. O

In order to prove Theorem 1.2(ii), we need the following theorem.

Theorem 3.2. Let C = (V, R) be a scheme. If C is homogeneous, then |P(C)| =2 ifand only if |[R| = 2. If C is
not homogeneous and P(C) = {Po, P1} with Pg # P1, then the following hold:

(i) X ¢ Supp(P1) ifand only if | X| =1.
.. 2 if X € Supp(P1),
Rx| = ;
W) [Rxl { 1 ifX ¢ Supp(Py).
(iii) |[Rx.y|=2forall X,Y € Supp(P1).
(iv) np, = |Supp(P1)| and |X| =14 mp, for each X € Supp(P1).

Proof. For the first part we refer to [7, (4.2)].

(i) Since Iy = Pg+ Py, P1 = ZXEFib(C)(IX — Jx/1X]). Let X € Fib(C). Then X ¢ Supp(P;) if and only
if 0=P1Ix =1Ix — Jx/|X] if and only if |X| =1.

(ii) If X € Supp(P1), then P1Ix # 0 and by Theorem 2.5, |P(Cx)| = 2. Since Cx = (X, Rx) is ho-
mogeneous, it follows from the first part of this theorem that |Rx| = 2. If X ¢ Supp(P1), then by (i),
we have |X| = 1. It follows that |[Rx|=1.

(iii) Let X, Y € Supp(P1). Then by (ii), |Ry| =|Rx| =2 and then by the first part of this theorem,
Px(C) NPy (C) ="P(C). Therefore, Proposition 2.7(ii) implies that [Rx y|=2.

(iv) Let X € Supp(Pq). By (ii), |Rx| =2 and thus by Lemma 2.1, Cx is commutative. By Theorem 2.5
we have

np,= Y np, = |Supp(Py)|.
XeSupp(Pq)

Thus (5) implies that |X|=1+mp,. O
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Proof of Theorem 1.2(ii). Let (C) = {Po, P1} and set U := Uxcsypp(p,) X and U :=V \U. If X €
Supp(P1) and Y ¢ Supp(P1), then |Rx,y| =1, since |Y|=1 by Theorem 3.2. Note that U # ¢, since
C is not trivial. If U’ # ¢, then C = Cy B Cys whereas if U’ = ¢, then C = Cy. Note that by Theo-
rem 3.2(ii), (iii), Cy is 2-balanced and Cy is 1-balanced. Conversely, by Lemma 2.9 and Corollary 3.1,
[PON=IPCHC)| =IPC)I+IPC) -1=|PC)|=2. O

Corollary 3.3. Any balanced scheme is half-homogeneous, and any two homogeneous component of it are
isomorphic as algebras over C.

Proof. (i) Let X € Fib(C) and consider the scheme Cx = (X, Rx). It follows from Theorem 1.1 that the
mapping P(C) — P(Cx) (P — Px) is bijective with np = |Fib(C)|np,. By (5) and Theorem 2.5(ii), the
size of X is computed as follows.

1 4
XI= D neympy, = — 3 npmp=
PePC) | Fib(C)| PePC) | Fib(C)|

Hence, the size of each fiber is constant and thus C is half-homogeneous.
(ii) By Theorem 1.1, np, =np, for all X,Y € Fib(C) and P € P(C). It follows from (3), Ax =
Drep(c) Matny, (C) = Dpep(c) Matn,, (C)=Ay. O

Given a scheme C we define a relation E¢ on Fib(C) as follows.
Ec:={(X,Y)€Fib(C) | IR € Rx,y; dg=er=1}. (10)
Lemma 3.4. E is an equivalence relation on Fib(C).

Proof. For each X € Fib(C), Ax is a thin basis relation in Ry and thus E¢ is reflexive. If R € Ry y is
thin, then R! € Ry x is also thin and then E¢ is symmetric. Let X,Y,Z € Fib(C) and R € Rx.y,S €
Ry.z such that dg =ds =1 and eg =es = 1. It follows from Lemma 2.2(v) that RS is a thin basis
relation in Ry, z and thus E¢ is transitive. O

Theorem 3.5. Any balanced scheme C is isomorphic to a restriction of the scheme Cy ® T, where U is the
union of fibers belonging to a transversal of Ec and n = |Fib(C)|.

Proof. Let I, :={1,...,n} and E, :={e;j | 1 <i,j < n} where e;; = {(i, j)}. Then 7, = (In, Ep).
Let {X1,...,Xs} be a transversal of Ec and suppose that for each i € {1,2,...,s}, Ec(X;) = {Xi1,
Xi2, ..., Xim;} Where Xj; := X; and Xjj’s are distinct fibers. In this case, V = [Ji_, UT;1 Xij. For all
ie{l,...,s} and je{1,...,m;}, there exists Rjj € Rx; x; with dg; = 1. Therefore, there exists a bi-
jection Rjj : X; — Xjj, (x; = x) where x is the unique element of X;; such that (x;,x) € R;j. Indeed,
Rij(Xi) = Xjj. Thus, for each x € V, there exist unique i € {1,...,s} and j e {1,...,m;} such that
R;j(X;) = Xj; and x € R;j(X;). Assuming that U = Ule X; we define the map v as follows.

Y :VUR — (U x In) U(Ry ® Ey).
X+ (xi, J); Rij(xi) = x,
R+ R;jRRl; ®eji; R eRx, xy-

Note that v is injective, since R;; is a bijection for all i € {1,...,s} and j e {1,...,m;}. Let (x,y) €
R and R € RX]‘J‘,X’([' Then there exists (x;, yx) € X; x Xi such that R;j(x;) =x and Ryy(yx) = y. This
means that (x;, yx) € R,-jRR,[d. It follows that, (¥ (x), ¥ (¥)) = ((xi, j), (Yk,D)) € ¥ (R). This completes
the proof. O
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The following is an immediate consequence of the preceding theorem.

Corollary 3.6. Let C = (V,R) be an (m,n,r)-scheme. Then C ~Cx ® Ty for X € Fib(C) if and only if E¢ is
trivial, i.e., E¢c has one equivalence class.

4. Reduced (m, n, r)-schemes

Definition 4.1. An (m, n, r)-scheme C is called reduced if its equivalence relation E. is discrete, i.e., all
equivalence classes of E¢ are singletons.

Remark 4.1. Note that by Corollary 3.6, a balanced scheme C is reduced if and only if there exist no
X, Y € Fib(C) such that Cxyy ~Cx ® 7> where 75 is a (1,2, 1)-scheme.

In [9], strongly regular designs of the second kind were introduced and shown to be equivalent to
reduced (m, 2, 3)-schemes. Linked symmetric designs introduced in [1] are obviously identified with
(m, n, 2)-schemes (see [7, Section 12, p. 31]).

Remark 4.2. Let G act on the sets £2;, i = 1,2 with the same permutation characters. Recall that the
action of G on £21 is equivalent to that on 2 if and only if G, = G, for some w1 € £21 and w; € 2,
where G, = {g € G | w® = w}. It follows that the 2-orbit scheme of G on £2; U £2, is reduced if and
only if the actions are inequivalent.

Example 4.2. (See [12], [1, p. 6, Example (i)].) Let G be the split extension of the translation group
of the vector space GF(2{)% by the symplectic group Sp(2k,2f). Then G has 2 pairwise inequiva-
lent doubly transitive representations of degree 22K with the same characters. If we denote them by
(G, 2),i=1,...,2¢ then it follows from Remark 4.2 that the 2-orbit scheme of G on Uiz; 2 is a
reduced (22K, 2t, 2)-scheme.

Example 4.3. Let G = PGL(t, q) and 2, the set of k-dimensional subspaces of the vector space GF(q)".
Let m, denote the permutation character of G on £2;. Then it is known that (see [2, Chapter 4]) for

each k < % there exist irreducible characters xo, x1, ..., xx of G with xo = 1¢ such that
k
Tk =Tk= Y Xi- (11)
i=0

Moreover, the action of G on 2 is inequivalent to that on £2;_j if k < % Consequently, if r and t are

positive integers such that r — 1 < % then by (11) and Remark 4.2, the 2-orbit scheme of PGL(t, q)
—

both £2;_1 and £2;_r;1 are multiplicity free, both Cg,_;, and Cg,_,,, are commutative and hence by

Corollary 3.1, |[P(C)| =r.

on 21U §2r_r41 is a reduced ([ tl]q’ 2, r)—scheme, say C. Moreover, as the actions of PGL(t, q) on

Lemma 4.3. Let C; be an (m;, n;, rj)-scheme for i = 1,2. Then C; ® C is an (mymy, nyny, riry)-scheme.
Furthermore, C1 ® C; is reduced if and only if both C1 and C, are reduced.

Proof. The first statement is obtained by the definition of C; ® C,. Let R; be a basis relation of C;
for i =1, 2. Then Ry ® R, is thin if and only if both Ry and R, are thin. This implies that C1 ® Cy is
reduced if and only if both C; and C, are reduced. O

Applying Lemma 4.3 for schemes given in Example 4.3 we can construct reduced r-balanced
schemes with more than two fibers for each composite r. But, it seems quite difficult to construct
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reduced p-balanced schemes with more than two fibers where p is an odd prime. As mentioned in
[8, Section 8, p. 229] it is still open whether or not a reduced (m, 3, 3)-scheme exists.

Problem 1. Given an odd prime p does there exist any reduced (m, 3, p)-scheme for some m?

The following problem is inspired from a conjecture by H. Wielandt on permutation representa-
tions (see [1], Remark 5.3 and Lemma 5.4).

Problem 2. If C is a reduced (p, n, r)-scheme for some r and prime p, then n < 2.

5. Enumeration of (m, n, r)-schemes for m < 11

Proof of Theorem 1.3(i). Let C be a reduced (m,n,r)-scheme and X,Y € Fib(C) with X # Y. Then
2 < dpg for each R e Rx.y and

2Rxy|< Y dr=m,
RERXVY

a contradiction. 0O
In order to prove Theorem 1.3(ii) we need the following lemma.

Lemma 5.1. Let C be an (m,n,r)-scheme and X,Y,Z € Fib(C). If T € Rx,y such that dr is prime to
]_[Reny , dg, then dy z coincides with dx, 7z as multi-sets and dr < min{dr | R € Ry z}.

Proof. For each R € Ry z, gcd(dr,dg) = 1. By Lemma 2.2(vii), |[TR| =1 and we may define the fol-
lowing map.

Y :Ryz— Rx,z
R+—S; TR={S}.

By Lemma 2.2(iii), v is surjective. Since |Ry z| = |Rx,z|, ¥ must be a bijection. Consequently,
ZREQ” dgr = ZSERX_Z ds = ZReRY , drr. On the other hand, by Lemma 2.2(v), dg < drg for each
R € Rx and thus dgr =drg for each R € Ry z. Furthermore, by Lemma 2.2(v), dr <drg =dr for each
R e Ryﬁz. Od

Proof of Theorem 1.3(ii). Let C be a reduced (m,n,r)-scheme and let X € Fib(C) such that Cx is
p-valanced. Clearly m = ZTeny dr where X,Y € Fib(C) with X # Y. Since p{m, so there exists

T € Rxy such that p tdr. Since Cx is p-valenced, dr is prime to ]_[ReRx dg. As day =1, it follows
from Lemma 5.1 that d7 < min{dg | R € Rx} =1, a contradiction. O

Lemma 5.2. Let C be an (m, n, 2)-scheme and R € Rx y where X, Y € Fib(C). Then dr(dg — 1) =A(m — 1)
for some non-negative integer A.

Proof. Let C be an (m,n, 2)-scheme and X, Y € Fib(C). For each R € Rx y we have by Lemma 2.2(i),

AC
ARAge= Y ChpeAs =drlx + e (Jx — Ix),
SeRx
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where A§ = (X x X)\ Ay. It follows that R € Ry is regarded as the incident relation of a symmetric
(m, dg, A)-design where A = cﬁl’é.

A(m—=1). O

A basic property of symmetric deigns implies that dg(dg — 1) =

Remark 5.3. Let m and t be positive integers and q an odd prime power such that m — 1 = 2fq. Then
there are exactly four d € {1,...,m — 1} such that d(d — 1) =0 (mod 2!q) by an elementary number
theoretical argument. It follows that if C is a reduced (m,n, 2)-scheme, then dx y is uniquely deter-
mined for all X, Y € Fib(C) with X # Y. Moreover, if m is also prime, then there is y € {2,...,m — 2}
such that gcd(y,m—y)=1and dx,y ={y,m— y} for all X,Y € Fib(C) with X #Y.

Lemma 5.4. Let C be a reduced (m, n, 2)-scheme. Suppose that dx y = {a, b} with gcd(a,b) =1 forall X, Y €
Fib(C). Thenn < 2.

Proof. Suppose that X, Y and Z are distinct fibers of C and let Rxy ={R,R'}, Ry.z ={S, S}, Rx.z =
{T,T'} so that dg =ds =dy =a <b =dg =dg =dp. By Lemma 2.2(i), (ii), (iii), a® = dgrds = ca + b
such that a | bB and B < a. Since gcd(a, b) =1, it follows that 8 =0 and o = a. This implies that
cks =a=dg. It follows that

Roue (%) € Sin(2), (12)

where (x,z) € T. Now we take y1, y2 € Roue(x) so that yq # y,. It follows from (12) that Toue(x) C

Sout(¥1) N Soue(y2). This fact along with Lemma 2.2(iii) assert that a = CSASYt where A, = (Y x Y)\ Ay.
Therefore, by Lemma 5.2, a(a—1) =a(a+b — 1). It follows that ab = 0, a contradiction. This completes
the proof. O

Lemma 5.5. Let C be a reduced (m, n, 2)-scheme. If m — 1 is a prime power, thenn = 1.

Proof. Let p be prime such that m — 1= p’ for some t. In this case, p does not divide m and we are
done by Theorem 1.3(ii). O

Lemma 5.6. Let C be a reduced (m, n, r)-scheme and X, Y € Fib(C) with X # Y. If m = 2r, then the following
hold:

(i) ForeachT e Rxy,dr =2.
(ii) Foreach R € Ry, dg € {1,2,4} and

[{R € Rx |dg =1}| =2|[{R € Rx | dr = 4}].

Proof. (i) Let C be a reduced (m, n, r)-scheme and X, Y € Fib(C) with X # Y. Then as dr > 2 for each
T € Ry.y, it follows from m = ZTERX y dr that 2r < m and the equality holds if and only if dy =2
for each T e Rx.y. Y

(ii) Let Re Rx and T € Ry y. Then by Lemma 2.2(i), (iii), there exist non-negative integers o and
B such that 2dg =drdr = ads+ds =20 +28 and «, B < 2. This implies that dg < 4. By Lemma 5.1,
dr €{1,2,4}. We set kj :=|{R € Rx | dr =i}| for i € {1,2,4}. Since k1 + k2 + ks = |Rx|=IRx vl it
follows that m = kq + 2k, + 4kq = 2(kq + ko + ky4). Therefore, k1 =2k4. O

Lemma 5.7. For each (m, n, r)-scheme, if m is prime, then r — 1 divides m — 1.

Proof. Let X € Fib(C) and consider the homogeneous component (X, R). Since |X| =m is prime, by
[6, Theorem 3.3] dg =d for all R€ Rx with R#Ax. Then m—1=) ger,, dg=0—1d. O
Ax#R
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Table 1
m
r 4 5 6 7 8 9 10 11
2 1 1 1 <2 1 1 1 <2
3 1 1 1 1 <2 1 1 1
4 1 * 1 1 <2 1 1 *
5 * 1 * * 1 1 * *

Lemma 5.8. Let C = (V,R) be an (m,n,r)-scheme. If m is odd, then each non-reflexive symmetric basis
relation of C has even degree.

Proof. Let S € Rx \ {Ax} be symmetric for some X € Fib(C). Since S # Ay, |S| is even. By (2), |S| =
dsm and thus ds is even. O

Lemma 5.9. (See [9, (3.2)].) Let C be a reduced (m, n, 3)-scheme. Then Cy is symmetric for each X € Fib(C).

Proof of Theorem 1.4. So far in this section we have been preparing some lemmas, which will be
applied to enumerate reduced (m,n,r)-schemes for m up to 11. The enumeration process leads to
Table 1 whose (r,m)’s entry characterizes n such that a reduced (m,n,r)-scheme can exist. The en-
tries (r,m) such that m < 2r are eliminated by Theorem 1.3(i) whereas (2, m)’s are eliminated by
Lemma 5.5 except (2,7) and (2,11). If C is a reduced (m,n,2)-scheme with m € {7, 11}, then by
Remark 5.3 and Lemma 5.4, n < 2. Thus we have eliminated the first row of Table 1.

Applying Lemma 5.6 for (r,m) = (5,10) we obtain that dx = {1, 1, 2, 2,4}. According to [11,5]
there is no homogeneous scheme with dx = {1, 1, 2, 2, 4}. Note that we can prove this fact in a theo-
retical way.

The entries (4,11) and (5, 11) are eliminated by Lemma 5.7 whereas (3,7) and (3,11) are elimi-
nated by Lemmas 5.8 and 5.9. An (r, m)-entry of Table 1 is denoted by  if there exists no (m, 1,r)-
scheme.

Table 2 shows the list of (r,m), Y j_;a; and Y ;_;b; where m=>"_ja; =i _1b;, 1=a1 <
a; <---<ar and 2 < by <by <---<b; such that dxy ={ay,...,ar} and dxy = {b1,...,b;} for some
(m, 1,r)-scheme (X, Ryx) not satisfying the assumption of Theorem 1.3 (see [5,11]). The remaining
cases are processed by use of Table 2. This completes the elimination. O

Lemma 5.10. If C is a reduced (6, n, 3)-scheme such that dx = {1, 1, 4} for some X € Fib(C), then dx y #
{2,2,2} foreach Y € Fib(C) with Y # X.

Proof. Suppose by the contrary that dx y = {2,2,2} for some Y # X. By Lemma 5.6, dy = {1, 1,4}.
Taking R,S € Rx,y with R # S we obtain from Lemma 2.2(vi) that R‘R = S'S = {Ay, T} where T ¢
Ry with T # Ay and dr = 1. By Lemma 2.2(i), (ii), (iv), 4 =drds: = o 4+ 48 for some non-negative
integers «, 8 < 2. This implies « =0 and g =1, which contradicts Lemma 2.4. O

Lemma 5.11. If C is a reduced (8, n, 3)-scheme such that dx = {1, 1, 6} for some X € Fib(C), then we have
the following:

(i) ForeachY e Fib(C) with Y # X, dx y # {2, 2,4}. Indeed, dx y = {2, 3, 3} foreach Y € Fib(C).
(ii) Let Rx.y ={R, S, S’} such that dg =2 and ds =ds = 3. Let T € Rx with T # Ax and dr = 1. Then
TR={R}, TS={S'}and TS’ ={S}.

Proof. (i) Suppose by the contrary that dx y = {2, 2,4} for some Y € Fib(C), and take R € Rx and
S € Rx.y so that dg =6 and ds = 2. It follows from Lemma 2.2(i), (ii), (iii) that for some non-negative

integers «, B, ¥ we have

12=dpds =20 + 28 +4y, 6|2, 6|28, 6|4y, o, B,y <2.
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Table 2
(r,m) 2 Rery AR D Reryxy IR
(3,6) 1+1+4 2+2+2 Not occur by Lemma 5.10
3,8) 1+1+6 2+2+44 Not occur by Lemma 5.11
2+343 n < 2 by Lemma 5.12
1+3+4 2+244 Not occur by Lemma 2.2(vi)
2+3+4+3 Not occur by Lemma 2.2(vi)
3,9 1+2+6 24245 Not occur by Lemma 5.1
2+3+4 Not occur by Lemma 5.13
3+3+3 Not occur by Lemma 5.13
(3,10) 1+1+8 24345 Not occur by Lemma 5.1
3+3+4 Not occur by Lemma 5.1
2+4+4 Not occur by Lemma 5.14(i)
24+2+6 Not occur by Lemma 5.14(i)
1+3+6 2+3+4+5 Not occur by Lemma 5.1
3+3+4 Not occur by Lemma 5.14(ii)
2+444 Not occur by Lemma 5.1
24246 Not occur by Lemma 2.2(vi)
14+445 2+345 Not occur by Lemma 5.1
3+3+4 Not occur by Lemma 5.1
2+4+4+4 Not occur by Lemma 2.2(vi)
2+246 Not occur by Lemma 2.2(vi)

(4,8) 1+14+2+4 2424242 n<2(see Lemma 5.16)

4,9) 1+1414+6 2+4+2+2+3 Not occur by Lemma 2.2(vi) and Lemma 5.8
1+2+3+3 242+2+3  Not occur by Lemma 5.17
(4,10) 1424245 2+2+2+4 Not occur by Lemma 5.1
2+2+3+3  Not occur by Lemma 5.1

1+1+4+4 2+2+3+3 Not occur by Lemma 5.1
2+2+2+4 Not occur by Lemma 5.18

This implies that y =0 and 12 =2« + 28 < 8, a contradiction.

(ii) As dr =1, Lemma 2.2(v), (vii) asserts that drg =2 and TR = {R}, since R is the unique basis
relation in Ry y of degree 2. By the same observation drs =3 and TS € Ry y. If TS = {S}, then by
Lemma 2.2(i), cis =1 and Lemma 2.2(ii) implies that cgst = 3. Therefore, applying Lemma 2.2(i), (iv)
we have 9=dsdgt =3+ 3 + c§;r6 where T’ € Rx with drr =6, a contradiction. O

Lemma 5.12. If C is a reduced (8, n, 3)-scheme such that dx = {1, 1, 6} for some X € Fib(C), thenn < 2.

Proof. Suppose by the contrary that X,Y and Z are distinct fibers of C. Then by Lemma 5.11,
dxy=dyz=dxz=1{2,3,3}. Let Re Rxy and S € Ry z with dg =2 and ds = 3. It follows from
Lemma 2.2(i), (ii), (iii), there exist non-negative integers «, 8, ¥ such that

6=dgds =20 +38+3y, 6|2, a<2.

This implies &« =0 and RS = {S’} where S’ € Ry 7 with ds = 3. Since CSR/S =2, by Lemma 2.4, RIRN
SSt ={Ay, T} for some T € Ry with dr = 1. Thus 9 =dsds = 3 + 3 + 6«. It follows that 3 = 6a,
a contradiction. O

Lemma 5.13. Let C be a reduced (9,n,3)-scheme and dx = {1,2,6} for some fiber X. Then dx y ¢
{{2,3,4},(3,3,3}} foreach Y € Fib(C).
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Proof. Suppose that dx y = {2, 3,4} and take the basis relations R € Rx and S € Rx,y so that dg =6
and ds = 2. It follows from Lemma 2.2(i), (ii), (iii), there exist non-negative integers «, 8, y such that

12=drds =20 +3B8+4y, 6|2a, 6|38, 6|4y, a, B,y <2.

This implies that y =0 and 12 =2« + 38 < 10, a contradiction.

Suppose that dx y = {3, 3, 3} for some Y € Fib(C) and take distinct R, S € Rx,y. By Lemma 2.2(i),
(iv), for some non-negative integers o, 8 we have 9 =drdg = 2o + 68 = 2(x 4+ 38), a contradic-
tion. O

Let X,Y € Fib(C) with X #Y and R, S, S’ € Rx.y. Then R' RN S!S’ # @ if and only if RS'NRS" £ @.
We use this fact in the proof of the following lemma.

Lemma 5.14. Let C be a reduced (10, n, 3)-scheme. Then the following hold:

(i) Ifdx ={1,1, 8} for some X € Fib(C), thendx y ¢ {{2, 2, 6}, {2, 4, 4}} foreach Y € Fib(C).
(ii) Ifdx = {1, 3, 6} for some X € Fib(C), thendx y # {3, 3,4} foreach Y € Fib(C).

Proof. (i) Suppose that dx y = {2, 2, 6} for some Y € Fib(C). Take R,S € Rx,y with R# S and dg =
ds = 2. By Lemma 2.2(i), (iv), (iii), 4 = drds: = o + 88 for some non-negative integers «, 8 with
o, B < 2. 1t follows that « =0 and 4 = 88, a contradiction.

Suppose that Rxy = {R, S, S’} such that dg =2 and ds =dg = 4. By Lemma 2.2(i), (iv), 8 =
drdst = a + 88 for some non-negative integers o, 8 with 4 | o < 2. This implies that ¢ =0 and
then 8 = 1. Therefore, RS' = {T’} where T’ € Rx with dy- = 8. By the same observation, RS't = {T’}.
Therefore, T € S!S’ NR'R where T # Ay. On the other hand, by Lemma 2.2(vi), dr = 1. It follows from
Lemma 2.2(i), (ii), (iv), (iii) that for some non-negative integers ¢, 8 we have 16 =dgds = o + 88
with 4 | o and 0 < @ < 4. This implies that « =4 and thus 12 = 88, a contradiction.

(ii) Take R € Rx and S € Rx y with dgp =3 and ds = 4. By Lemma 2.2(i), (ii), (iii), for some non-
negative integers o, 8, ¥ we have 12 =drds =3 + 38 +4y with 12|« and 12| 8 and «, B,y < 3.
This implies that « =8 =0 and y = 3. Hence RS = {S}. By Lemma 2.3, d; | gcd(10, 4) = 2 which is
a contradiction, since d;g >dg =3. O

Lemma 5.15. Let C be a reduced (8, n, 4)-scheme such that dx = {1, 1, 2, 4} for some X € Fib(C). Then for all
X, Y e Fib(C) with X # Y, there exists R € Ryx.y such that RR* = {Ax, S} (resp. R'IR = {Ay, S’}) where S is
the unique basis relation in Rx with ds = 2 (resp. S’ is the unique basis relation in Ry withds = 2).

Proof. Let C be a reduced (8,n,4)-scheme such that dx = {1,1, 2,4} for some X € Fib(C). Then
dxy=1{2,2,2,2} for all X,Y € Fib(C) with X£Y.Let T € Rx with T £ Ax and dr = 1. Then dyg =2
and |TR| = 1. Suppose that TR = {R} for each R € Rx y. Then T ¢ RS® for all R, S € Rx y with R #S.
Thus by Lemma 2.2(i), (iii), 4 =drdst = 2« + 48 for some non-negative integers o, 8 with o < 2. By
Lemma 2.4, =0 and o = 2. This implies that RRy x C Rx, which contradicts Lemma 2.2(iii). Thus
there exists R € Rx,y such that TR # {R}. Equivalently, T ¢ RR". It follows from Lemma 2.2(vi) that
RR' = {Ax, S} where S is the unique basis relation in Ry with ds =2 0O

Lemma 5.16. If C is a reduced (8, n, 4)-scheme such that dx = {1, 1, 2, 4} for some X € Fib(C), thenn < 2.

Proof. Suppose by the contrary that X,Y and Z are distinct fibers of C. Then by Lemma 5.15, there
exist Re Rxy and T € Ry z such that R'R = TT! = {Ax, S} where S is the unique basis relation in
Ry with ds = 2. It follows from Lemma 2.2(i) that c3. =cp., =1 (see Fig. 2). Let (y,y’) € S. Then
there exists (x,z) € X x Z such that Ry (y) N Rin(y’) = {x} and Toue(¥) N Toue(¥') = {2z}. As dr =2,
we may assume that Tou(y) = {z,21} and Tou(y") = {z,z2}. Note that z; # z,, otherwise C?‘Tf >
2, a contradiction. This means that (R o T)ou(X) = {z, 21,22} and thus dgrr = dgro7 = 3, which is a

contradiction, since dgrr must be a sum of degrees in dx 7z ={2,2,2,2}. O



2040 M. Hirasaka, R. Sharafdini / Journal of Algebra 324 (2010) 2025-2041

Fig. 2.

Example 5.1. The association scheme asl6 No. 122 as in [5] induces the thin residue fission (see
[10, Proposition 3.1]), which is a reduced (8, 2, 4)-scheme whose relational matrix is

W wwwNoNN = O
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7/ 6/ 7/ 6/ 4/ 4/ 5/
6/ 7/ 7/ 6/ 5/ 5/ 4/
7// 6/ 6/ 7// 5/ 5/ 4/

R

R

Also the thin residue fission of the association scheme asl16 No. 51 as in [5], is a reduced
(8,2, 3)-scheme.

Let R, S, T € R such that RS =T. If dr < dg, then it is known that R = TS!. We use this fact in
the proof of the following lemma.

Lemma 5.17. Let C be a reduced (9, n, 4)-scheme such that dx = {1, 2, 3, 3} for some X € Fib(C). Thendx y #
{2,2,2,3} foreach Y € Fib(C).

Proof. Suppose by the contrary that Ri, Ry, R3 € Rx,y with dg, =2 for i € {1,2,3}. For all i,j e

{1,2,3} with i # j, by Lemma 2.2(i), (iv) we have 4 =dg,dp: = 20 + 38 + 3y. This implies that
J

B =y =0 and o =2. Hence, for all i, j € {1,2,3} with i # j, R,-Rg. = {T} where T € Rx with dr =2.

It follows that {R1} = TR, = {R3}, a contradiction. O

Lemma 5.18. Let C be a reduced (10, n, 4)-scheme such that dx = {1, 1, 4, 4} for some X € Fib(C). Then
dxy #1{2,2,2,4} foreach Y € Fib(C).

Proof. Suppose by the contrary that dx y = {2, 2, 2,4} for some Y € Fib(C) with Y # X. According to
[11,5], dy € {{1,1,4,4},{1,2,2,5}}. It follows from Lemma 5.1 that dy ={1, 1,4, 4}. Take R,S € Rxy
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with R # S and dg =ds = 2. By Lemma 2.2(i), (iv), (iii), there exist non-negative integers «, 8, y such
that

4=dpdgs =0 +48+4y, o,B,y <2
This implies that 4 | «. Hence, @« =0 and 8 4+ y =1 which contradicts Lemma 2.4. O
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