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It is shown that Noetherian rings of dimension one are pole-assignable. 

In this note we prove that every Noetherian ring R of Krull dimension one has 

the PA-property. Let us briefly recall the definition of the PA-property. Consider 

the foliowing data: 

(i) F: P-P and G : U-+ P are maps between finitely generated projective R- 
modules such that G OF%@ . . . OF”-‘G : @U-P is surjective, where n= 

rank P; 
(ii) Ai, . . . . 2, is a sequence in R of length n = rank P. 
We say that the poles J. t, . . . ,A, in (ii) can be assigned to the reachable sysfem 

(F, G) in (i) if there exists a map E; : P+ U such that Ar, . . . , A,l are the eigenvaIues 

of F + GK : P-t P. The ring R has the PA-property if, given arbitrary data (F, G), 

t/1 r, . . . , A,,) E R” satisfying (i) and (ii), the poles J. i, . . . , A.,, can be assigned to (F, G). 
We refer the reader to [3] and [4] where these concepts are discussed and related 

to the theory of systems. 

We shall assume that the reader is familiar with the fundamental Eisenbud-Evans 

paper ]I]. In the sequel we shall invoke the following result repeatedly: R has the 

PA-property (or R is PA for short) if every basic finitely generated R-submodule 

B of a finitely generated projective R-module P contains a rank one summand of 

P (cf. [3, 4)). 

Proposition 1. Let R be a reduced Noetherian ring of dimension one and let 3 be 
n basic submod~lie of ct projective R-module P. Then B contains a rank one sum- 
mand of P. Hence R is PA. 

Proof. We may assume that P= R” and that B is generated by al, . . . ,a,. If B is 

2-fold basic at every minimal prime Q, then the Eisenbud-Evans theorem applies to 
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ensure the existence of a basic element of P in B - this basic element then generates 

the required rank one summand of P. 
Otherwise, let 

S = {e E spec R / Q is minimal in spec R and B is at most l-fold basic at Q>. 

It is well known that the local rings of a reduced ring at minimal primes are fields. 

This means that the statement ‘B is t-fold basic in P at q’ is equivalent to 

at minimal primes in a reduced ring. 

It follows that 

,D(R,, BQ) = 1 for all Q ES. 

Hence U = (q / p(R,, Bq) = 1) is an open neighbourhood of S. 

Let Y=spec R - Cr. Then, for qE Y we know that B is (dim(q)+ 1)-fold basic in 

P. But then there is some element a of B that is basic in P at every q E Y: to see 

this, apply a trivially modified version of the proof of the Eisenbud-Evans theorem 

as given in [I] - in fact, a is basic in P in some open neighbourhood V of Y. 

For every R-module M, let fi denote the sheaf on spec R associated with A4. As 

B_4 = R,a for every q in Utl I/, we are in a position to glue the sheaves L? 1 U and 

Ra / V to obtain a subsheaf F of B on spec R. The sheaf F is evidently a coherent, 

invertible sheaf. By 12, 11.5.51, F=I@ for some submodule of B, and M is a rank 

one projective module. Moreover, R”/lr4= On/F is a locally free coherent sheaf, so 

R”/M is projective, where 0 is the structure sheaf on spec R. The validity of the 

final statement of Proposition 1 now follows from the results of [4]. c1 

Corollary. A Noetherian l-dimensional ring R is PA. 

Proof. Let BS P be R-modules with P finitely generated and projective, and let B 
be basic in P. We show that B contains a rank one summand of P - according to 

the results of ]4], we can then conclude that R is PA. The vahdity of the following 

statement is well known: 

(*I The Picard group of R/N lifts to the Picard group of R 

(N is the nilradical of R). 
Observe that B = B + NP/NP is a basic submodule of P = P/NP. By Proposition 

1, B contains a rank one summand fl of P. 

By (*) there is a rank one projective R-module Irl such that H/NH= R. Then we 

have the following diagram of R-modules: 
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B-B-0 

which can be completed by (9 : H+ B) E Horn, (H, B) to become commutative. The 

map H-t B+ P induces a split injection H/NH+ P/NP so it must also be a split in- 

jection. Hence Im v, is a rank one summand of P. 
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