NOETHERIAN RINGS OF DIMENSION ONE ARE POLE ASSIGNABLE

F.G.J. WIID
Nafional Research Institute for Mathematical Sciences, CSIR, Pretoria 0001, South Africa

Communicated by E.M. Friedlander
Received 1 July 1986
Revised 13 February 1987

It is shown that Noetherian rings of dimension one are pole-assignable.

In this note we prove that every Noetherian ring R of Krull dimension one has the PA-property. Let us briefly recall the definition of the PA-property. Consider the following data:
(i) $F: P \rightarrow P$ and $G: U \rightarrow P$ are maps between finitcly generated projective R modules such that $G \oplus F G \oplus \cdots \oplus F^{n-1} G: \oplus U \rightarrow P$ is surjective, where $n=$ rank P;
(ii) $\lambda_{1}, \ldots, \lambda_{n}$ is a sequence in R of length $n=\operatorname{rank} P$.

We say that the poles $\lambda_{1}, \ldots, \lambda_{n}$ in (ii) can be assigned to the reachable system (F, G) in (i) if there exists a map $K: P \rightarrow U$ such that $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $F+G K: P \rightarrow P$. The ring R has the PA-property if, given arbitrary data (F, G), $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in R^{n}$ satisfying (i) and (ii), the poles $\lambda_{1}, \ldots, \lambda_{n}$ can be assigned to (F, G).

We refer the reader to [3] and [4] where these concepts are discussed and related to the theory of systems.

We shall assume that the reader is familiar with the fundamental Eisenbud-Evans paper [1]. In the sequel we shall invoke the following result repeatedly: R has the PA-property (or R is PA for short) if every basic finitely generated R-submodule B of a finitely generated projective R-module P contains a rank one summand of P (cf. [3, 4]).

Proposition 1. Let R be a reduced Noetherian ring of dimension one and let B be a basic submodule of a projective R-module P. Then B contains a rank one summand of P. Hence R is PA.

Proof. We may assume that $P=R^{n}$ and that B is generated by a_{1}, \ldots, a_{m}. If B is 2-fold basic at every minimal prime ϱ, then the Eisenbud-Evans theorem applies to
ensure the existence of a basic element of P in B-this basic element then generates the required rank one summand of P.

Otherwise, let

$$
S=\{\varrho \in \operatorname{spec} R \mid \varrho \text { is minimal in } \operatorname{spec} R \text { and } B \text { is at most } 1 \text {-fold basic at } \varrho\} .
$$

It is well known that the local rings of a reduced ring at minimal primes are fields. This means that the statement ' B is t-fold basic in P at q ' is equivalent to

$$
\mu\left(R_{q}, B_{q}\right) \geq t
$$

at minimal primes in a reduced ring.
It follows that

$$
\mu\left(R_{\varrho}, B_{\varrho}\right)=1 \quad \text { for all } \varrho \in S .
$$

Hence $U=\left\{q \mid \mu\left(R_{q}, B_{q}\right)=1\right\}$ is an open neighbourhood of S.
Let $Y=\operatorname{spec} R \quad U$. Then, for $q \in Y$ we know that B is $(\operatorname{dim}(q)+1)$-fold basic in P. But then there is some element α of B that is basic in P at every $q \in Y$: to see this, apply a trivially modified version of the proof of the Eisenbud-Evans theorem as given in [1] - in fact, α is basic in P in some open neighbourhood V of Y.

For every R-module M, let \tilde{M} denote the sheaf on $\operatorname{spec} R$ associated with M. As $B_{q}=R_{q} \alpha$ for every q in $U \cap V$, we are in a position to glue the sheaves $\tilde{B} \mid U$ and $\tilde{R} \alpha \mid V$ to obtain a subsheaf F of \tilde{B} on spec R. The sheaf F is evidently a coherent, invertible sheaf. By $[2,11.5 .5], F=\tilde{M}$ for some submodule of B, and M is a rank one projective module. Moreover, $\tilde{R}^{n} / M=O^{n} / F$ is a locally free coherent sheaf, so R^{n} / M is projective, where O is the structure sheaf on spec R. The validity of the final statement of Proposition 1 now follows from the results of [4].

Corollary. A Noetherian 1-dimensional ring R is PA.

Proof. Let $B \leq P$ be R-modules with P finitely generated and projective, and let B be basic in P. We show that B contains a rank one summand of P-according to the results of [4], we can then conclude that R is PA. The validity of the following statement is well known:
(*) The Picard group of R / N lifts to the Picard group of R
(N is the nilradical of R).
Observe that $\bar{B}=B+N P / N P$ is a basic submodule of $\bar{P}=P / N P$. By Proposition $1, \bar{B}$ contains a rank one summand \bar{H} of \bar{P}.

By (*) there is a rank one projective R-module H such that $H / N H \cong \bar{H}$. Then we have the following diagram of R-modules:

which can be completed by $(\varphi: H \rightarrow B) \in \operatorname{Hom}_{R}(H, B)$ to become commutative. The map $H \rightarrow B \rightarrow P$ induces a split injection $H / N H \rightarrow P / N P$ so it must also be a split injection. Hence $\operatorname{Im} \varphi$ is a rank one summand of P.

References

[1] D. Eisenbud and E.G. Evans Jr., Generating modules efficiently: theorems from algebraic K-theory, J. Algebra 27 (1973) 273.
[2] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics (Springer, Berlin, 1977).
[3] M.I.J. Hautus and E.D. Sontag, New results on pole shifting for parametrized families of systems, J. Pure Appl. Algebra 40 (1986) 229-244.
[4] E. Minnaar, C.G. Naudé, G. Naudé and F. Wiid, Pole assignability of rings of low dimension, J. Pure Appl. Algebra 51 (1988) 197-203.

