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Abstract

Discrete notions of behavioural equivalence sit uneasily with semantic models featuring quantita-
tive data, like probabilistic transition systems. In this paper, we present a pseudometric on a class of
probabilistic transition systems yielding a quantitative notion of behavioural equivalence. The pseu-
dometric is defined via the terminal coalgebra of a functor based on a metric on the space of Borel
probability measures on a metric space. States of a probabilistic transition system have distance 0 if
and only if they are probabilistic bisimilar. We also characterize our distance function in terms of a
real-valued modal logic.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The majority of verification methods for concurrent systems only produce qualitative
information. Questions like “Does the system satisfy its specification?” and “Do the sys-
tems behave the same?” are answered “Yes” or “No”. Giacalone et al.[14], Huth and
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Kwiatkowska[19] and Desharnais et al.[12] have pointed out that such Boolean-valued
reasoning sit uneasily with semantic models featuring quantitative data, like probabilistic
transition systems.
Theprobabilities occurring in aprobabilisticmodel of a systemmaybebasedonstatistical

sampling. In this case, the model is only an approximate description of a system, and it
makes no sense to ask if any two states in the model behave exactly the same. Even if we
have a precise description of a system, we may still want to express the idea that two states
exhibit almost the samebehaviour. Furthermore, the problemof automatically verifying that
two states are exactly equivalent will typically require exact real arithmetic. For automatic
verification of probabilistic systems, in the conventional setting of floating point arithmetic,
it is more reasonable to consider approximate equivalence.
The above observations apply to a number of different semantics for probabilistic sys-

tems. In this paper, however,we concentrate onLarsenandSkou’s probabilistic bisimulation
[24]. Recall that a probabilistic bisimulation is an equivalence relation on the state space
of a transition system such that related states have exactly the same probability of mak-
ing a transition into any equivalence class. Thus, for instance, the statess0 ands�0 of the
probabilistic transition system
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are only probabilistic bisimilar if� is 0. However, the two states behave almost the same
for very small� different from 0.
In the previous example, varying� gave different probabilities on the same underlying

transition system. (For instance,� may correspond to a rounding error arising from giving
a finite presentation of a real number.) We also want to consider approximate equivalence
where the underlying transition systems are different. For example, consider the infinite
state system
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Below we illustrate the finite state system arising by truncating to depth 3.
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Such truncations are not bisimilar to the original infinite system; nevertheless it is intuitively
clear that by truncating at greater and greater depths one gets closer to the original system. It
would be useful to formalize and quantify this convergence so that one could safely reason
about the infinite state system by examining a suitable finite approximant.
To the best of our knowledge, the earliest attempt to address some of the problems with

probabilistic bisimulation as outlined above is the paper of Giacalone et al.[14]. They define
a pseudometric on the states of a (restricted type of) probabilistic transition system, yielding
a smooth, quantitative notion of behavioural equivalence. A pseudometric differs from an
ordinary metric in that different elements, that is, states, can have distance 0.We would like
that the distance between states, a real number between 0 and 1, will express the similarity
of the behaviour of those states. The smaller the distance, the more alike the behaviour is.
In particular, the distance between states is 0 if they are behaviourally indistinguishable.
The present paper ismost closely related to thework of Desharnais et al.[11] andDeVink

and Rutten[33]. The former introduce a pseudometric on a class of probabilistic transition
systems more general than that considered by Giacalone et al. This pseudometric is defined
via a nonstandard semantics for a probabilistic modal logic, where formulae get interpreted
as measurable functions into the interval[0,1], rather than as Boolean-valued functions.
We show that what we present in this paper is essentially a coinductive account of a closely
related pseudometric. We will also discuss some of the advantages conferred by such an
account.
The connection between thepresent paper andDeVink andRutten[33] is in themodelling

of probabilistic systems as coalgebras. Coalgebras offer a simple and uniform categorical
notion of transition system, including an account of bisimulation. Rutten[29] shows that
many different kinds of transition system can be captured in this framework. Roughly
speaking, a coalgebra consists of a carrier set, and a coalgebraic structure determining
how elements of the carrier can be decomposed into other elements of the carrier. Thus
coalgebras are dual to algebras. For transition systems, the coalgebraic structure is given
by the dynamics of the system.
Bymodelling a restricted class of probabilistic transition systemsas coalgebras, andusing

a standard result from the general theory of coalgebras, DeVink and Rutten established the
existence of a terminal object in their category of systems. By definition there is a unique
map from an arbitrary system to the terminal one. Furthermore, DeVink and Rutten showed
that the kernel of the unique map coincides with probabilistic bisimilarity.
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In this paper, we exploit the coalgebraic framework to define a notion of quantitative
behavioural equivalence for probabilistic transition systems. In particular, we define a pseu-
dometric on the states of a probabilistic transition system in terms of the terminal coalgebra
of an endofunctorP on the category of pseudometric spaces and nonexpansive maps. The
definition ofP is based on a metric on Borel probability measures. This metric is known
as Hutchinson metric[18], Kantorovich metric, Monge–Kantorovich metric, Kantorovich–
Rubensteinmetric[20],Vaserstein (Wasserstein and evenVasserstein)metric[32], transport
metric, earthmover’s metric, and match metric.P -coalgebras can be seen as probabilistic
transition systems with discrete or continuous state spaces. The terminalP -coalgebra pro-
vides for a notion of approximate equivalence similar to the pseudometric of Desharnais et
al. mentioned above. In fact, we define a pseudometric on the state space of a probabilistic
transition system, seen as aP -coalgebra, as the pseudometric kernel of the unique map to
the terminalP -coalgebra. That is, the distance between two states is the distance between
their images under the unique map to the terminalP -coalgebra. Moreover states are at
distance 0 just in case they are probabilistic bisimilar in the sense of Larsen and Skou.
So far we have motivated our concern for defining a notion of quantitative behavioural

equivalencebyexamples featuringprobabilistic transitionsystemswithdiscretestatespaces.
However our framework is sufficiently general to model probabilistic transition systems the
state space of which is continuous, like[0,1]. We refer the reader to[12] for a discussion
of the importance of modelling continuous as well as discrete systems.
The rest of this paper is organized as follows. In Section2, we present some minor

variations on results of[1,31] which allow us to prove that a terminalP -coalgebra exists.
In Section3, we present the metric on Borel probability measures, and recall a number
of standard results about this metric. In Section4, we introduce a functorial extension of
this metric, and we verify that it satisfies the properties required for the application of the
terminal coalgebra theorem. In Section5, we present the functorP and we show that all
discrete probabilistic transition systems and a large class of continuous probabilistic transi-
tion systems can be viewed asP -coalgebras. We introduce our pseudometric in Section6.
In Section7, we introduce a pseudometric defined in terms of a modal logic a la Deshar-
nais et al. Section8 contains the main result of the paper: we show that the coalgebraic
pseudometric, introduced in Section6, coincides with the logical pseudometric, introduced
in Section7. The proof involves an application of the Stone–Weierstrass approximation
theorem for continuous functions. In the concluding section we present related and future
work.
The reader is assumed to be familiar with some very elementary category theory, metric

space theory and probability theory. For more details, we refer the reader to, for example,
the texts of Mac Lane[25], Sutherland[30] and Billingsley[6].

2. A pseudometric terminal coalgebra theorem

In this section, we first introduce coalgebras and then we give the ingredients of our
metric coalgebraic framework, to obtain a mild generalization of Rutten and Turi’s metric
terminal coalgebra theorem[31].
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Definition 1. Let C be a category. LetF : C → C be a functor. AnF -coalgebra consists
of an objectC in C together with an arrowf : C → F (C) in C. The objectC is called
the carrier. The arrowf is called the structure. AnF -homomorphism from anF -coalgebra
〈C, f 〉 to anF -coalgebra〈D, g〉 is an arrow� : C → D in C such thatF (�) ◦ f = g ◦ �.
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TheF -coalgebras andF -homomorphisms form a category. If this category has a terminal
object, then this object is called the terminalF -coalgebra.

For more details about the theory of coalgebras we refer the reader to, for example,
Rutten’s[29].
In the rest of this section, we restrict our attention to the categoryPMet1 of 1-bounded

pseudometric spaces and nonexpansive functions. A pseudometric space differs from an
ordinary metric space in that different elements can have distance 0. Elements at distance
0 will be considered equivalent. A pseudometric space is 1-bounded if all its distances are
bounded by 1. A functionf : X → Y is nonexpansive if it does not increase any distances,
that is,dY (f (x1), f (x2))�dX (x1, x2) for all x1, x2 ∈ X. We denote the collection of
nonexpansive functions from the spaceX to the spaceY by X →

1
Y . This collection can

be turned into a pseudometric space by endowing the functions with the supremummetric:
dX→

1
Y (f1, f2) = supx∈X dX (f1 (x), f2 (x)).

Let c be a constant in the open interval(0,1). A functionf : X → Y is c-contractive if
it decreases all distances by at least a factorc, that is,dY (f (x1), f (x2))�c · dX (x1, x2)

for all x1, x2 ∈ X. This notion can be lifted to functors as follows.

Definition 2. A functor F : PMet1 → PMet1 is locally c-contractive if for all pseudo-
metric spacesX andY , the function

FX,Y : (X →
1
Y ) → (F (X) →

1
F (Y ))

defined by

FX,Y (f ) = F (f )

is c-contractive.

In the rest of this section, we restrict ourselves to locally contractive functors. Further-
more, we focus on functors which preserve positivity (different elements have a positive
distance) and completeness.

Definition 3. A functorF : PMet1 → PMet1 preserves positivity and completeness if for
all complete metric spacesX, F (X) is a complete metric space.
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A functor which preserves positivity and completeness can be restricted to a functor on
the category of complete metric spaces and nonexpansive functions.
A locally contractive functorF which preserves positivity and completeness has a unique

fixed point. That is, there exists a unique space, sayfix (F ), such that there is an isometry
from fix (F ) toF ( fix (F )). Recall that an isometry is a bijection that preserves all distances.
In the rest of this section, we present simple translations of results in[1,31] from metric

spaces to pseudometric spaces.

Lemma 4 (Turi and Rutten[31, Theorem 7.2]). For each locallyc-contractive functorF :
PMet1 → PMet1 which preserves positivity and completeness, there exists a unique com-
plete metric space fix(F ) such that there is an isometryi : fix (F ) → F ( fix (F )).

Next, we show that〈 fix (F ), i〉 is a terminalF -coalgebra. For the rest of this section,
we fix 〈X, f 〉 to be anF -coalgebra. To characterize the uniqueF -homomorphism from the
F -coalgebra〈X, f 〉 to theF -coalgebra〈 fix (F ), i〉 we introduce the following function.

Definition 5. The function�〈X,f 〉 : (X →
1
fix (F )) → (X →

1
fix (F )) is defined by

�〈X,f 〉 (�) = i−1 ◦ F (�) ◦ f.
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Since the functorF is locally c-contractive, we have that the function�〈X,f 〉 is c-
contractive. Becausefix (F ) is a complete metric space,X →

1
fix (F ) is a complete metric

space as well. Obviously, the spaceX →
1
fix (F ) is nonempty. Since�〈X,f 〉 is a contractive

function from a nonempty complete metric space to itself, we can conclude from Banach’s
theorem that it has a unique fixed pointfix (�〈X,f 〉). This functionfix (�〈X,f 〉) is the unique
F -homomorphism from theF -coalgebra〈X, f 〉 to theF -coalgebra〈 fix (F ), i〉.

Theorem 6(Turi and Rutten[31, Proposition 7.1]). For every locallyc-contractive func-
tor F : PMet1 → PMet1 which preserves positivity and completeness there exists a
terminalF -coalgebra〈 fix (F ), i〉 and fix(F ) is a complete metric space.

We will exploit both the terminal F -coalgebra 〈 fix (F ), i〉 and the unique
F -homomorphismfix (�〈X,f 〉) when defining our pseudometric.
If the functorF also preserves compactness, then we can conclude that the carrier of the

terminalF -coalgebra is a compact metric space.

Theorem 7(Alessi et al.[1, Theorem 4.4]). For every locally c-contractive functor
F : PMet1 → PMet1 which preserves positivity and compactness there exists a terminal
F -coalgebra〈 fix (F ), i〉 and fix(F ) is a compact metric space.
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3. A pseudometric on Borel probability measures

The set of Borel probability measures on a space can be turned into a pseudometric space
in several ways (see, for example, Rachev’s book[28]). In this section, we introduce a
pseudometric on Borel probability measures which gives rise to meaningful distances on
probabilistic transition systems.
Let X be a (1-bounded) pseudometric space. We denote the set of Borel probability

measures onX byM (X).

Definition 8. The distance functiondM (X) : M (X) × M (X) → [0,1] is defined by

dM (X) (�1,�2) = sup

{∫
X

f d�1 −
∫
X

f d�2 | f ∈ X →
1

[0,1]
}
.

Before presenting an example, let us first check that this distance function is indeed a
pseudometric.

Proposition 9. The distance functiondM (X) is a pseudometric.

Proof. For all nonexpansive functionsf : X → [0,1],

0 =
∫
X

0 d��
∫
X

f d��
∫
X

1d� = 1.

Hence,dM (X) (�1,�2) ∈ [0,1].
Obviously,dM (X) (�,�) = 0.
To prove symmetry, it suffices to observe that for each nonexpansive functionf : X →

[0,1], the function 1− f : X → [0,1] is nonexpansive as well, and∫
X

(1− f )d� = 1−
∫
X

f d�.

Since for each nonexpansive functionf : X → [0,1],∫
X

f d�1 −
∫
X

f d�3 =
(∫

X

f d�1 −
∫
X

f d�2

)
+

(∫
X

f d�2 −
∫
X

f d�3

)

�dM (X) (�1,�2) + dM (X) (�2,�3),

the distance functiondM (X) satisfies the triangle inequality.�

Example 10. Let the set{x0, x1} be endowed with the discrete metric, that is, all distances
are either 0 or 1. Let�� be the discrete Borel probability measure determined by

�� ({x0}) = 1
2 + �,

�� ({x1}) = 1
2 − �.

The measures�0 and�� have distance�. This is witnessed by the function mappingx0 to 0
andx1 to 1.
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Let the set[0,1] be endowed with the Euclidean metric. For each� ∈ [0,1], consider
the Borel probability measure�� determined by

�� ([x�, xr ]) =
∫

[x�,xr ]
g� dx,

where the functiong� is defined by

g� (x) =
{
4x� − � + 1 if x ∈ [0, 12],−4x� + 3� + 1 if x ∈ [12,1].

To compute the distance between the measures�0 and�1 we need to find a nonexpansive
functionf : [0,1] → [0,1] which maximizes

∫
[0,1]

f d�0 −
∫

[0,1]
f d�1. (1)

Note that the measure�0 distributes the probability evenly over the interval[0,1] whereas
the measure�1 concentrates its probability around

1
2. Therefore, a function that maximizes

(1) should take its minimum at12 and its maximum at 0 and 1. Clearly the nonexpansive
functionf : [0,1] → [0,1] defined by

f (x) =
{
1− x if x ∈ [0, 12],
x if x ∈ [12,1]

is such a function. One can now easily verify that the distance between the measures�0 and
�1 is

1
12.

Next, we present some results that will be exploited later. First of all, we note thatM

preserves positivity.

Proposition 11. X is a metric space if and only ifM (X) is a metric space.

Proof. See, for example, Edgar’s textbook[13, Proposition 2.5.14]. �

In the rest of this paper, we focus on Borel probability measures which are completely
determined by their values for the compact subsets of the spaceX.

Definition 12. A Borel probability measure� onX is tight if for all � > 0 there exists a
compact subsetK� of X such that� (X \ K�) < �.

Under quite mild conditions on the space, for example, completeness and separability,
every measure is tight (see, for example, Parthasarathy’s textbook[27, Theorem II.3.2]).
Discrete Borel probability measures are tight. All measures presented in Example10 are
tight.Wedenote thesetof tightBorel probabilitymeasuresonX byMt (X).Weare interested
in these tight measures because of the following:
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Theorem 13. (1)X is complete if and only ifMt (X) is complete.
(2)X is compact if and only ifMt (X) is compact.

Proof. Proofs of (1) and (2) can be found in, for example, the texts of Edgar[13,
Theorem 2.5.25]and Barnsley[5, Theorem 9.5.1], respectively. �

4. The functorMt

WeextendMt to a functor on the categoryPMet1 of 1-bounded pseudometric spaces and
nonexpansive functions. Furthermore, we show that the functor is locally nonexpansive.
Let X andY be pseudometric spaces. Letf : X → Y be a nonexpansive function.

To extendMt to a functor we have to define a nonexpansive functionMt (f ) from tight
measures onX to tight measures onY .

Definition 14. The functionMt (f ) : Mt (X) → M (Y) is defined by

Mt (f )(�) = � ◦ f−1.

Next, we prove that the measureMt (f )(�) is tight and that the functionMt (f ) is
nonexpansive.

Proposition 15. The measureMt (f )(�) is tight.

Proof. Let�>0.Since� is tight, thereexistsacompact subsetK� ofX such that� (X\K�)<�.
Becausef is nonexpansive,f (K�) is a compact subset ofY . Sincef−1 (Y \ f (K�)) is a
subset ofX \K�, we can conclude that(� ◦ f−1) (Y \ f (K�))< �. Hence,� ◦ f−1 is tight.

�

Proposition 16. The functionMt (f ) is nonexpansive.

Proof. For all�1, �2 ∈ Mt (X),

dMt (Y ) (Mt (f )(�1),Mt (f )(�2))

= sup

{ ∫
Y

g d(�1 ◦ f−1) −
∫
Y

g d(�2 ◦ f−1) | g ∈ Y →
1

[0,1]
}

= sup

{ ∫
X

(g ◦ f )d�1 −
∫
X

(g ◦ f )d�2 | g ∈ Y →
1

[0,1]
}

� sup

{ ∫
X

hd�1 −
∫
X

hd�2 | h ∈ X →
1

[0,1]
}

= dMt (X) (�1,�2). �
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Clearly, the action ofMt on arrows is functorial.
We conclude this section with a property ofMt which will later allow us to exploit the

pseudometric terminal coalgebra theorem.

Proposition 17. The functorMt is locally nonexpansive, that is, for all nonexpansive func-
tionsf1, f2 ∈ X → Y ,

dMt (X)→Mt (Y ) (Mt (f1),Mt (f2))�dX→Y (f1, f2).

Proof. For all� ∈ Mt (X),

dMt (Y ) (Mt (f1)(�),Mt (f2)(�))

= sup

{∫
Y

g d(� ◦ f−1
1 ) −

∫
Y

g d(� ◦ f−1
2 ) | g ∈ Y →

1
[0,1]

}

= sup

{ ∫
X

(g ◦ f1)d� −
∫
X

(g ◦ f2)d� | g ∈ Y →
1

[0,1]
}

= sup

{ ∫
X

(g ◦ f1 − g ◦ f2)d� | g ∈ Y →
1

[0,1]
}

�dX→Y (f1, f2),

since for allg ∈ Y →
1

[0,1] andx ∈ X,

(g ◦ f1 − g ◦ f2) (x)

� |(g ◦ f1) (x) − (g ◦ f2) (x)|
�dY (f1 (x), f2 (x)) (g is nonexpansive)

�dX→Y (f1, f2). �

5. Probabilistic transition systems as coalgebras

In this section, we introduce discrete and continuous probabilistic transition systems.
Furthermore, we present a functorP , and show that all discrete probabilistic transition
systems and a large class of continuous probabilistic transition systems can be represented
asP -coalgebras.
Before considering continuous systems, we first have a look at discrete probabilistic

transition systems.

Definition 18. A discrete probabilistic transition system consists of a finite setS of states,
a set Act of actions and a transition functiont : S × Act× S → [0,1] such that

for all s ∈ S anda ∈ Act,
∑
s′∈S

ts,a (s
′)�1. (2)

Such a system is also called a partial labelled Markov chain in the literature (see, for
example,[11]). The functiont·,a describes the reaction of the system to the actiona selected
by the environment. This represents a reactivemodel of probabilistic systems. For a detailed
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discussion of this reactive model and other models, and the relationship of the reactive one
to those other models we refer the reader to the work of Van Glabbeek et al.[16]. Given
the system is in states and reacts to actiona chosen by the environment,ts,a (s′) is the
probability that the system makes a transition to the states′. Note that this is a conditional
probability. Also notice that we consider subprobabilities as we use� , instead of =, in (2).
These subprobabilities allow for the possibility that the system may refuse an action. The
probability of refusal of the actiona given the system is in states is

1− ∑
s′∈S

ts,a (s
′).

Example 19. Consider the discrete probabilistic transition systemwith the statess0, s�0, s1,
s�1, s2, s3, the actiona, and the transitions
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a,1

��
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a,1 		 s1

a, 12
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a, 12 ��
��

��
��

��
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a, 12+�
����������

a, 12−�
����

��
��

��
s�0

a,1��

s3

The actiona is refused in states3 with probability 1.

The key behavioural equivalence on the states of a discrete probabilistic transition system
is probabilistic bisimulation. This notion is due to Larsen and Skou[24] and presented in:

Definition 20. An equivalence relationR on the setS of states of a discrete probabilis-
tic transition system is a probabilistic bisimulation ifs1 R s2 implies

∑
s∈E ts1,a (s) =∑

s∈E ts2,a (s) for all R-equivalence classesE of states anda ∈ Act.
Statess1 and s2 are probabilistic bisimilar ifs1 R s2 for some probabilistic bisimula-

tionR.

Next, we introduce continuous probabilistic transition systems.

Definition 21. A continuous probabilistic transition system consists of a setS of states, a
�-algebra� onS, a finite setAct of actions and a transition functiont : S×Act×� → [0,1]
such that
(1) for all s ∈ S anda ∈ Act, the functionts,a (·) : � → [0,1] is a subprobability measure,

and
(2) for all a ∈ Act andB ∈ �, the functiont·,a (B) : S → [0,1] is measurable.

Such a system is also called a partial labelled Markov process in the literature (see, for
example,[11]). Another way of expressing (1) and (2) is thatt·,a is a stochastic kernel
for eacha ∈ Act. The main difference between the definition of discrete and continuous
systems is the use of a�-algebra in the latter. Given the system is in states and reacts
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to actiona chosen by the environment,ts,a (B) is the probability that the system makes a
transition to a state in the setB.

Example 22. Consider the continuous probabilistic transition system with the set of states
[0,1] and its Borel�-algebra, actionsa andb, and the transition function determined by

ts,a = �s ,

ts,b ({12}) = 1

with the measure�s as defined in Example10. Note that the probability of making an
a-transition from one state to another is always 0.

A discrete probabilistic transition system is just a special case of a continuous one where
the�-algebra is discrete and the transition subprobability measure is determined by a sub-
probability distribution.
Probabilistic bisimulation has been generalized to the continuous setting by Blute

et al.[7].

Definition 23. A setB isR-closed ifs1 ∈ B ands1 R s2 impliess2 ∈ B.
An equivalence relationR on the setS of the states of a continuous probabilistic transition

system is a probabilistic bisimulation ifs1Rs2 impliests1,a (B) = ts2,a (B) for allR-closed
measurable setsB anda ∈ Act.
Statess1 and s2 are probabilistic bisimilar ifs1 R s2 for some probabilistic bisimula-

tionR.

Next, we introduce a functorP : PMet1 → PMet1 such thatP -coalgebras represent
probabilistic transition systems. The functorP is built from a number of functors. Below
we only present their action on objects. Their action on arrows can be obtained in a standard
way (see, for example, America and Rutten’s[2, Section 5]).
• 1 is the terminal object functor. This functor maps each object to the terminal object of

PMet1 which is the singleton space.
• c · − is the scaling functor. The scaling byc · − of an object inPMet1 leaves the set
unchanged and multiplies all distances byc. For the rest of this paper, we fixc to be an
arbitrary value in the open interval(0,1).

• + is the coproduct functor. The coproduct object of the objectsX andY in PMet1 is the
disjoint union of the sets underlying the spacesX andY endowed with the pseudometric

dX+Y (v,w) =



dX (v,w) if v ∈ X andw ∈ X,

dY (v,w) if v ∈ Y andw ∈ Y,

1 otherwise.

• Mt is the functor introduced in Section4.
• −Act is the power functor. For an objectX in PMet1,XAct is theAct-indexed product of
copies ofX equipped with the supremum metric.
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The functorP is defined by

P = Mt (1+ c · −)Act.

This functor can expressed in terms of the auxiliary functorsQ andR as follows.

R = 1+ c · −,

Q = Mt (R (−)),

P = Q(−)Act.

A P -coalgebra consists of a pseudometric spaceS together with a nonexpansive function
t : S → P (S). The spaceS corresponds to the set of states of the probabilistic transition
system. The nonexpansive functiont : S → P (S) characterizes the transitions of the
system. Given a states and an actiona, ts,a is a tight Borel probability measure onR (S).
It captures the reaction on actiona of the system in states. We useMt (R (S)) to represent
subprobabilities onS. The probability of refusal of actiona in states is given byts,a (1).
The role ofc · − will be discussed later.
Note that eachP -coalgebra can be interpreted as a continuous probabilistic transition

system, since nonexpansive functions are measurable.

Proposition 24. Every discrete probabilistic transition system can be represented by a
P -coalgebra.

Proof. We endow the set of statesS of the system with the discrete metric. Conse-
quently, every subset of the pseudometric spaceR (S) is a Borel set. For every states
and actiona, the Borel probability measurets,a is the discrete Borel probability measure
determined by

ts,a (1) = probability of refusal of actiona in states,
ts,a ({s′}) = probability of making ana-transition from states to states′.

Obviously, the measurets,a is tight. BecauseS is endowed with the discrete metric, the
functiont from S to P (S) is nonexpansive. �

Example 25. The continuous probabilistic transition system of Example22can be viewed
as aP -coalgebra by endowing its state space with the Euclidean metric.

A continuous probabilistic transition system can be viewed as aP -coalgebra if its setS
of states can be endowed with a pseudometricdS such that
• the Borel�-algebra induced by the pseudometricdS coincides with the�-algebra of the
system,

• for all statess and actionsa, the system’s subprobability measurets,a is tight, and
• the system’s transition function is nonexpansive.
We refer the reader forward to the conclusion for further discussion of these restrictions.
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6. A pseudometric on probabilistic transition systems

Next, we present our pseudometric on probabilistic transition systems. Furthermore, we
show that states have distance 0 if and only if they are probabilistic bisimilar. The pseudo-
metric on the states of a probabilistic transition system will be defined as a pseudometric
kernel.
A function � from a setS to a pseudometric spaceX defines a distance functiond�

on S. We call this distance function thepseudometric kernelinduced by�. The distance
betweens1 ands2 in S is defined as the distance of their�-images in the pseudometric
spaceX.

Definition 26. Let� : S → X. The distance functiond� : S × S → [0,1] is defined by
d� (s1, s2) = dX (� (s1),� (s2)).

One can easily verify that the pseudometric kerneld� is a pseudometric. Note thats1 and
s2 have distance 0 if they are mapped by� to the same element inX. For example, if� is
a constant function then all distances are 0.
In order to exploit a pseudometric kernel to provide the setS of states of a proba-

bilistic transition system with a pseudometric, we need to introduce the pseudometric
spaceX and the function�. The former will be (the carrier of) the terminalP -coalgebra
and the latter will be the uniqueP -homomorphism from the probabilistic transition sys-
tem viewed as aP -coalgebra to the terminalP -coalgebra. The details will be provided
below.
First, exploiting the pseudometric terminal coalgebra theorem, we prove that there exists

a terminalP -coalgebra.

Theorem 27. There exists a terminalP -coalgebra〈 fix (P ), i〉.

Proof. According to America and Rutten’s[2, Theorem 5.4], the functors1 and+ are
locally nonexpansive and the scaling functorc · is locally contractive. As we have seen in
Proposition17, the functorMt is locally nonexpansive. As a consequence, the functorP

is locally contractive. According to Proposition11 and Theorem13, the functorMt , and
hence the functorP , preserves positivity and completeness. Therefore, we can conclude
from Theorem6 that there exists a terminalP -coalgebra〈 fix (P ), i〉. �

Furthermore, the carrier of the terminalP -coalgebra is a compact metric space. We will
exploit this property in Section8.

Proposition 28. fix (P ) is a compact metric space.

Proof. By Proposition11 and Theorem13, the functorMt , and hence the functorP ,
preserves positivity and compactness. Hence, we can conclude from Theorem7 that the
metric spacefix (P ) is compact. �
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Since〈 fix (P ), i〉 is a terminalP -coalgebra, there exists a uniqueP -homomorphism�
from aP -coalgebra〈S, t〉 to the terminalP -coalgebra.

S
�

		

t

��

fix (P )

i

��

P (S)
P (�)

		 P ( fix (P ))

The pseudometric kerneld� induced by� is a pseudometric on the set underlying the carrier
S of theP -coalgebra.As eachP -coalgebra〈S, t〉 represents a continuous probabilistic tran-
sition system, having the set underlyingS as its set of states, we thus obtain a pseudometric
on this set of states. To stress its coalgebraic nature, instead ofd� we will often writedC .
Since the identity map onfix (P ) is the uniqueP -homomorphism from the terminal

P -coalgebra to itself, we can conclude that the coalgebraic pseudometricdC on the set
underlying the carrier of the terminalP -coalgebra coincides with the metricdfix (P ) on the
carrier of the terminalP -coalgebra.
In order to be able to explicitly compute some coalgebraic distances, we present a char-

acterization of the pseudometric onQ(S).

Proposition 29. For all �1, �2 ∈ Q(S),

dQ(S) (�1,�2)= sup

{ ∫
S

f d�1 −
∫
S

f d�2 | f ∈ c · S →
1

[0,1]
}

+(�1 (1)0�2 (1)),

where

r0r ′ =
{
r − r ′ if r�r ′,
0 otherwise.

Proof.

dQ(S) (�1,�2)

= sup

{ ∫
R (S)

f d�1 −
∫
R (S)

f d�2 | f ∈ R (S) →
1

[0,1]
}

= sup

{ (
r · �1 (1) +

∫
S

f d�1

)
−

(
r · �2 (1) +

∫
S

f d�2

)

| r ∈ [0,1] ∧ f ∈ c · S →
1

[0,1]
}

= sup

{ (∫
S

f d�1 −
∫
S

f d�2

)
+ r · (�1 (1) − �2 (1))

| r ∈ [0,1] ∧ f ∈ c · S →
1

[0,1]
}

= sup

{ ∫
S

f d�1 −
∫
S

f d�2 | f ∈ c · S →
1

[0,1]
}

+ (�1 (1)0�2 (1)). �

Once we can managedQ(S), we can computedC as well.



130 F. van Breugel, J. Worrell / Theoretical Computer Science 331 (2005) 115–142

Example 30. Consider the discrete probabilistic transition system introduced in
Example19. Let � be the uniqueP -homomorphism from theP -coalgebra representing
this system to the terminalP -coalgebra. Then

dC (s2, s3)

= dfix (P ) (� (s2),� (s3))

= dP ( fix (P )) (i (� (s2)), i (� (s3))) (i is an isometry)

= dP ( fix (P )) (P (�) (t (s2)), P (�) (t (s3))) (� is aP -homomorphism)

= sup

{ ∫
fix (P )

(f ◦ �)dts2,a −
∫
fix (P )

(f ◦ �)dts3,a | f ∈ c · fix (P ) →
1

[0,1]
}

+(ts2,a (1)0ts3,a (1)) (Proposition29)

= sup
{
f (� (s3)) | f ∈ c · fix (P ) →

1
[0,1]

}
+ (001)

= 1.

The rest of the distances can be computed in the same way. All of them are collected in the
following table.

s0 s�0 s1 s�1 s2 s3

s�0 c2�

s1
c2+2c
4

c2+2c
4 + � c

2

2

s�1
c2+2c
4 + � c

2−2c
2

c2+2c
4 + �((1+ �)c2 − c) c�

s2 c c c
2

c
2 + �c

s3 1 1 1 1 1

The distance between states is a trade-off between the depth of observations needed to
distinguish the states and the amount each observation differentiates the states. The relative
weight given to these two factors is determined byc lying between 0 and 1: the smaller the
value ofc the greater the discount on observations made at greater depth. In particular, this
is reflected by the fact thatdC (s0, s

�
0) = c · dC (s1, s

�
1) in the above example.

Example 31. Consider the continuous probabilistic transition system with the set of states
[0,1] and its Borel�-algebra, a single actiona, and the transition function determined by

ts,a = s�0

with the measure�0 as defined in Example10. We have that

dC (s,1) = 1− s.
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We conclude this section by showing that our pseudometric contains probabilistic
bisimilarity.

Proposition 32. Let〈S, t〉 be aP -coalgebra representing a probabilistic transition system.
Let S be an analytic space. States have distance0 if and only if they are probabilistic
bisimilar.

Proof. For all s1, s2 ∈ S,

dC (s1, s2) = 0

iff dL (s1, s2) = 0 (Theorem42)

iff s1 ands2 are probabilistic bisimilar

(see[10, Corollary 6.1.6 and Theorem 6.1.10]). �

7. A real-valued modal logic

We present a real-valued modal logic. This logic is closely related to the probabilis-
tic modal logic of Larsen and Skou[24] and to a real-valued modal logic introduced by
Desharnais et al.[11]. Along the lines of the latter paper, we define a pseudometric in terms
of the logic. In the next section, we show that this pseudometric is the same (up to a fixed
multiplying factor) as the one we introduced in Section6.
Desharnais et al. defined a pseudometric in terms of a real-valued modal logic. Their

work builds on ideas of Kozen[21] to generalize logic to handle probabilistic phenomena.
In particular, the modality is interpreted as integration. A minor variation on their logic is
introduced in the following definition.

Definition 33. The logicL is defined by

� ::= 1 | 〈a〉� | min (�,�) | 1− � | �0q

wherea is an action andq is a rational in[0,1].

Informally, there is the following correspondence between formulae inL and formulae
in the probabilistic modal logic of Larsen and Skou. True is represented by 1, conjunction
is represented by min, negation by 1− , and the modal connective〈a〉q decomposes as〈a〉
and0q.
In analogy to one of De Morgan’s laws, max can be expressed in the logic in terms of

min and 1− as follows:

max(�,	) = 1−min (1− �,1− 	).

Given a probabilistic transition system represented by theP -coalgebra〈S, t〉, each formula
� can be interpreted as a function�〈S,t〉 from S to [0,1] as follows.
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Definition 34. For each� ∈ L, the function�〈S,t〉 : S → [0,1] is defined by

1〈S,t〉 (s) = 1,

(〈a〉�)〈S,t〉 (s) = c · ∫
S

�〈S,t〉 dts,a,
(min (�,	))〈S,t〉 (s) = min (�〈S,t〉 (s),	〈S,t〉 (s)),

(1− �)〈S,t〉 (s) = 1− �〈S,t〉 (s),
(�0q)〈S,t〉 (s) = �〈S,t〉 (s)0q.

Next, we verify that for each formula�, the function�〈S,t〉 is c-contractive and hence
measurable.

Proposition 35. For all � ∈ L, the function�〈S,t〉 is c-contractive.

Proof. By structural induction on�. We only consider the most interesting case.

∣∣(〈a〉�)〈S,t〉 (s1) − (〈a〉�)〈S,t〉 (s2)
∣∣

=
∣∣∣∣c ·

∫
S

�〈S,t〉 dts1,a − c ·
∫
S

�〈S,t〉 dts2,a
∣∣∣∣

= c ·
∣∣∣∣
∫
S

�〈S,t〉 dts1,a −
∫
S

�〈S,t〉 dts2,a
∣∣∣∣

= c ·max
{∫

S

�〈S,t〉 dts1,a−
∫
S

�〈S,t〉 dts2,a,
∫
S

�〈S,t〉 dts2,a−
∫
S

�〈S,t〉 dts1,a
}

�c · dQ(S) (ts1,a, ts2,a)

(Proposition29, and�〈S,t〉 is c-contractive by induction)
�c · dP (S) (ts1, ts2)

�c · dS (s1, s2) (t is nonexpansive) �

The logicL induces a pseudometric as follows.

Definition 36. The distance functiondL : S × S → [0,1] is defined by

dL (s1, s2) = sup
�∈L

�〈S,t〉 (s1) − �〈S,t〉 (s2).

Clearly, the above-introduced distance function is a pseudometric.
Our logic differs from the one presented by Desharnais et al.[11]. Instead of�0q

they write ���q . Furthermore, they introduce���q . In the presence of negation,���q
is redundant as it is equivalent to min(�,1− �1�q). Finally, they introduce a countable
supremum over formulae.
The logic considered by Desharnais[10] lacks negation, but does include���q and max.
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The presence of negation in our logic has an impact on the distances as is shown in:

Example 37. Consider the following probabilistic transition system.

s0

a,1

��
s1

a, 12




��

��
��

�
a, 12

����
��

��
�

s3 s4

a,1

��

s2

a, 12

��
a, 12

����
��

��
�

s5

The system in states0 terminateswith probability 0, in states1 with probability 12 and in state
s2 with probability 1. The expected number of transitions to termination starting in states0,
s1 ands2 is∞,∞, and 2, respectively. Based on these kind of observations, one may infer
that states0 behaves more like states1 than states2. This is reflected by the pseudometric
dL. For this example, we fixc to be 1

2. Then the statess0 ands1 are 1
8 apart, witnessed

by 〈a〉 〈a〉1. The statess0 ands2 are at distance16 which is witnessed by the formulae�n

defined by

�n =
{
1 if n = 0,
1− (

(1− 〈a〉�n−1)01
2

)
otherwise.

However, in the pseudometric induced by the logic without negation boths0 ands1, ands0
ands2 are 1

8 apart. In both cases,〈a〉 〈a〉1 is a witness.

Todistinguish thesetS endowedwith theoriginal pseudometricdS from thesetS endowed
with the logical pseudometricdL, we denote the former space by〈S, dS〉 and the latter by
〈S, dL〉.
The interpretation�〈S,t〉 is not only ac-contractive, and hence a nonexpansive, function

from 〈S, dS〉 to [0,1] as we have shown in Proposition35. It is also a nonexpansive function
from 〈S, dL〉 to [0,1] as we will show next.

Proposition 38. For all � ∈ L, the function�〈S,t〉 is nonexpansive with respect todL.

Proof. For all s1, s2 ∈ S,

|�〈S,t〉 (s1) − �〈S,t〉 (s2)|
= max{�〈S,t〉 (s1) − �〈S,t〉 (s2), (1− �)〈S,t〉 (s1) − (1− �)〈S,t〉 (s2)}
� sup

�∈L
�〈S,t〉 (s1) − �〈S,t〉 (s2)

= dL (s1, s2). �

Eachnonexpansive function from〈S, dL〉 to [0,1] canbeapproximatedby interpretations
of formulae of our logicL provided that the space〈S, dS〉 is compact.
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Proposition 39. If the pseudometric space〈S, dS〉 is compact then the set

{�〈S,t〉 | � ∈ L } (3)

is dense in〈S, dL〉 →
1

[0,1].

Proof. Let � > 0 andf ∈ 〈S, dL〉 →
1

[0,1]. It suffices to show that there exists a formula
� in L such thatf and�〈S,t〉 are at most� apart.
Below, we will exploit the following straightforward variation on the Stone–Weierstrass

approximation theorem for continuous functions.

Lemma (Ash[3, LemmaA.7.2]).LetX be a compact pseudometric space. LetA be a subset
ofX→

1
[0,1] such thatf1,f2 ∈ A impliesmin (f1, f2),max(f1, f2) ∈ A. If f ∈ X→

1
[0,1]

can be approximated up to� at each pair of points by functions inA thenf itself can also
be approximated up to� by functions inA.

Since for alls1, s2 ∈ S,

dL (s1, s2)

= sup
�∈L

�〈S,t〉 (s1) − �〈S,t〉 (s2)

�c · dS (s1, s2) (Proposition35)

and the space〈S, dS〉 is compact, we can conclude that〈S, dL〉 is a compact pseudometric
space.According to Proposition38, the set (3) is a subset of〈S, dL〉→

1
[0,1]. Obviously, (3)

is closed under min andmax. Lets1, s2 ∈ S. Hence, according toAsh’s lemma, it suffices to
show that there exists a formula� in L such thatf (si) and�〈S,t〉 (si) are at most� apart.
Without loss of generality, assume thatf (s1)�f (s2). Since


 = f (s1) − f (s2)

� dL (s1, s2) (f is nonexpansive)

= sup
�∈L

�〈S,t〉 (s1) − �〈S,t〉 (s2)

there exists a formula� such that
−���〈S,t〉 (s1)−�〈S,t〉 (s2). Letp, q andr be rationals
in [0,1] such that

p ∈ [�〈S,t〉 (s2) − �,�〈S,t〉 (s2)],
q ∈ [
 − �,
],
r ∈ [f (s2), f (s2) + �].

We leave it to the reader to verify that the formula

1− ((1−min (�0p,1− (10q)))0r)

has the desired property.�

Note that 1, min, max, 1− and0q all play a role in the above proof.
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The interpretations of a formula with respect to differentP -coalgebras are in general
different. But whenever there is aP -homomorphism betweenP -coalgebras they are related
as follows.

Proposition 40. Let� be aP -homomorphism from aP -coalgebra〈S, t〉 to aP -coalgebra
〈S′, t ′〉. Then for all formulae�,

�〈S′,t ′〉 ◦ � = �〈S,t〉.

Proof. By structural induction on�. We only present the most interesting case. For all
s ∈ S,

(〈a〉�)〈S′,t ′〉 (� (s))

= c ·
∫
S′

�〈S′,t ′〉 dt ′� (s),a

= c ·
∫
S′

�〈S′,t ′〉 d(P (�)(t))s,a [t ′ ◦ � = P (�) ◦ t ]

= c ·
∫
S′

�〈S′,t ′〉 d(ts,a ◦ �−1)

= c ·
∫
S

(�〈S′,t ′〉 ◦ �)dts,a

= c ·
∫
S

�〈S,t〉 dts,a (induction)

= (〈a〉�)〈S,t〉 (s). �

Note that once you have the interpretation of a formula with respect to the terminal
P -coalgebra, then you can infer it under any otherP -coalgebra.

8. Relating the coalgebraic and logical distances

For a large class of probabilistic transition systems we have introduced a coalgebraic
distance functiondC and a logical distance functiondL. In this section we relate the two
pseudometrics.Before considering thegeneral case,wefirst relate the twodistance functions
on the set underlying the carrier of the terminalP -coalgebra. Recall that the coalgebraic
pseudometricdC on the set underlying the carrier of the terminalP -coalgebra coincides
with the metricdfix (P ) on the carrier of the terminalP -coalgebra.

Proposition 41. For all x1, x2 ∈ fix (P ),

dL (x1, x2)

c
= dC (x1, x2).
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Proof. Consider the function�whichmapseachx ∈ fix (P ) to itself. For allx1,x2 ∈ fix (P ),

dL (� (x1), � (x2))
c

= dL (x1, x2)

c

= sup�∈L �〈 fix (P ),i〉 (x1) − �〈 fix (P ),i〉 (x2)
c

�dC (x1, x2) (�〈 fix (P ),i〉 is c-contractive by Proposition35).

Consequently,� is a nonexpansive function from the space〈 fix (P ), dC〉 to the space
〈〈 fix (P ),

dL
c

〉.
Next, we introduce a structuret such that〈〈 fix (P ),

dL
c

〉, t〉 is aP -coalgebra. Because
� is nonexpansive, each Borel set ofR 〈 fix (P ),

dL
c

〉 is also a Borel set ofR 〈 fix (P ), dC〉.
Therefore, we can take the functiont given by

tx,a (B) = ix,a (B)

for x ∈ fix (P ), a ∈ Act and Borel setB of R 〈 fix (P ),
dL
c

〉. Since the function� is nonex-
pansive and the measureix,a is tight, we can conclude that the measuretx,a is tight as well
(cf. Proposition15).
To conclude thatt is the structure of aP -coalgebra with carrier〈 fix (P ),

dL
c

〉, we have
left to show thatt is nonexpansive. Letx1, x2 ∈ fix (P ). Then

d
P 〈 fix (P ),

dL
c

〉 (tx1, tx2) = sup
a∈Act

d
Q 〈 fix (P ),

dL
c

〉 (tx1,a, tx2,a).

Let a ∈ Act . Without loss of generality, assume thattx1,a (1)� tx2,a (1). Then,

d
Q 〈 fix (P ),

dL
c

〉 (tx1,a, tx2,a)

= sup

{ ∫
fix (P )

f dtx1,a −
∫
fix (P )

f dtx2,a | f ∈ c · 〈 fix (P ),
dL
c

〉 →
1

[0,1]
}

(Proposition29)

� sup
�∈L

∫
fix (P )

�〈 fix (P ),i〉 dtx1,a −
∫
fix (P )

�〈 fix (P ),i〉 dtx2,a

(Proposition28and39)

= sup�∈L (〈a〉�)〈 fix (P ),i〉 (x1) − (〈a〉�)〈 fix (P ),i〉 (x2)
c

� dL (x1, x2)

c
.

From the definition oft and� we can easily derive that� is aP -homomorphism from the
P -coalgebra〈〈 fix (P ), dC〉, i〉 to theP -coalgebra〈〈 fix (P ),

dL
c

〉, t〉. We denote the unique

P -homomorphism from theP -coalgebra〈〈 fix (P ),
dL
c

〉, t〉 to the terminalP -coalgebra
〈〈 fix (P ), dC〉, i〉 by�.
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〈 fix (P ),
dL
c

〉

t

��

�
��〈 fix (P ), dC〉

i

��

�
��

P 〈 fix (P ),
dL
c

〉
P (�)

��

P 〈 fix (P ), dC〉
P (�)

��

Obviously, the identity map onfix (P ) is the uniqueP -homomorphism from the terminal
P -coalgebra〈〈 fix (P ), dC〉, i〉 to itself. Since� ◦ � is also such aP -homomorphism, we
can conclude that� ◦ � equals the identity map onfix (P ). Therefore, both� and � are
isometries. This observation completes the proof.�

Note that in the above proof the modality〈a〉 is used, together with Proposition39 in
whose proof 1, min, max, 1− and0q all play a role.
Next, we consider the general case where we have a probabilistic transition system

represented by theP -coalgebra〈S, t〉. Then we have the following:

Theorem 42. For all s1, s2 ∈ S,

dL (s1, s2)

c
= dC (s1, s2).

Proof. Wedenote the uniqueP -homomorphism from theP -coalgebra〈S, t〉 to the terminal
P -coalgebra〈 fix (P ), i〉 by�. For alls1, s2 ∈ S,

dL (s1, s2)

c
(4)

= dL (� (s1),� (s2))

c
(Proposition40) (5)

= dC (� (s1),� (s2)) (Proposition41) (6)

= dC (s1, s2). (7)

Note that (4) and (5) refer to different logical pseudometrics: the one onS and the one on
fix (P ), respectively.Alsonotice that (6) and (7) refer todifferent coalgebraic pseudometrics:
the one onfix (P ) and the one onS, respectively. �

In [9], we studied a minor variation on the functorP . In that paper, we considered the
functor

P ′ = c · Mt (1+ −)Act.

This functor is also locally contractive and preserves positivity and completeness and,
therefore, hasa terminal coalgebra.Thecarriers of the terminalP -coalgebraand the terminal
P ′-coalgebra are related as follows.
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Proposition 43. fix (P ′) = c · fix (P ).

Proof. According to Lemma4, there exists an isometryi from fix (P ) to P ( fix (P )).
Clearly,i is also an isometry fromc · fix (P ) to c ·P ( fix (P )) which equalsP ′ (c · fix (P )).
Using Lemma4 again, we can conclude thatfix (P ′) = c · fix (P ). �

Consequently, the coalgebraic pseudometric induced by the functorP ′ coincide with the
logical pseudometric.

9. Conclusion

9.1. Related work

As we have already seen in Sections7 and8, our coalgebraic pseudometric is closely
related to the logical pseudometric of Desharnais et al.[10,11]. In [11], they also introduce
a probabilistic process algebra. A number of combinators of the process algebra, includ-
ing probabilistic choice, are shown to be nonexpansive. This is a quantitative analogue
of probabilistic bisimulation being a congruence. It allows for compositional verification
of probabilistic transition systems. Since our coalgebraic pseudometric is related to their
logical pseudometric, we can conclude that those combinators are also nonexpansive with
respect to our pseudometric. Furthermore, Desharnais et al. present a decision procedure for
their pseudometric. That is, they provide an algorithm to approximate the logical distances
to a prescribed degree of accuracy. The algorithm involves the generation of a representa-
tive set of formulae of their real-valued modal logic. They only consider formulae with a
restricted number of nested occurrences of the modal connective. Their algorithm approx-
imates the distances in exponential time. In[8], we present an algorithm to approximate
our coalgebraic distances. The problem of approximating such distances can be reduced
to a particular linear programming problem: the transportation problem. Since the latter
problem can be solved in polynomial time, we obtain a polynomial time decision procedure
for our distances.We see this practical algorithm as one of the advantages of our coalgebraic
approach over the logical approach of Desharnais et al. Another advantage of our approach
is that we work within a uniform framework, the theory of coalgebras. We do not know
whether there exists a terminal coalgebra of our functor forc equals 1, and hence we cannot
use our framework to define a pseudometric whenc equals 1. However, the logical approach
of Desharnais et al. also works in that case. Furthermore, Desharnais et al. consider a larger
class of continuous probabilistic transition systems than we do in this paper. However, we
are confident that we can extend our results as we will discuss below. In conclusion, we
believe that both approaches have their merits and demerits. The results in Section8 are
very valuable as they allows us to transfer results from one setting to the other.
As far as we know,[14] byGiacalone et al. is the first paper to advocate the use of pseudo-

metric spaces to provide a robust and quantitative notion of behavioural equivalence. They
stress the importance of combinators being nonexpansive with respect to the pseudometric,
making compositional verification possible. The class of discrete probabilistic transition
systems they consider is rather restricted. A decade later, we are able to deal with all
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discrete probabilistic transition systems and a large class of continuous probabilistic tran-
sition systems.
De Vink and Rutten[33] show that discrete probabilistic transition systems and some

continuous probabilistic transition systems can be viewed as coalgebras. Their main con-
tribution is the proof that the kernel of the homomorphism from a coalgebra, representing
a probabilistic transition system, to the terminal coalgebra coincides with probabilistic
bisimilarity. They only exploit metrics to represent continuous systems as coalgebras. Their
metric on the terminal coalgebra only provides qualitative information. For example, in De
Vink and Rutten’s setting the statess0 ands�0 of the system presented in the introduction are
c apart if� differs from 0. More generally, the distance between two states in their setting is
cn wheren is the depth of a probabilistic bisimulation between them. De Vink and Rutten
consider the endofunctor

(1+ Mc (c · −))Act

on the category of complete ultrametric spaces and nonexpansive functions.Mc denotes
the Borel probability measures with compact support. The main differences between our
functor and their functor are the following. First of all, they consider a distance function on
Borel probability measures[33, Definition 5.3]different from the one presented in Defini-
tion 8. Their distance function only captures qualitative information as the above example
illustrates. Secondly, they consider the category of complete ultrametric spaces and nonex-
pansive functions whereas we consider the considerably larger category of pseudometric
spaces and nonexpansive functions. This allows us to capture many more interesting con-
tinuous probabilistic transition systems as coalgebras, including systems where the state
space is the real interval[0,1] endowed with the Euclidean metric. Furthermore, they
consider Borel probability measures with compact support whereas we consider the more
general tight Borel probability measures. Again this allows us to represent more systems
as coalgebras. Finally, their model only allows states to refuse transitions with probabil-
ity 0 or 1. In conclusion, our functor allows to model many more interesting continuous
systems, and all the results for their functor in[33, Section 5]3 can be generalized to our
setting.
Baier and Kwiatkowska[4] study a functor which is closely related to the one of DeVink

and Rutten. Our work can be compared to theirs in the same way it is compared to the work
of De Vink and Rutten in the paragraph above.
In his thesis[17], Den Hartog exploits ultrametric spaces very similar to the terminal

coalgebra of De Vink and Rutten. The metric structure is only used to model infinite be-
haviour. As a consequence, qualitative information suffices.We believe that metrics closely
related to the one we present in this paper may be used in his setting as well, possibly
providing additional quantitative information about his models.
Kwiatkowska and Norman[22,23,26]present a number of closely related metrics. Like

DenHartog, they use theirmetric as ameans tomodel recursion.However, theirmetric is not
an ultrametric and contains quantitative information. Let us compare the metric introduced

3The proof of[33, Theorem 5.8]is incomplete. We also have no proof for this result in our setting.
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by Norman in[26, Section 6.1]with our pseudometric. Consider the following probabilistic
transition system.

s0

1
2

����
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��
��
��

1
2

��
��

��
��

��
��

��
��

s1

1
��
s2

1
2

����
��

��
� 1

2




��

��
��

�

s3 1
		 s4 1

		 s5

Clearly, the statess0 ands1 are not probabilistic bisimilar. InNorman’s setting the states have
distance0. In our pseudometric, states only havedistance0 if they are probabilistic bisimilar.
In our setting the states arec

2

2 apart. This example shows that his distance function gives rise
to a topology different from ours. The main differences between his and our approach are
the following. First of all, he uses a linear-timemodel whereaswe consider a branching-time
model. Secondly, he only handles discrete systems whereas we also consider continuous
ones. Finally, we use the usual categorical machinery and various standard constructions
whereas his definitions are more ad hoc. We believe however that his metric can also be
characterized by means of a terminal coalgebra.
Results similar to the ones in this paper have been presented by the second author in

his thesis[34, Chapter 4]in the setting of bimodules and generalized metric spaces. The
coalgebraic distance of statess1 ands2 can be characterized as the smallestR (s1, s2)where
R is a bimodule satisfying certain conditions (see[34, Theorem 4.5.12]for the details).
This is the quantitative analogue of the characterization of probabilistic bisimilarity as the
largest probabilistic bisimulation.

9.2. Future work

Let us isolate two distinct consequences of our use of the pseudometric presented in
Section3. First of all, we can talk about approximate equivalence of states. Secondly, we
can model a large class of continuous probabilistic transition systems as coalgebras. An
apparent restriction with regard to the latter point is the requirement that the structure of a
P -coalgebra, that is, the system’s transition function, be nonexpansive. Properly speaking,
continuous probabilistic transition systems as formulated in Definition21 are coalgebras
of (a variant of) the Giry monad on the category of measurable spaces and measurable
functions[15]. However, we conjecture that the terminalP -coalgebra〈 fix (P ), i〉 is also
terminal when seen as a coalgebra of the Giry functor, and that our results can be extended
to continuous probabilistic transition systems in general.
In Proposition28we have shown that the carrier of our terminal coalgebra is compact

and hence separable. Furthermore, we conjecture that the unique homomorphism from the
initial algebra of a finitary version ofP—this finitary version represents finite discrete
probabilistic transition systems with rational probabilities—to the terminalP -coalgebra is
a dense embedding. Hence, every continuous system can be approximated by a finite one
(see also[12]).
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