The twisted cubic in $PG(3, q)$ and translation spreads in $H(q)$

G. Bonoli, O. Polverino

Dipartimento di Matematica, Seconda Università degli Studi di Napoli, Via Vivaldi n. 43, Caserta 81100, Italy

Received 14 October 2003; received in revised form 18 February 2005; accepted 1 March 2005
Available online 22 June 2005

Abstract

Using the connection between translation spreads of the classical generalized hexagon $H(q)$ and the twisted cubic of $PG(3, q)$, established in [European J. Combin. 23 (2002) 367–376], we prove that if $q^n \equiv 1 \mod 3$, q odd, $q \geq 4n^2 - 8n + 2$ and $n > 2$, then $H(q^n)$ does not admit an \mathbb{F}_q-translation spread.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Generalized hexagon; Spread; Twisted cubic

1. Introduction

In [4] Cardinali et al. prove that each translation spread with respect to a line of the generalized hexagon $H(q^n)$, with kernel containing \mathbb{F}_q, defines an \mathbb{F}_q-linear subset \mathcal{S} of $PG(3, q^n)$ of rank $2n$ whose points belong to imaginary chords of a twisted cubic \mathcal{C} of $PG(3, q^n)$, and conversely. This connection has motivated the study of \mathbb{F}_q-linear sets of $PG(3, q^n)$ of rank $2n$ with the previous property.

In [4] the authors prove that, if $q \equiv 1 \mod 3$, then each imaginary axis of \mathcal{C} is an \mathbb{F}_q-linear set of rank 2 of $PG(3, q)$ whose points belong to imaginary chords of a twisted cubic \mathcal{C} of $PG(3, q)$, obtaining new families of examples of \mathbb{F}_q-translation spreads of $H(q)$ for q even.
Next, in [9] Lunardon and Polverino show that a line \(l \) of \(\text{PG}(3, q) \) whose points belong to imaginary chords of a twisted cubic \(C \) of \(\text{PG}(3, q) \) either is an imaginary chord of \(C \) or \(q \equiv 1 \pmod{3} \) and \(l \) is an imaginary axis of \(C \). Relying on this result, they extend the classification of semiclassical spreads of \(H(q) \) due to Bloemen et al. [3] to the even characteristic case.

In this paper, we prove that if \(q^n \equiv 1 \pmod{3} \), \(q \) odd, \(q \geq 4n^2 - 8n + 2 \) and \(n > 2 \), then an \(\mathbb{F}_q \)-linear subset of \(\text{PG}(3, q^n) \) of rank \(2n \) of \(\text{PG}(3, q^n) \) whose points belong to imaginary chords of a twisted cubic \(C \) of \(\text{PG}(3, q^n) \) is an \(\mathbb{F}_{q^n} \)-linear set and hence it is a line. As an application we get that if \(q^n \equiv 1 \pmod{3} \), \(q \) odd, \(q \geq 4n^2 - 8n + 2 \) and \(n > 2 \), then \(H(q^n) \) does not admit an \(\mathbb{F}_q \)-translation spread with respect to a line.

2. Preliminaries and statement of the main results

The twisted cubic \(C \) of \(\text{PG}(3, q) \), \(q = p^r \), \(p \) prime, can be described as

\[
C = \{(f_0(t), f_1(t), f_2(t), f_3(t)) : t \in \mathbb{F}_q \cup \{\infty\}\},
\]

where \(f_0(t), \ldots, f_3(t) \) are linearly independent cubic polynomials over \(\mathbb{F}_q \). Let \(\bar{C} \) be the twisted cubic of \(\text{PG}(3, \bar{F}) \) defined by \(C \), where \(\bar{F} \) is the algebraic closure of \(\mathbb{F}_q \). A line of \(\text{PG}(3, q) \) is a chord of \(C \) if it contains two points of \(\bar{C} \). There are three possibilities: the two points are distinct and belong to \(C \), or they are coincident, or they are conjugate over \(\mathbb{F}_q^2 \); the line is called a real chord, a tangent or an imaginary chord, respectively. Every point not belonging to \(C \) lies on exactly one chord (see e.g. [6, Theorem 21.1.9]). If \(p \neq 3 \), the tangents to \(C \) are self-polar lines of a non-singular symplectic polarity \(\omega \) of \(\text{PG}(3, q) \). An axis of \(C \) is a line \(l \) of \(\text{PG}(3, q) \) whose polar line with respect to \(\omega \) is a chord. We say that \(l \) is a real axis or an imaginary axis when \(l \) is a real chord or an imaginary chord, respectively (for more details, see [6, Section 21]). If \(q \equiv 1 \pmod{3} \) and \(l \) is an imaginary axis, then all points on \(l \) belong to some imaginary chord (see [4]). In [9] the following result has been proved.

Theorem 2.1 (Lunardon and Polverino [9]). If \(l \) is a line of \(\text{PG}(3, q) \) whose points belong to imaginary chords of \(C \), then either \(l \) is an imaginary chord or \(q \equiv 1 \pmod{3} \) and \(l \) is an imaginary axis.

An \(\mathbb{F}_q \)-linear set of \(\text{PG}(r, q^n) = \text{PG}(V, \mathbb{F}_q^n) \) of rank \(k \) is a set of points of \(\text{PG}(r, q^n) \) defined by the vectors of an \(\mathbb{F}_q \)-vector subspace of \(V \) of dimension \(k \). We say that the pair \((q, n)\), \(q = p^h \), \(p \) an odd prime and \(n \) positive integer, satisfies Property (K) if

(K) there exists no subplane of order \(q \) of \(\text{PG}(2, q^n) \) contained in the set of the internal points of an irreducible conic.

Property (K) can be reformulated in terms of \(\mathbb{F}_q \)-linear sets:

(K) any \(\mathbb{F}_q \)-linear set \(X \) of \(\text{PG}(2, q^n) \), consisting of internal points of an irreducible conic, is contained in a line.
If \(n = 1, 2 \), then Property (K) is always satisfied and the following result shows that for a fixed \(n \), all but a finite number of the pairs \((q, n)\) satisfy Property (K).

Theorem 2.3. (Ball et al. [2].) Let \((q, n)\) be a pair of positive integers with \(q = p^h \), \(p \) odd prime. If \(q \geq 4n^2 - 8n + 2 \), then \((q, n)\) satisfies Property (K).

Property (K) is connected to the existence of translation ovoids of \(Q(4, q)\) and semifield flocks of the quadratic cone of \(PG(3, q^n)\) (for more details see [8,14]).

The only known examples of pairs not satisfying Property (K) are the pairs \((3, n)\) with \(n > 2 \) (see, e.g., [3]).

In this paper we generalize the problem studied in Theorem 2.1 to \(\mathbb{F}_q\)-linear sets of \(PG(3, q^n)\) of rank \(2n\), proving the following:

Theorem 2.3. Let \(\mathcal{S}\) be an \(\mathbb{F}_q\)-linear set of \(PG(3, q^n)\) of rank \(2n\) whose points belong to imaginary chords of \(\mathcal{C}\). If \(q^n \equiv 1 \pmod{3}\) and the pair \((q, n)\) satisfies Property (K) with \(n > 2 \), then \(\mathcal{S}\) is an \(\mathbb{F}_q\)-linear set and either \(\mathcal{S}\) is an imaginary chord or \(\mathcal{S}\) is an imaginary axis of \(\mathcal{C}\).

From Theorems 2.2 and 2.3 we get the following corollary.

Corollary 2.4. Let \(\mathcal{S}\) be an \(\mathbb{F}_q\)-linear set of \(PG(3, q^n)\) of rank \(2n\) whose points belong to imaginary chords of \(\mathcal{C}\). If \(q^n \equiv 1 \pmod{3}\), \(q\) odd, \(q \geq 4n^2 - 8n + 2\) and \(n > 2\), then either \(\mathcal{S}\) is an imaginary chord or \(\mathcal{S}\) is an imaginary axis of \(\mathcal{C}\).

3. Application to translation spreads of \(H(q)\)

Theorem 2.3 can be used to study translation spreads with respect to a line of the generalized hexagon \(H(q)\).

Tits [17] defines the generalized hexagon \(H(q)\) as follows. Let \(Q(6, q)\) be the parabolic quadratic of \(PG(6, q)\) with equation \(X^2_3 = X_0X_4 + X_1X_5 + X_2X_6\). The points of \(H(q)\) are all the points of \(Q(6, q)\). The lines of \(H(q)\) are those lines of \(Q(6, q)\) whose Grassmann coordinates satisfy the equations \(p_{34} = p_{12}, p_{35} = p_{20}, p_{36} = p_{01}, p_{03} = p_{56}, p_{13} = p_{64}\) and \(p_{23} = p_{45}\). Two elements of \(H(q)\) are opposite if they are at distance 6 in the incidence graph of \(H(q)\). A spread \(S\) of \(H(q)\) is a set of \(q^3 + 1\) mutually opposite lines of \(H(q)\). Let \(L\) be a fixed line of \(H(q)\) and denote by \(E^L\) the group of the automorphisms of \(H(q)\) generated by all the collineations fixing \(L\) pointwise and stabilizing all the lines through some point of \(L\). The group \(E^L\) has order \(q^5\) and acts regularly on the set of the lines of \(H(q)\) at distance 6 from \(L\) (see, e.g., [1] or [18]). A spread \(S\) of \(H(q)\) containing \(L\) is a translation spread with respect to \(L\), if for each \(x \in L\) there is a subgroup of \(E^L\) which preserves \(S\) and acts transitively on the lines of \(S\) at distance 4 from \(M\), for all lines \(M\) of \(H(q)\) incident with \(x\) and different from \(L\) (see [3]). By [12] it is possible to associate with any translation spread \(S\) with respect to a line of \(H(q)\) a subfield of \(\mathbb{F}_q\), called the kernel of \(S\).

Using the construction of \(H(q^n)\) as a coset geometry (see [1]) in [4] it is proved that each translation spread \(S\) with respect to a line of \(H(q^n)\) with kernel \(\mathbb{F}_q\) defines an \(\mathbb{F}_q\)-linear
set \(\mathcal{S} \) of \(PG(3, q^n) \) of rank \(2n \) whose points belong to imaginary chords of the twisted cubic \(\mathcal{C} \) of \(PG(3, q^n) \) having \(\mathbb{F}_q \) as the maximal subfield of linearity, and conversely. If \(S \) is a translation spread of \(H(q^n) \) with kernel \(\mathbb{F}_q \), we say that \(S \) is an \(\mathbb{F}_q \)-translation spread of \(H(q^n) \). The known examples of \(\mathbb{F}_q \)-translation spreads of \(H(q) \) with respect to a line are the hermitian spreads [13], which correspond to \(\mathcal{S} \) being an imaginary chord of \(\mathcal{C} \) [4, Theorem 5], the spreads \(S_{[9]} \) constructed in [3] for \(q \equiv 1 \pmod{3} \), \(q \) odd, and the spreads \(S_l \) constructed, independently, in [4,12] for \(q \equiv 1 \pmod{3} \), \(q \) even. The only known \(\mathbb{F}_q \)-translation spreads of \(H(q^n) \) with respect to a line, with \(\mathbb{F}_q \) a proper subfield of \(\mathbb{F}_{q^n} \), are the spreads \(S_{[9]} \) of \(H(3h) \), \(h > 1 \), constructed in [3]. The hermitian spreads, the spreads \(S_{[9]} \) and \(S_l \), up to isomorphism, are the only \(\mathbb{F}_q \)-translation spreads of \(H(q) \). This classification result is due to Bloemen–Thas–Van Maldeghem [3] for \(q \) odd (they classified the \textit{semiclassical} spreads, which is equivalent by [12]), and to Lunardon–Polverino [9] for \(q \) even. In [11] it is proved that a spread \(S \) of \(H(3h) \) which is a translation spread with respect to a line is either hermitian or an \(S_{[9]} \). If \(q \) is even then by [4, Corollary 1] all translation spreads of \(H(q) \) are \(\mathbb{F}_q \)-translation spreads and, hence, they are classified. In summary, the following results hold:

(a) [4, Corollary 3] \(S \) is an \(\mathbb{F}_q \)-translation spread of \(H(q) \) with respect to a line if and only if \(\mathcal{S} \) is a line of \(PG(3, q) \) whose points belong to imaginary chords of \(\mathcal{C} \).

(b) [4, Theorem 5] \(S \) is a hermitian spread of \(H(q) \) if and only if \(\mathcal{S} \) is an imaginary chord of \(\mathcal{C} \).

(c) [4] If \(q \equiv 1 \pmod{3} \) and \(\mathcal{S} \) is an imaginary axis \(l \) of \(\mathcal{C} \), then \(\mathcal{S} \) defines an \(\mathbb{F}_q \)-translation spread \(S_l \) of \(H(q) \) with respect to a line. If \(q \) is odd, then \(S_l = S_{[9]} \), and if \(q \) is even, then this is the same as the spread \(S_l \) mentioned above.

As an application of Theorem 2.3, Corollary 2.4 and Results (a), (b) and (c) we have the following theorems:

Theorem 3.1. If \(q^n \equiv 1 \pmod{3} \), \(n > 2 \) and \((q, n)\) satisfies Property (K), then \(H(q^n) \) does not admit an \(\mathbb{F}_q \)-translation spread.

Theorem 3.2. If \(q^n \equiv 1 \pmod{3} \), \(q \) odd, \(n > 2 \) and \(q \geq 4n^2 - 8n + 2 \), then \(H(q^n) \) does not admit an \(\mathbb{F}_q \)-translation spread.

4. \(\mathbb{F}_q \)-linear sets

Let \(PG(r, q^n) = PG(V, \mathbb{F}_{q^n}) \) and let \(X \) be a set of points of \(PG(r, q^n) \). \(X \) is an \(\mathbb{F}_q \)-linear set of \(PG(r, q^n) \) if there is a subset \(W \) of \(V \) which is an \(\mathbb{F}_q \)-vector subspace of \(V \) such that \(X = \{ w \} : w \in W \}. \) If \(\dim_{\mathbb{F}_q} W = t \), we say that \(X \) has rank \(t \) (see [10]). If \(X \) is an \(\mathbb{F}_q \)-linear set of \(PG(r, q^n) \), then it is easy to see that \(|X| = 1 \pmod{q} \). Also, if \(L \) is a projective subspace of \(PG(r, q^n) \) such that \(X \cap L \neq \emptyset \), then \(X \cap L \) is an \(\mathbb{F}_q \)-linear set of \(L \) and hence \(|X \cap L| = 1 \pmod{q} \).

Property 4.1. Let \(X \) be an \(\mathbb{F}_q \)-linear set of \(PG(r, q^n) \) of rank \(2n \). If there exists a point \(P \) of \(PG(r, q^n) \) such that \(\text{rank}_{\mathbb{F}_q}(X \cap P) = n \), then \(X \) is the union of \(s \) lines through \(P \) and \(s \equiv 1 \pmod{q} \).
Proof. Let \(Q \) be a point of \(X \) different from \(P \) and let \(l \) be the line through \(P \) and \(Q \). Since \(\text{rank}_{\mathbb{F}_q}(X \cap P) = n \) and \(\text{rank}_{\mathbb{F}_q}(X \cap Q) \geq n + 1 \), we have \(\text{rank}_{\mathbb{F}_q}(X \cap l) \geq n + 1 \). This implies that \(\text{rank}_{\mathbb{F}_q}(X \cap R) \geq n + 1 \) for each point \(R \in l \), i.e. \(l \subseteq X \). So, \(X \) is a union of a certain number of lines through \(P \).

Let \(X \) be an \(\mathbb{F}_q \)-linear set of rank \(2n \) of \(PG(2, q^n) \) disjoint from an irreducible conic, say \(C \), of \(PG(2, q^n) \). Looking at these objects over the field \(\mathbb{F}_q \), the plane \(PG(3n - 1, q) \) becomes a \((3n - 1)-dimensional\) projective space, the conic \(C \) becomes a pseudo-oval \([15]\) and the \(\mathbb{F}_q \)-linear set \(X \) defines a \((2n - 1)-dimensional\) projective subspace of \(PG(3n - 1, q) \) skew to the elements of \(\mathcal{O} \). Dualizing in \(PG(3n - 1, q) \) with respect to the polarity \(\perp \) defined by \(\mathcal{O} \), from \(X \) we get an \((n - 1)-dimensional\) subspace of \(PG(3n - 1, q) \) skew to all the tangent spaces to \(\mathcal{O} \) and such a subspace defines an \(\mathbb{F}_q \)-linear set, say \(X' \), of \(PG(2, q^n) \) of rank \(n \) contained in the set of internal points of \(C \). If \((q, n)\) satisfies Property \((K)\), then \(X' \) is contained in a line \(l \) of \(PG(2, q^n) \), i.e. \(\text{rank}_{\mathbb{F}_q}(X' \cap l) = n \). This implies that \(\text{rank}_{\mathbb{F}_q}(X \cap l') = n \) and hence, by Property \(4.1 \), \(X \) is a union of lines through the point \(l' \). Therefore we have proved the following:

Proposition 4.2. Let \(X \) be an \(\mathbb{F}_q \)-linear set of \(PG(2, q^n) \) of rank \(2n \) disjoint from an irreducible conic \(C \) of \(PG(2, q^n) \). If the pair \((q, n)\) satisfies Property \((K)\), then there exists a point \(P \) of \(PG(2, q^n) \) such that \(\text{rank}_{\mathbb{F}_q}(X \cap P) = n \) and \(X \) is a union of lines through the point \(P \).

5. Preliminary results

The following theorem of Carlitz plays a crucial role in proving the main Theorem 2.3:

Theorem 5.1 (Carlitz [5]). Let \(\chi \) be the multiplicative character of order two on \(\mathbb{F}_q \), where \(q = p^n \), with \(p \) an odd prime. Let \(f \) be a polynomial over \(\mathbb{F}_q \) such that

\[
\chi(f(x) - f(y)) = \lambda \chi(x - y)
\]

for all \(x, y \in \mathbb{F}_q \), where \(\lambda = \pm 1 \) is fixed. Then we have \(f(x) = ax^{j} + b \) for some \(j \) in the range \(0 \leq j < n \), with \(a, b \in \mathbb{F}_q \) and \(\chi(a) = \lambda \).

Let \(f(x) \) be an \(\mathbb{F}_q \)-linear map from \(\mathbb{F}_q^n \) to itself. Then \(f(x) \) can be represented by a unique polynomial over \(\mathbb{F}_q^n \) of the form

\[
f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}.
\]

Such a polynomial is called a \(q \)-polynomial [7, Chapter 3]. A consequence of Theorem 5.1 on \(q \)-polynomials is the following.
Corollary 5.2. Let \(f(x) \) be a \(q \)-polynomial over \(\mathbb{F}_{q^n} \) and suppose that for a fixed choice of \(\lambda = \pm 1 \)

\[
\chi(f(x)) = \lambda \chi(x)
\]

for all \(x \in \mathbb{F}_{q^n} \). Then \(f(x) = ax^t \) for some \(0 \leq t < n \) and \(a \in \mathbb{F}_{q^n} \) with \(\chi(a) = \lambda \).

The following lemmas will be used in the next section.

Lemma 5.3. Let \(g(y) \) be a \(q \)-polynomial of \(\mathbb{F}_{q^n}[y] \) which is not linear over \(\mathbb{F}_{q^n} \) and suppose that

\[
g^\sigma(y) + Ag(y) + By^\sigma + Cy = 0 \quad \forall y \in \mathbb{F}_{q^n}, \quad (\ast)
\]

\[
g^{\tau}(y) + A^\tau g(y) + B^\tau y^\tau + C^\tau y = 0 \quad \forall y \in \mathbb{F}_{q^n}, \quad (**)
\]

where \(\sigma = q^h, \tau = q^{h'} \), \(0 < h, h' < n \), \(A, \tilde{A}, B, \tilde{B}, C, \tilde{C} \in \mathbb{F}_{q^n} \), and \(A, \tilde{A} \neq 0 \). Then, the following holds:

(i) If \(\sigma = \tau \), then either \(A = \tilde{A}, B = \tilde{B}, C = \tilde{C} \) or \(g(y) = [(\tilde{B} - B)/(A - \tilde{A})]y^\sigma + [(\tilde{C} - C)/(A - \tilde{A})]y \) and \(n = 2h \).

(ii) If \(\sigma \neq \tau \), then \(A^\tau \tilde{A} - A\tilde{A}^\sigma = 0, \tilde{B}A^\tau - C^\tau = 0 \) and \(\tilde{C}^\sigma - B\tilde{A}^\sigma = 0 \). Also, if \(\tau \pi \neq 1 \), then \(B^\tau = \tilde{B}^\sigma \) and \(\tilde{C}A^\tau - \tilde{A}^\sigma C = 0 \).

Proof. If \(\sigma = \tau \) then by subtracting \((**)\) from \((\ast)\) we get that either \(A = \tilde{A}, B = \tilde{B}, C = \tilde{C} \) or \(g(y) = [(\tilde{B} - B)/(A - \tilde{A})]y^\sigma + [(\tilde{C} - C)/(A - \tilde{A})]y \). In the latter case, substituting in \((\ast)\), since \(g(y) \) is not linear over \(\mathbb{F}_{q^n} \), we get \(\sigma^2 = 1 \), i.e. \(n = 2h \).

Now, suppose \(\sigma \neq \tau \). From equalities \((\ast)\) and \((**)\), we get

\[
A^\tau(\ast) - [(\ast) - (**\ast)] - \tilde{A}\tilde{A}(\ast) = 0,
\]

i.e.

\[
(A^\tau \tilde{A} - A\tilde{A}^\sigma)g(y) + (\tilde{B}A^\tau - C^\tau)y^\tau - (B^\tau - \tilde{B}^\sigma)y^{\sigma\tau} + (\tilde{C}^\sigma - B\tilde{A}^\sigma)y^\sigma + (\tilde{C}A^\tau - \tilde{A}^\sigma C)y = 0
\]

(1)

for each \(y \in \mathbb{F}_{q^n} \). If \(A^\tau \tilde{A} - A\tilde{A}^\sigma \neq 0 \), from (1) we obtain

\[
g(y) = ay + by^\sigma + cy^\tau + dy^{\sigma\tau},
\]

(2)

where \(a = (C\tilde{A}^\sigma - \tilde{C}A^\tau)/(A^\tau \tilde{A} - A\tilde{A}^\sigma), b = (B\tilde{A}^\tau - C^\tau)/(A^\tau \tilde{A} - A\tilde{A}^\sigma), c = (C^\tau - \tilde{B}A^\tau)/(A^\tau \tilde{A} - A\tilde{A}^\sigma) \) and \(d = (B^\tau - \tilde{B}^\sigma)/(A^\tau \tilde{A} - A\tilde{A}^\sigma) \). Substituting in \((\ast)\) and \((**)\), we get, respectively,

\[
d^\sigma y^{\sigma\tau} + (c^\sigma + Ad)y^{\sigma\tau} + b^\sigma y^\sigma + (a^\sigma + Ab + B)y^\sigma + Acy^\tau + (Aa + C)y = 0
\]

(3)

\[
d^\tau y^{\sigma\tau} + (b^\tau + \tilde{A}d)y^{\sigma\tau} + c^\tau y^\tau + (a^\tau + \tilde{A}c + \tilde{B})y^\tau + \tilde{A}by^\sigma + (\tilde{A}a + \tilde{C})y = 0.
\]

(4)

If \(\sigma\tau = 1 \), since \(\sigma \neq \tau \) and \(g(y) \) is not linear over \(\mathbb{F}_{q^n} \), from (3) we get \(\sigma^2 = \sigma^{-1} \). In this case, from (3) and (4) we obtain, respectively, \(Ac + b^\sigma = 0 \) and \(\tilde{A}b + c^\sigma = 0 \), which imply
If l is an external line to C, we get $b = c = 0$, i.e. $g(y)$ is linear over \mathbb{F}_q^σ: a contradiction. Now, suppose $\sigma \tau \neq 1$. If $d = 0$, from (3) and (4) we get $b = c = 0$, i.e. $g(y)$ is linear over \mathbb{F}_q^σ: a contradiction. Hence $d \neq 0$. In this case, from (3) we have either $\sigma^2 = 1$ or $\sigma^2 \tau = 1$ and from (4) we have either $\tau^2 = 1$ or $\sigma^2 = 1$. From these conditions, since $\sigma \neq \tau$, we obtain either $\sigma^4 = 1$ and $\tau = \sigma^2$ or $\tau^4 = 1$ and $\sigma = \tau^2$. In the first case, equating the coefficients of (3) and (4) to 0, in particular we get $c^\sigma + Ad = 0, b^\sigma + Ad = 0$ and $b^\sigma + Ac = 0$ from which we have $\bar{A} = -A^\sigma + 1$, which implies $A^\sigma \bar{A} = A^{\sigma^2} = 0$: a contradiction. In the second case, in a similar way, we again get a contradiction. Hence, we always have $A^\sigma \bar{A} = A^{\sigma^2} = 0$ and, in this case, from (1) we easily get (ii). \qed

As an application of Corollary 5.2 we get the following:

Lemma 5.4. Let $q^n \equiv 1 \pmod{3}$, where q is a power of a prime $p \neq 2$, and let X be an \mathbb{F}_q^σ-linear set of $PG(2, q^n)$ of rank n contained in the set of internal points of the irreducible conic C with equation $-3Y_2^2 + 4Y_2Y_0 = 0$. Also, suppose that X is contained in a line l of $PG(2, q^n)$. Then the following holds:

1. If l is an external line to C, then X is a point.
2. If $X = \{(x, f(x), g(x)) : x \in \mathbb{F}_q^n \}$ and $(0, 0, 1) \in l$, then
 \[
 X = \left\{ \left(x, \gamma x, \frac{m}{4}x^\gamma + \frac{3}{4}x^2 \right) : x \in \mathbb{F}_q^n \right\},
 \]
 where $\gamma \in \mathbb{F}_q^n$, $\tau = q^{h'}$, $0 \leq h' < n$ and m is a non-square in \mathbb{F}_q^n.
3. If $X = \{(f(x), \tilde{g}(x), x) : x \in \mathbb{F}_q^n \}$ and $(1, 0, 0) \in l$, then
 \[
 X = \left\{ \left(\frac{3}{4} \rho^2 x + \frac{m'}{4}x^\sigma, \rho x, x \right) : x \in \mathbb{F}_q^n \right\},
 \]
 where $\sigma = q^h$, $0 \leq h < n$, $\rho \in \mathbb{F}_q^n$ and m' is a non-square in \mathbb{F}_q^n.
4. If $X = \{(f(x), \tilde{g}(x), x) : x \in \mathbb{F}_q^n \}$ and $(1, 0, 0) \notin l$, then
 \[
 X = \{(\alpha \tilde{g}(x) + \beta x, \tilde{g}(x), x) : x \in \mathbb{F}_q^n \},
 \]
 where $\alpha, \beta \in \mathbb{F}_q^n$, $\Delta = \alpha^2 + 3\beta$ is a non-zero square of \mathbb{F}_q^n and $\tilde{g}(x)$ satisfies equality (*) of Lemma 5.3 with $A = (\alpha + \sqrt{\Delta})^{2\sigma+2}/3m'\sqrt{\Delta}^{\sigma+1}$, $B = -2(\alpha + \sqrt{\Delta})^\sigma/3$, $C = 2\beta(\alpha + \sqrt{\Delta})^{2\sigma+2}/3m'\sqrt{\Delta}^{\sigma+1}$, $\sigma = q^h$, $0 \leq h < n$ and m' a non-square in \mathbb{F}_q^n.

Proof. If l is an external line to C, then X defines a dual semifield flock \mathcal{F} of the quadratic cone \mathcal{K} of $PG(3, q^n)$ whose planes all contain a common interior point of \mathcal{K} (see, e.g., [8,16]). Then by [14, Section 1.5.6] \mathcal{F} is a linear flock and hence X is a point of $PG(2, q^n)$.

So, from now on, suppose that l is a secant line of C. Since X is an \mathbb{F}_q-linear set of rank n, we can write
\[
X = \{(H_0(x), H_1(x), H_2(x)) : x \in \mathbb{F}_q^n \},
\]
where $H_0(x)$, $H_1(x)$ and $H_2(x)$ are \mathbb{F}_q-linear operators on \mathbb{F}_{q^n}. Also, since X is a set of internal points of C and -3 is a square in \mathbb{F}_{q^n}, we have that $-3H_1(x)^2 + 4H_0(x)H_2(x)$ is a non-square for all $x \neq 0$. This implies that $H_0(x)$ and $H_2(x)$ are bijective maps and, hence, we can write either $X = \{(x, f(x), g(x)) : x \in \mathbb{F}_{q^n}\}$ or $X = \{(\bar{f}(x), \bar{g}(x), x) : x \in \mathbb{F}_{q^n}\}$ for suitable \mathbb{F}_q-linear operators f, g, \bar{f} and \bar{g} on \mathbb{F}_{q^n}. If $X = \{(x, f(x), g(x)) : x \in \mathbb{F}_{q^n}\}$ and $(0, 0, 1) \in l$, then l has equation $Y_0 = \gamma Y_1$, where $\gamma \in \mathbb{F}_{q^n}$, and hence $f(x) = \gamma x$ and $-\gamma^2 x^2 + 4xg(x)$ is a non-square for all $x \in \mathbb{F}_{q^n}$, i.e.

$$\chi(x) \chi(-3\gamma^2 x + 4g(x)) = \frac{\chi(-3\gamma^2 x + 4g(x))}{\chi(x)} = -1$$

for each $x \in \mathbb{F}_{q^n}$. Applying Corollary 5.2, we get $g(x) = (m/4)x^2 + (3/4)\gamma^2 x$ where $\tau = q^{h'}$, $0 \leq h' < n$, and m is a non-square in \mathbb{F}_{q^n}. If $X = \{(\bar{f}(x), \bar{g}(x), x) : x \in \mathbb{F}_{q^n}\}$ and $(1, 0, 0) \in l$, using the same arguments as in the previous case we get (3). Finally, suppose that $X = \{(\bar{f}(x), \bar{g}(x), x) : x \in \mathbb{F}_{q^n}\}$ and $(1, 0, 0) \notin l$. In this case, l has equation $Y_0 = \alpha Y_1 + \beta Y_2$ where $\alpha, \beta \in \mathbb{F}_{q^n}$ and $\bar{f}(x) = \alpha \bar{g}(x) + \beta x$. Since l is a secant line of C, $A = \alpha^2 + 3\beta$ is a non-zero square in \mathbb{F}_{q^n} and $l \cap C = \{P_1, P_2\}$, where $P_1 = ((\alpha + \sqrt{A}), 2(\alpha + \sqrt{A}), 3)$ and $P_2 = ((\alpha - \sqrt{A}), 2(\alpha - \sqrt{A}), 3)$. The linear transformation $\omega_{\bar{c}}$ of $PG(2, q^n)$, mapping the point $(\gamma_0, \gamma_1, \gamma_2)$ into the point $(\gamma_0, 2\gamma_0 + \gamma_1, 3\gamma_0 + 3\gamma_1 + \gamma_2)$, fixes the conic C for each $c \in \mathbb{F}_{q^n}$ and, if $\bar{c} = \bar{c} = -1/(\alpha + \sqrt{A})$, then $P_{\bar{c}}^{\omega_{\bar{c}}} = (1, 0, 0)$. So, $X_{\bar{c}}$ is an \mathbb{F}_q-linear set of rank n of internal points of C contained in the line $l_{\bar{c}}^{\omega_{\bar{c}}}$ and $(1, 0, 0) \in l_{\bar{c}}^{\omega_{\bar{c}}}$. Hence, if $X_{\bar{c}} = \{(F(x'), G(x'), x') : x' \in \mathbb{F}_{q^n}\}$, by Case (3) we get $F(x') = (3/4)\rho^2 x' + (m'/4)x'^{\sigma}$ and $G(x') = \rho x'$, where $\sigma = q^{h}, 0 \leq h < n, \rho \in \mathbb{F}_{q^n}$ and m' is a non-square in \mathbb{F}_{q^n}. Applying $\omega_{\bar{c}}$ to l and X, respectively, we obtain $\rho = -\beta/\sqrt{A}$ and

$$F(x') = \frac{3}{4}\rho^2 x' + \frac{m'}{4}x'^{\sigma} = \alpha \bar{g}(x) + \beta x,$$

$$G(x') = \rho x' = (2\epsilon \alpha + 1)\bar{g}(x) + 2\epsilon \beta x,$$

$$x' = (3\epsilon^2 - \epsilon + 3\epsilon \beta + 1)x.$$

From the first and the third equations of the above system we get

$$\bar{g}^{\sigma}(x) + A \bar{g}(x) + B x^{\sigma} + C x = 0,$$

(5)

for each $x \in \mathbb{F}_{q^n}$, where $A = (\alpha + \sqrt{A})^{\sigma} + 2/3m'\sqrt{A}^{\sigma+1}$, $B = -2(\alpha + \sqrt{A})^{\sigma}/3, C = 2\beta(\alpha + \sqrt{A})^{\sigma+1}/3m'\sqrt{A}^{\sigma+1}$.

If $A = 0$, then $\alpha + \sqrt{A} = 0$ and this implies $\alpha = \beta = 0$: a contradiction. So, $A \neq 0$ and hence $\bar{g}(x)$ satisfies equality (*) of Lemma 5.3.

Remark 5.5. Note that, in Cases (2), (3) and (4) of Lemma 5.4 if either $\sigma = 1$ or $\tau = 1$ or $\bar{g}(y)$ is linear over \mathbb{F}_{q^n}, then X is a point of $PG(2, q^n)$.

Lemma 5.6. Let $h(y)$ and $k(y)$ be q-polynomials over \mathbb{F}_{q^n} and suppose that $h(y)$ is a permutation polynomial. Let

$$C = \{(x, ax + h(y), bx^k + cx + k(y)) : x, y \in \mathbb{F}_{q^n}\}$$
be an \mathbb{F}_q-linear set of $\text{PG}(2, q^n)$ of rank $2n$ with $a, b, c \in \mathbb{F}_{q^n}$, $b \neq 0$, and $\tau = q^{h'}, 0 < h' < n$. Suppose that there exists a point R of $\text{PG}(2, q^n)$ such that $\text{rank}_{\mathbb{F}_q}(R \cap \mathcal{C}) = n$. Then there exists $(x_0, y_0) \in (\mathbb{F}_{q^n} \times \mathbb{F}_{q^n})^*$ such that $h(y)$ and $k(y)$ satisfy the following identity:

$$k(y) = -\frac{bx_0^5}{h(y_0)}h(y)^5 + \frac{bx_0^5 + k(y_0)}{h(y_0)}h(y).$$

(6)

Proof. Since $\text{rank}_{\mathbb{F}_q}(R \cap \mathcal{C}) = n$, there exists $(x_0, y_0) \in (\mathbb{F}_{q^n} \times \mathbb{F}_{q^n})^*$ such that $R = (x_0, ax_0 + h(y_0), bx_0^5 + cx_0 + k(y_0))$ and

$$\lambda x_0 = x,$n

$$\lambda(ax_0 + h(y_0)) = ax + h(y),$$n

$$\lambda(bx_0^5 + cx_0 + k(y_0)) = bx^5 + cx + k(y),$$n

$
\ast$

$$\lambda x_0 = x,$n

$$\lambda h(y_0) = h(y),$$n

$$\lambda(bx_0^5 + k(y_0)) = bx^5 + k(y),$$

(7)

for each $\lambda \in \mathbb{F}_{q^n}$. If $h(y_0) = 0$, then $y_0 = 0, y = 0$ and from (7) we get $\lambda = \lambda^5$ for each $\lambda \in \mathbb{F}_{q^n}$; a contradiction since $\tau \neq 1$. Hence $h(y_0) \neq 0$ and from the first and second equations of (7) we get $x = (x_0/h(y_0))h(y)$. Now, substituting in the third equation we obtain identity (6). \[\Box\]

6. **Proof of Theorem 2.3**

Fix the twisted cubic of $\text{PG}(3, q^n)$, $q = p^r, p$ prime, in the canonical form $\mathcal{C} = \{P_t = (r^3, r^2, r, 1) : t \in \mathbb{F}_{q^n}\} \cup \{P_{\infty} = (1, 0, 0, 0)\}$. Let π_t and l_t be, respectively, the osculating plane and the tangent line to \mathcal{C} at the point P_t with $t \in \mathbb{F}_{q^n} \cup \{\infty\}$. The points on the tangents to \mathcal{C} form a quartic surface Ω with equation

$$F(X_0, X_1, X_2, X_3) = X_2^3X_0^2 - 3X_2^2X_1^2 - 6X_0X_1X_2X_3 + 4X_3^2X_1^2 + 4X_2^2X_0 = 0$$

(see, e.g., [6, p. 240]). For each osculating plane π_t, the curve $\Omega \cap \pi_t$ of degree four contains l_t with multiplicity two and a conic C_t through the point P_t.

A point P of $\text{PG}(3, q^n)$, $p \neq 2$, belongs to an imaginary chord of \mathcal{C} if and only if P lies on a line with coordinate vector $(x_1^2, x_1x_2, x_1^2 - x_2, x_2, -x_1, 1)$ where $x_1, x_2 \in \mathbb{F}_{q^n}$ and $x_1^2 - 4x_2$ is a non-square in \mathbb{F}_{q^n} (see [6, Section 21, p. 231]). Now, by Lemma 15.2.3 of [6], we easily get that $P = (a_0, a_1, a_2, a_3)$ belongs to an imaginary chord of \mathcal{C} if and only if $F(a_0, a_1, a_2, a_3)$ is a non-square in \mathbb{F}_{q^n}.

Let \mathcal{S} be an \mathbb{F}_q-linear set of $\text{PG}(3, q^n)$ of rank $2n$ whose points belong to imaginary chords of \mathcal{C} and suppose that \mathbb{F}_q is the maximal subfield of \mathbb{F}_{q^n} with respect to which \mathcal{S} is a linear subset. If (a_0, a_1, a_2, a_3) and (a_0, a_1', a_2', a_3) are distinct points of \mathcal{S}, then $(0, a_1 - a_1', a_2 - a_2', 0) \in \mathcal{S}$ and hence $F(0, a_1 - a_1', a_2 - a_2', 0) = -3(a_2 - a_2')^2(a_1 - a_1')^2$ is a non-square in \mathbb{F}_{q^n}. Therefore, if -3 is a square in \mathbb{F}_{q^n}, i.e. if $q^n \equiv 1 \pmod{3}$, there are no distinct points of \mathcal{S} of type (a_0, a_1, a_2, a_3) and (a_0, a_1', a_2', a_3). This implies that,
if \(q^n \equiv 1 \pmod{3} \), there exist two \(\mathbb{F}_q \)-linear functions \(f(x, y), g(x, y) : \mathbb{F}_{q^n} \times \mathbb{F}_{q^n} \to \mathbb{F}_{q^n} \) such that

\[
\mathcal{S} = \{(x, f(x, y), g(x, y), y) : (x, y) \in (\mathbb{F}_{q^n} \times \mathbb{F}_{q^n})^*\}.
\]

Note that \(\mathbb{F}_q \) is the maximal subfield of \(\mathbb{F}_{q^n} \) with respect to which \(f \) and \(g \) are both linear. Also, if \(p \neq 2 \), since the points of \(\mathcal{S} \) belong to imaginary chords of \(\mathcal{C} \), we have that

\[
F(x, f(x, y), g(x, y), y) \text{ is a non-square for all } (x, y) \neq (0, 0).
\]

Let \(\mathcal{S}_\infty = \mathcal{S} \cap \pi_\infty \) and let \(f_1(x) = f(x, 0) \) and \(g_1(x) = g(x, 0) \). Since \(\pi_\infty \) has equation \(X_3 = 0 \), we can write

\[
\mathcal{S}_\infty = \{(x, f_1(x), g_1(x), 0) : x \in \mathbb{F}_{q^n}^*\}.
\]

Proposition 6.1. If \(q^n \equiv 1 \pmod{3} \) and \((q, n)\) satisfies Property (K), then either \(S_\infty \) is a point or, without loss of generality, we can suppose

\[
\mathcal{S}_\infty = \left\{ \left(x, \gamma x, \frac{m}{4} x^2 + \frac{3}{4} \gamma^2 x, 0 \right) : x \in \mathbb{F}_{q^n}^* \right\},
\]

where \(\gamma \in \mathbb{F}_{q^n}, \tau = q^{h'}, 0 \leq h' < n \) and \(m \) is a non-square in \(\mathbb{F}_{q^n} \).

Proof. The conic \(C_\infty \) has equations \(-3X_1^2 + 4X_0X_2 = X_3 = 0\), and hence, since \(p \neq 2, 3 \), \(C_\infty \) is an irreducible conic of \(\pi_\infty \). From (8) we get that \(-3f_1^2(x) + 4xg_1(x)\) is a non-square for all \(x \in \mathbb{F}_{q^n}^* \) and, since \(q^n \equiv 1 \pmod{3} \), the above condition implies that \(\mathcal{S}_\infty \) is an \(\mathbb{F}_q \)-linear set of rank \(n \) of internal points of \(C_\infty \). By Property (K), \(\mathcal{S}_\infty \) is contained in a line \(r \) of \(\pi_\infty \) and, applying Lemma 5.4, we have that either \(\mathcal{S}_\infty \) is a point or \(r \) is a secant line to \(C_\infty \). In this case, since the stabilizer \(G_{P_\infty} \) of the full automorphism group \(G \) of \(\mathcal{C} \) acts transitively on \(C_\infty \setminus \{P_\infty\} \), we can suppose, without loss of generality, that the point \((0, 0, 1, 0)\) of \(C_\infty \) belongs to the line \(r \). Hence, by (2) of Lemma 5.4, we can write

\[
\mathcal{S}_\infty = \left\{ \left(x, \gamma x, \frac{m}{4} x^2 + \frac{3}{4} \gamma^2 x, 0 \right) : x \in \mathbb{F}_{q^n}^* \right\},
\]

where \(\gamma \in \mathbb{F}_{q^n}, \tau = q^{h'}, 0 \leq h' < n \) and \(m \) is a non-square in \(\mathbb{F}_{q^n} \). \(\square \)

Let \(\mathcal{S}_0 = \mathcal{S} \cap \pi_0 \) and let \(f_2(y) = f(0, y) \) and \(g_2(y) = g(0, y) \). Since \(\pi_0 \) has equation \(X_0 = 0 \), we can write

\[
\mathcal{S}_0 = \{(0, f_2(y), g_2(y), y) : y \in \mathbb{F}_{q^n}^*\}.
\]

Proposition 6.2. If \(q^n \equiv 1 \pmod{3} \) and \((q, n)\) satisfies Property (K), then one of the following occurs:

1. \(\mathcal{S}_0 \) is a point, i.e. \(f_2(y) \) and \(g_2(y) \) are linear over \(\mathbb{F}_{q^n} \).
2. \(\mathcal{S}_0 = \{(0, (3/4)\rho^2 y + (m'/4)y^\sigma, \rho y, y) : y \in \mathbb{F}_{q^n}^*\} \) where \(\sigma = q^{h}, 0 \leq h < n, \rho \in \mathbb{F}_{q^n}^* \) and \(m' \) is a non-square in \(\mathbb{F}_{q^n} \).
(3) \(\mathcal{S}_0 = \{(0, \alpha g_2(y) + \beta y, g_2(y), y) : y \in \mathbb{F}_{q^n}\} \), where \(\Delta = x^2 + 3\beta \) is a non-zero square of \(\mathbb{F}_{q^n} \) and \(g_2(y) \) satisfies equality (*) of Lemma 5.3 with \(A = (x + \sqrt{\Delta})^{2\sigma+2}/3m'=\sqrt{\Delta}^{\sigma+1} \), \(B = -2(x + \sqrt{\Delta})^\sigma/3 \), \(C = 2\beta(x + \sqrt{\Delta})^{2\sigma+1}/3m'=\sqrt{\Delta}^{\sigma+1} \), \(\sigma = q^h, 0 \leq h < n \) and \(m' \) a non-square in \(\mathbb{F}_{q^n} \).

Proof. The conic \(C_0 \) has equations \(-3X_2^2 + 4X_3X_1 = X_0 = 0 \), and hence, since \(p \neq 2, 3 \), \(C_0 \) is an irreducible conic of \(\pi_0 \). By (8) we get that

\[
-3g_2^2(y) + 4yf_2(y) \text{ is a non-square for all } y \in \mathbb{F}_{q^n}.
\]

As in the previous case, since \(q^n \equiv 1 \) (mod 3), from the above condition we get that \(\mathcal{S}_0 \) is an \(\mathbb{F}_q \)-linear set of rank \(n \) of internal points of \(C_0 \). Hence, by Property (K), \(\mathcal{S}_0 \) is contained in a line \(\ell \) of \(\pi_0 \). Now, applying Lemma 5.4 to the \(\mathbb{F}_q \)-linear set \(\mathcal{S}_0 \), we obtain (1), (2) and (3). \(\Box \)

If \(\mathcal{S}_\infty \) (resp. \(\mathcal{S}_0 \)) is a point, then, by Property 4.1, \(\mathcal{S} \) is union of \(s \) lines through \(\mathcal{S}_\infty \) (resp. \(\mathcal{S}_0 \)) and \(s \equiv 1 \) (mod \(q \)). By Theorem 2.1, each of these lines is either an imaginary chord or an imaginary axis. But, since every point not belonging to \(\mathcal{C} \) lies on exactly one chord and exactly one axis, we have \(s = 1 \). Hence, if \(q^n \equiv 1 \) (mod 3), \((q, n) \) satisfies Property (K) and \(\mathcal{S} \) is not a line, then from Propositions 6.1 and 6.2 we have that \(\mathcal{S} \) is one of the following:

(a) \(\mathcal{S} = \{(x, yx + (3/4)y^2 + (m'/4)y^2, (m'/4)x^2 + (3/4)y^2x + \rho y, y) : x, y \in \mathbb{F}_{q^n}\} \),

(b) \(\mathcal{S} = \{(x, yx + \alpha g_2(y) + \beta y, (m'/4)x^2 + (3/4)y^2x + g_2(y), y) : x, y \in \mathbb{F}_{q^n}\} \),

where \(g_2(y) \) is a polynomial satisfying equality (*) of Lemma 5.3. Also, since \(\mathcal{S} \) is not a line, \(\mathcal{S}_0 \) and \(\mathcal{S}_\infty \) are not points and hence \(g_2(y) \) is not linear on \(\mathbb{F}_{q^n} \) and \(\sigma, \tau \neq 1 \) (see Remark 5.5).

Projecting \(\mathcal{S} \) and \(\mathcal{C} \) from the point \(P_t = (t^2, t, 1) \) onto the plane \(\pi_\infty \) we get, respectively, the \(\mathbb{F}_q \)-linear set of rank 2n

\[
\mathcal{C}_t = \{(x - t^3y, f(x, y) - t^2y, g(x, y) - ty, 0) : x, y \in \mathbb{F}_{q^n}\}
\]

and the irreducible conic \(\Gamma_t \) with equations \(t^2X_2^2 + X_1^2 - tX_1X_2 - X_0X_2 = X_3 = 0 \). Since the points of \(\mathcal{S} \) belong to imaginary chords of \(\mathcal{C} \), the \(\mathbb{F}_q \)-linear set \(\mathcal{C}_t \) and the irreducible conic \(\Gamma_t \) are disjoint for each \(t \in \mathbb{F}_{q^n} \).

If the pair \((q, n)\) satisfies Property (K), then by Proposition 4.2 for each \(t \in \mathbb{F}_{q^n} \) there exists a point \(R_t \in \pi_\infty \) such that \(\mathbb{F}_q(\Gamma_t \cap \mathcal{C}_t) = n \). By using this condition for suitable values of \(t \), we can exclude Cases (a) and (b).

Proposition 6.3. If \(q^n \equiv 1 \) (mod 3) and \((q, n)\) satisfies Property (K) with \(n > 2 \), then Case (a) does not occur.

Proof. Suppose Case (a) occurs and let \(t = 0 \). In this case, we can write

\[
\mathcal{C}_0 = \left\{(x, yx + \frac{3}{4}y^2x + \frac{m'}{4}y^2, \frac{m}{4}x^2 + \frac{3}{4}y^2x + \rho y, 0) : x, y \in \mathbb{F}_{q^n}\right\}.
\]
Since \(\mathbb{F}_q \) is the maximal subfield with respect to which \(f(x, y) \) and \(g(x, y) \) are both linear, we have \(g.c.d.(n, h, h') = 1 \). Also, as previously noted, by Proposition 4.2 there exists a point \(R_0 \in \pi_{\infty} \) such that \(\text{rank}_{\mathbb{F}_q}(R_0 \cap \mathcal{O}_0) = n \). Therefore, since \(f_2(y) = (3/4)x^2y + (m'/4)y^2 \) is a permutation polynomial, we can apply Lemma 5.6 to the \(\mathbb{F}_q \)-linear set \(\mathcal{O}_0 \), i.e. there exists \((x_0, y_0) \in (\mathbb{F}_q^n \times \mathbb{F}_q^n)^* \) such that

\[
\rho y = -\frac{m}{4} \frac{x_0^2}{f_2(y_0)} \left(\frac{3}{4} \rho^{x_2} y^2 + \frac{m'}{4} y^{x_2} \right) + \frac{m}{4} x_0^2 + \rho y_0 f_2(y_0) \left(\frac{3}{4} \rho^{y_2} y + \frac{m'}{4} y^2 \right) \tag{10}
\]

for each \(y \in \mathbb{F}_q^n \). If \(x_0 \neq 0 \), from (10) we get \(\sigma \tau = 1 \) and \(\sigma = \tau \), i.e. \(n = 2 \) since \(g.c.d.(n, h, h') = 1 \). Hence, if \(n > 2 \), then \(x_0 = 0 \) and from (10) it follows \(\rho = 0 \). In this case, as \(\mathcal{O}_0 \cap \mathcal{O}_0 = \emptyset \), we have

\[
m^2 = \frac{16}{16} y^2 + \frac{m'}{2} xy - \left(\frac{m}{4} x^{\tau + 1} - \frac{y^2}{4} x^2 \right) \neq 0
\]

for each \(x, y \in \mathbb{F}_q^n \) with \((x, y) \neq (0, 0) \). This implies that \((m^2/16)x^{\tau + 1} + (3/2)2x^2/16) \) is a non-square for all \(x \in \mathbb{F}_q^n \) and, from Corollary 5.2, we have \(\gamma = 0 \). Therefore, \(\rho = \gamma = 0 \). Now, let \(\bar{t} \) be an element of \(\mathbb{F}_q^n \) such that \(\bar{t}^{\tau + 1} \neq m'/m \) and \(\bar{t}^{\tau - 1} \neq 16/mm' \) and let \(z = x - \bar{t}^2y \); we can write

\[
\mathcal{O}_{\bar{t}} = \left\{ \left(z, x, y, \frac{m'}{4} x^{\tau + 1} - \frac{y^2}{4} x^2 \bar{t}y, 0 \right) : z, y \in \mathbb{F}_q^n \right\}
\]

and, applying Lemma 5.6 to \(\mathcal{O}_{\bar{t}} \), there exists \((z_0, y_0) \in (\mathbb{F}_q^n \times \mathbb{F}_q^n)^* \) such that

\[
\frac{m}{4} \frac{x^{\tau + 1}}{f_2(y_0)} - \frac{y^2}{4} x^2 + g(y) - \bar{t}y = \frac{m}{4} \frac{z_0^2}{h(y_0)} \left(\frac{m'}{4} y^{\tau + 1} - \frac{y^2}{4} x^2 \bar{t}y, 0 \right) + \frac{4h(y_0)}{m} \left(\frac{m'}{4} y^{\tau + 1} - \frac{y^2}{4} x^2 \bar{t}y \right) \tag{11}
\]

for each \(y \in \mathbb{F}_q^n \), where \(h(y) = (m'/4)y_{\sigma} - \bar{t}^2 y \) and \(k(y) = (m/4)\bar{t}^3 y_{\sigma} - \bar{t}y \). If \(z_0 = 0 \), we get \(\sigma = \tau \) and \(\bar{t}^{\tau + 1} = m'/m \), which contradicts our assumption. If \(z_0 \neq 0 \), we obtain \(\sigma \tau = 1 \). If \(\sigma = \tau \), then \(n = 2 \). If \(\sigma \neq \tau \), then from (11) we get \(\bar{t}^{\tau - 1} = 16/m^2 \); a contradiction. Hence, Case (a) does not occur. \(\square \)

Proposition 6.4. If \(q^n \equiv 1 \) (mod 3) and \((q, n) \) satisfies Property (K) with \(n > 2 \), then Case (b) does not occur.

Proof. Suppose Case (b) occurs. Then

\[
\mathcal{O}_{\bar{t}} = \left\{ \left((x - \bar{t}^3 y, \gamma x + xg_2(y) + \beta y - \bar{t}^2 y, \frac{m}{4} x^{\tau + 1} + \frac{3}{4} \bar{t}^2 x + g_2(y) - \bar{t}y, 0 \right) \ : x, y \in \mathbb{F}_q^n \right\}
\]

From (9) we easily get that \(f_2(y) = xg_2(y) + \beta y \) is a permutation polynomial. So we can apply Lemma 5.6 to the \(\mathbb{F}_q \)-linear set \(\mathcal{O}_0 \), i.e. there exists \((x_0, y_0) \in (\mathbb{F}_q^n \times \mathbb{F}_q^n)^* \) such that

\[
g_2(y) = -\frac{m}{4} \frac{x_0^2}{f_2(y_0)} \left(xg_2(y) + \beta y \right)^2 + \left(\frac{m}{4} x_0^2 + \frac{4g_2(y_0)}{f_2(y_0)} \right) \left(xg_2(y) + \beta y \right)
\]
Applying Lemma 5.6 to contradicting our assumption. Hence we get which we get for each \bar{q}, where

$$g_2(y) + \bar{A} g_2(y) + \bar{B} y^2 + \bar{C} y = 0,$$

(12)

where $\bar{A} = [(4\beta y_0 - m\bar{x}y_0)/(m\bar{x}^2)]f_2(y_0)^{\gamma - 1}$, $\bar{B} = (\beta/x)^{\gamma}$, $\bar{C} = -(m\bar{x}^2 + 4g_2(y_0)) /m\bar{x}^2].f_2(y_0)^{\gamma - 1}$. If $\tilde{A} = 0$, then $g_2(y) = -\bar{B}^{\gamma - 1} y - \bar{C}^{\gamma - 1} y^{\gamma - 1}$. As $g_2(y)$ satisfies (*) of Lemma 5.3, we get that either $g_2(y)$ is linear on \mathbb{F}_q^n or $n = 2$. So $\tilde{A} \neq 0$ and we can apply Lemma 5.3 to the polynomial $g_2(y)$. Since $\bar{B}^\gamma \neq \bar{B}^2$, if Case (i) of Lemma 5.3 occurs, then $g_2(y) = [(\bar{B} - B)/(A - \bar{A})]y^\gamma + [(\bar{C} - C)/(A - \bar{A})]y$ and $n = 2h = 2h'$. Therefore, we have $g.c.d.(h, h', n) = 1$ and hence $n = 2$: a contradiction. If Case (ii) of Lemma 5.3 occurs, then $\bar{B}A^\gamma - C^\gamma = 0$ from which we get $\beta = 0$. In this case, since \mathcal{O}_0 and \mathcal{I}_0 are disjoint, we can write

$$x^2 g_2(y)^2 + (2\gamma - 1)x g_2(y) + \frac{x^2}{4} x^2 - \frac{m}{4} x^{\gamma + 1} \neq 0$$

for each $x, y \in \mathbb{F}_q^n$. Since $g_2(y)$ is a permutation polynomial, this equality implies that $x^2(3\gamma^2 x^2 - 4\gamma x + 1) + x^2 mx^{\gamma + 1}$ is a non-square for all $x \in \mathbb{F}_q^n$. By Corollary 5.2 we have $3\gamma^2 x^2 - 4\gamma x + 1 = 0$ and hence $x^\gamma \in \{1, 1/3\}$. In particular, $\gamma \neq 0$. Now, let $t = \gamma^{-1}$ and $z = x - \gamma^{-3} y$; then

$$\mathcal{O}_{\gamma^{-1}} = \left\{ (z, \gamma z + \gamma z g_2(y), \frac{m z}{4} z^t + \frac{3}{4} \gamma z^t + \frac{m}{4} \gamma z^t y^t - \frac{1}{4} \gamma y + g_2(y), 0) : y, z \in \mathbb{F}_q^n \right\}. $$

Applying Lemma 5.6 to $\mathcal{O}_{\gamma^{-1}}$, we get that there exists $(z_0, y_0) \in (\mathbb{F}_q^n \times \mathbb{F}_q^n)^*$ such that

$$\frac{m}{4\gamma^2} y^t - \frac{1}{4\gamma} y + g_2(y) = -\frac{m}{4} \frac{z_0}{h(y_0)^{\gamma}} x^t g_2(y) + \left(\frac{m z_0^t + 4k(y_0)}{4h(y_0)^{\gamma}} \right) z g_2(y)$$

for each $y \in \mathbb{F}_q^n$, where $h(y) = \gamma z_2(y) + (m/4\gamma^3) y^t - (1/4\gamma) y + \gamma g_2(y)$. If $z_0 = 0$, then $g_2(y)(1 - (k(y_0)/h(y_0)) z) = (1/4\gamma) y - (1/4m\gamma^3) y^t$ and substituting in (*) we get $n = 2$: a contradiction. If $z_0 \neq 0$, we can write

$$g_2(y)^t + \bar{A} g_2(y) + \bar{B} y^t + \bar{C} y = 0$$

(13)

for each $y \in \mathbb{F}_q^n$, where $\bar{A} = (4h(y_0)^{\gamma - 1}/m\bar{z}_0^t) [h(y_0) - \gamma((m/4)z_0^t + k(y_0))]$, $\bar{B} = (h(y_0)^{\gamma - 1}/m\gamma z_0^t) z_0^t$, $\bar{C} = (h(y_0)^{\gamma - 1}/m\gamma z_0^t) z_0^t$. If $\bar{A} = 0$ (similar to the case $\bar{A} = 0$), we get $n = 2$, contradicting our assumption. Hence $\bar{A} \neq 0$ and we can apply Lemma 5.3 to the polynomial $g_2(y)$. Since $C = 0$ and $\bar{C} \neq 0$, in our hypotheses, Case (ii) of Lemma 5.3 occurs, from which we get $\bar{B} = 0$, i.e. $h(y_0) = 0$: a contradiction. This proves that Case (b) does not occur. \(\square\)

From the previous results Theorem 2.3 follows.
References