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Abstract

Discrete notions of behavioural equivalence sit uneasily with semantic models featuring quantita-
tive data, like probabilistic transition systems. In this paper, we present a pseudometric on a class of
probabilistic transition systems yielding a quantitative notion of behavioural equivalence. The pseu-
dometric is defined via the terminal coalgebra of a functor based on a metric on the space of Borel
probability measures on a metric space. States of a probabilistic transition system have distance 0 if
and only if they are probabilistic bisimilar. We also characterize our distance function in terms of a
real-valued modal logic.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The majority of verification methods for concurrent systems only produce qualitative
information. Questions like “Does the system satisfy its specification?” and “Do the sys-
tems behave the same?” are answered “Yes” or “No”. Giacalone §t4|. Huth and
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Kwiatkowska[19] and Desharnais et dlL2] have pointed out that such Boolean-valued
reasoning sit uneasily with semantic models featuring quantitative data, like probabilistic
transition systems.

The probabilities occurring in a probabilistic model of a system may be based on statistical
sampling. In this case, the model is only an approximate description of a system, and it
makes no sense to ask if any two states in the model behave exactly the same. Even if we
have a precise description of a system, we may still want to express the idea that two states
exhibit almost the same behaviour. Furthermore, the problem of automatically verifying that
two states are exactly equivalent will typically require exact real arithmetic. For automatic
verification of probabilistic systems, in the conventional setting of floating point arithmetic,
it is more reasonable to consider approximate equivalence.

The above observations apply to a number of different semantics for probabilistic sys-
tems. In this paper, however, we concentrate on Larsen and Skou’s probabilistic bisimulation
[24]. Recall that a probabilistic bisimulation is an equivalence relation on the state space
of a transition system such that related states have exactly the same probability of mak-
ing a transition into any equivalence class. Thus, for instance, the sgateslsj of the
probabilistic transition system

S1

52

are only probabilistic bisimilar it is 0. However, the two states behave almost the same
for very smalle different from 0.

In the previous example, varyinggave different probabilities on the same underlying
transition system. (For instancemay correspond to a rounding error arising from giving
a finite presentation of a real number.) We also want to consider approximate equivalence
where the underlying transition systems are different. For example, consider the infinite
state system

2 — S0
1 52 sS4 7
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Below we illustrate the finite state system arising by truncating to depth 3.

2 50
1
4 1
a
s1 52 S4
1l 1
53 S5
1
56

Such truncations are not bisimilar to the original infinite system; nevertheless it is intuitively
clear that by truncating at greater and greater depths one gets closer to the original system. It
would be useful to formalize and quantify this convergence so that one could safely reason
about the infinite state system by examining a suitable finite approximant.

To the best of our knowledge, the earliest attempt to address some of the problems with
probabilistic bisimulation as outlined above is the paper of Giacalong[&dalThey define
a pseudometric on the states of a (restricted type of) probabilistic transition system, yielding
a smooth, quantitative notion of behavioural equivalence. A pseudometric differs from an
ordinary metric in that different elements, that is, states, can have distance 0. We would like
that the distance between states, a real number between 0 and 1, will express the similarity
of the behaviour of those states. The smaller the distance, the more alike the behaviour is.
In particular, the distance between states is 0 if they are behaviourally indistinguishable.

The present paper is most closely related to the work of Desharnaifldfland De Vink
and Rutterj33]. The former introduce a pseudometric on a class of probabilistic transition
systems more general than that considered by Giacalone et al. This pseudometric is defined
via a nonstandard semantics for a probabilistic modal logic, where formulae get interpreted
as measurable functions into the interf@l 1], rather than as Boolean-valued functions.
We show that what we present in this paper is essentially a coinductive account of a closely
related pseudometric. We will also discuss some of the advantages conferred by such an
account.

The connection between the present paper and De Vink and Ra®fgain the modelling
of probabilistic systems as coalgebras. Coalgebras offer a simple and uniform categorical
notion of transition system, including an account of bisimulation. Ry&8hshows that
many different kinds of transition system can be captured in this framework. Roughly
speaking, a coalgebra consists of a carrier set, and a coalgebraic structure determining
how elements of the carrier can be decomposed into other elements of the carrier. Thus
coalgebras are dual to algebras. For transition systems, the coalgebraic structure is given
by the dynamics of the system.

By modelling arestricted class of probabilistic transition systems as coalgebras, and using
a standard result from the general theory of coalgebras, De Vink and Rutten established the
existence of a terminal object in their category of systems. By definition there is a unique
map from an arbitrary system to the terminal one. Furthermore, De Vink and Rutten showed
that the kernel of the unique map coincides with probabilistic bisimilarity.
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In this paper, we exploit the coalgebraic framework to define a notion of quantitative
behavioural equivalence for probabilistic transition systems. In particular, we define a pseu-
dometric on the states of a probabilistic transition system in terms of the terminal coalgebra
of an endofuncto® on the category of pseudometric spaces and nonexpansive maps. The
definition of P is based on a metric on Borel probability measures. This metric is known
as Hutchinson metrid 8], Kantorovich metric, Monge—Kantorovich metric, Kantorovich—
Rubenstein metrif20], Vaserstein (Wasserstein and even Vasserstein) nfigjfidransport
metric, earthmover’'s metric, and match metiecoalgebras can be seen as probabilistic
transition systems with discrete or continuous state spaces. The tetPrauallgebra pro-
vides for a notion of approximate equivalence similar to the pseudometric of Desharnais et
al. mentioned above. In fact, we define a pseudometric on the state space of a probabilistic
transition system, seen asPacoalgebra, as the pseudometric kernel of the unique map to
the terminalP-coalgebra. That is, the distance between two states is the distance between
their images under the unique map to the termiRatoalgebra. Moreover states are at
distance 0 just in case they are probabilistic bisimilar in the sense of Larsen and Skou.

So far we have motivated our concern for defining a notion of quantitative behavioural
equivalence by examples featuring probabilistic transition systems with discrete state spaces.
However our framework is sufficiently general to model probabilistic transition systems the
state space of which is continuous, liK& 1]. We refer the reader §d.2] for a discussion
of the importance of modelling continuous as well as discrete systems.

The rest of this paper is organized as follows. In Secffpmwe present some minor
variations on results dfL,31] which allow us to prove that a termin&-coalgebra exists.

In Section3, we present the metric on Borel probability measures, and recall a number
of standard results about this metric. In Sectipnve introduce a functorial extension of

this metric, and we verify that it satisfies the properties required for the application of the
terminal coalgebra theorem. In Sectidywe present the functaP and we show that all
discrete probabilistic transition systems and a large class of continuous probabilistic transi-
tion systems can be viewed &scoalgebras. We introduce our pseudometric in Sedion

In Section?7, we introduce a pseudometric defined in terms of a modal logic a la Deshar-
nais et al. Sectio® contains the main result of the paper: we show that the coalgebraic
pseudometric, introduced in Sectiéncoincides with the logical pseudometric, introduced

in Section7. The proof involves an application of the Stone—Weierstrass approximation
theorem for continuous functions. In the concluding section we present related and future
work.

The reader is assumed to be familiar with some very elementary category theory, metric
space theory and probability theory. For more details, we refer the reader to, for example,
the texts of Mac Lang5], Sutherland30] and Billingsley[6].

2. A pseudometric terminal coalgebra theorem

In this section, we first introduce coalgebras and then we give the ingredients of our
metric coalgebraic framework, to obtain a mild generalization of Rutten and Turi’s metric
terminal coalgebra theorefg1].
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Definition 1. LetC be a category. LeF : C — C be a functor. AnF-coalgebra consists
of an objectC in C together with an arrowf : C — F (C) in C. The objectC is called
the carrier. The arrovyf is called the structure. AR-homomorphism from ai'-coalgebra
(C, f)toanF-coalgebrg D, g) isan arrowmp : C — D inC suchthatF (¢p)o f = go ¢.

CLD

1 |

F(O) g F (D)

The F-coalgebras an@’-homomorphisms form a category. If this category has a terminal
object, then this object is called the termi&icoalgebra.

For more details about the theory of coalgebras we refer the reader to, for example,
Rutten’s[29].

In the rest of this section, we restrict our attention to the catefdriet; of 1-bounded
pseudometric spaces and nonexpansive functions. A pseudometric space differs from an
ordinary metric space in that different elements can have distance 0. Elements at distance
0 will be considered equivalent. A pseudometric space is 1-bounded if all its distances are
bounded by 1. A functiorf : X — Y is nonexpansive if it does not increase any distances,
that is,dy (f (x1), f (x2)) <dx (x1, x2) for all x1, x € X. We denote the collection of
nonexpansive functions from the spaXdo the spac& by X — Y. This collection can
be turned into a pseudometric space by endowing the functions with the supremum metric:
dx—l>y (f1, f2) =sUp.cx dx (f1(x), f2 (x)).

Let ¢ be a constant in the open interv@l 1). A function f : X — Y is c-contractive if
it decreases all distances by at least a factdinat is,dy (f (x1), f (x2)) <c - dx (x1, x2)
for all x1, x» € X. This notion can be lifted to functors as follows.

Definition 2. A functor F : PMet; — PMet; is locally c-contractive if for all pseudo-
metric spaceX andY, the function

Fxy:(X7Y)— (F(X)7 F(X))
defined by

Fxy (f)=F(f)
is c-contractive.

In the rest of this section, we restrict ourselves to locally contractive functors. Further-
more, we focus on functors which preserve positivity (different elements have a positive
distance) and completeness.

Definition 3. Afunctor F : PMet; — PMety preserves positivity and completeness if for
all complete metric spaces, F (X) is a complete metric space.
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A functor which preserves positivity and completeness can be restricted to a functor on
the category of complete metric spaces and nonexpansive functions.

Alocally contractive functof which preserves positivity and completeness has a unique
fixed point. That is, there exists a unique space, fbagF'), such that there is an isometry
from fix (F) to F (fix (F)). Recallthatanisometry is a bijection that preserves all distances.

In the rest of this section, we present simple translations of resyits3mh] from metric
spaces to pseudometric spaces.

Lemma 4 (Turi and Rutter{31, Theorem 7.2] For each locallyc-contractive functor :
PMet; — PMety which preserves positivity and completendssre exists a unique com-
plete metric space figF') such that there is an isometry. fix (F) — F (fix (F)).

Next, we show that fix (F), i) is a terminalF-coalgebra. For the rest of this section,
we fix (X, f)to be anF-coalgebra. To characterize the unigtdhomomorphism from the
F-coalgebra X, f) to the F-coalgebrg fix (F), i) we introduce the following function.

Definition 5. The function®x s : (X e fix(F)) —- (X e fix (F)) is defined by

Dix.py () =i"toF(d)o f.

X—d))fix(F)

fj I

F(X) —— 5 F (fix (F)

Since the functorF is locally c-contractive, we have that the functiahyy, 7 is c-
contractive. Becauséx (F) is a complete metric spack, fix (F) is a complete metric
space as well. Obviously, the spate fix (F) is nonempty. Sinc@ x, s is a contractive
function from a nonempty complete metric space to itself, we can conclude from Banach’s
theorem that it has a unique fixed pofik (@ x, 7). This functionfix (®x, r) is the unique
F-homomorphism from thé'-coalgebra X, f) to the F-coalgebrd fix (F), i).

Theorem 6(Turi and Rutter{31, Proposition 7.1]. For every locallyc-contractive func-
tor F : PMet; — PMety which preserves positivity and completeness there exists a
terminal F-coalgebra( fix (F), i) and fix(F) is a complete metric space.

We will exploit both the terminal F-coalgebra (fix(F),i) and the unique
F-homomorphismfix (®x, ry) when defining our pseudometric.

If the functor F also preserves compactness, then we can conclude that the carrier of the
terminal F-coalgebra is a compact metric space.

Theorem 7 (Alessi et al[1, Theorem 4.4]. For every locally c-contractive functor
F : PMety — PMety which preserves positivity and compactness there exists a terminal
F-coalgebra(fix (F), i) and fix(F) is a compact metric space.
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3. A pseudometric on Borel probability measures

The set of Borel probability measures on a space can be turned into a pseudometric space
in several ways (see, for example, Rachev’s bf##]). In this section, we introduce a
pseudometric on Borel probability measures which gives rise to meaningful distances on
probabilistic transition systems.

Let X be a (1-bounded) pseudometric space. We denote the set of Borel probability
measures oX by M (X).

Definition 8. The distance functiotiy (x) : M (X) x M (X) — [0, 1] is defined by
dm (x) (1, 1) =3Up{/xfd/11—/xfdﬂz | feX 70 1]}-

Before presenting an example, let us first check that this distance function is indeed a
pseudometric.

Proposition 9. The distance functiod,, (x) is a pseudometric.

Proof. For all nonexpansive functiong: X — [0, 1],

0:/0d,1</ fdugf Tdu = 1.
X X X

Hencedy (x) (1, o) € [0, 1.

Obviously,dy, o) (u, w) = 0.

To prove symmetry, it suffices to observe that for each nonexpansive funftctioh —
[0, 1], the function - f : X — [0, 1] is nonexpansive as well, and

fx(l—f)du=1—/xfdu-

Since for each nonexpansive functign X — [0, 1],

/deul—/xfdu3=(/deul—/xfduz)+</deuz—/xfdu3>

<dm ) (g, 1) + dum (x) (U, 1i3),
the distance functiody, (x) satisfies the triangle inequality.C]

Example 10. Let the sefxo, x1} be endowed with the discrete metric, that is, all distances
are either O or 1. Let, be the discrete Borel probability measure determined by

1, ({xo}) = 3 +e,

pe (1) = 3 —e.

The measureg, andyu, have distance. This is witnessed by the function mappiagto 0
andx; to 1.
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Let the sef0, 1] be endowed with the Euclidean metric. For each [0, 1], consider
the Borel probability measunegs determined by

Us ([xe, x1) = / gs dx,

[xe,xr]

where the functiorg; is defined by

(= [ H0-0+1 if x € [0, 11,
8= _axo+35+1 ifxeld 1l

To compute the distance between the measugesdu; we need to find a nonexpansive
function 1 : [0, 1] — [0, 1] which maximizes

/ £ dig — / £ diy. 1)
[0,1] [0,1]

Note that the measuye, distributes the probability evenly over the inter{@l 1] whereas
the measur@, concentrates its probability arouédTherefore, a function that maximizes
(1) should take its minimum a% and its maximum at 0 and 1. Clearly the nonexpansive
function f : [0, 1] — [0, 1] defined by

_[1-x ifxe[0 3],
f(x)_{x ifxe[%,l]
is such a function. One can now easily verify that the distance between the mggsames
Hq iS %2
Next, we present some results that will be exploited later. First of all, we noteMhat
preserves positivity.
Proposition 11. X is a metric space if and only ¥/ (X) is a metric space

Proof. See, for example, Edgar’s textbof3, Proposition 2.5.14] [

In the rest of this paper, we focus on Borel probability measures which are completely
determined by their values for the compact subsets of the space

Definition 12. A Borel probability measur@ on X is tight if for all ¢ > O there exists a
compact subset’; of X such thafu (X \ K;) < e.

Under quite mild conditions on the space, for example, completeness and separability,
every measure is tight (see, for example, Parthasarathy’s texig@pRheorem 11.3.2]
Discrete Borel probability measures are tight. All measures presented in Exafhate
tight. We denote the set of tight Borel probability measureX by M, (X).We are interested
in these tight measures because of the following:
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Theorem 13. (1) X is complete if and only i/, (X) is complete
(2) X is compact if and only iM, (X) is compact.

Proof. Proofs of (1) and (2) can be found in, for example, the texts of E{§3y
Theorem 2.5.254nd Barnsley5, Theorem 9.5.1]respectively. [J

4. The functor M;
We extendV; to a functor on the catego@Met; of 1-bounded pseudometric spaces and
nonexpansive functions. Furthermore, we show that the functor is locally nonexpansive.
Let X andY be pseudometric spaces. LEt: X — Y be a nonexpansive function.

To extendM, to a functor we have to define a nonexpansive functifyr( /) from tight
measures oKX to tight measures oh.

Definition 14. The functionM,; (f) : M, (X) — M (Y) is defined by
M, (f)(w) =po fL.

Next, we prove that the measund (f)(u) is tight and that the function; (f) is
nonexpansive.

Proposition 15. The measuréd/; (f)(w) is tight.

Proof. Lete>0. Sinceuistight, there exists a compact sub&gdf X suchthap (X \ K,) <e.

Becausef is nonexpansivef (K;) is a compact subset of. Sincef~1 (Y \ f (K;)) is a

subset ofX \ K;, we can conclude tha@to f~1) (Y \ f (K;)) <& Henceuo f~1is tight.
O

Proposition 16. The functionM, (f) is nonexpansive.

Proof. Forall i, up, € M, (X),

du, vy (M () (), My (f)(12)

=5Up{/ygd(ﬂlof_l)—/;gd(ﬂzof_l) |geY7[o,1]}
=Sup{/x(gOf)dul—/X(gOf)duzIgeY—f[O,l]}

=dum, x) (11, ). O



124 F. van Breugel, J. Worrell / Theoretical Computer Science 331 (2005) 115-142

Clearly, the action oM, on arrows is functorial.
We conclude this section with a property &f which will later allow us to exploit the
pseudometric terminal coalgebra theorem.

Proposition 17. The functorM; is locally nonexpansiye¢hat is for all nonexpansive func-
tions f1, foe X —» Y,

du, xX)—m, (v) (M (f1), M; (f2)) <dx—y (f1, f2)-

Proof. Forallu € M, (X),
dwm, vy (My (fO (), M: (f2)(W)

—sup /Ygd(uofll)—/ygd(uole)IgeY—;[O,l]}

= sup /X(gOfl)du—/X(gsz)dulgeY—f[O,l]}

= sup /X(gOfl—gsz)dulgeY—f[O,l]}

<dx—vy (f1, f2),
since forallg e Y g [0, 1] andx € X,

(gofi—go f2)(x)
<l(go f1) (x) — (g o f2) (x)]
<dy (f1(x), f2(x)) (g is nonexpansive
ng*)Y (f17 f2) O

5. Probabilistic transition systems as coalgebras

In this section, we introduce discrete and continuous probabilistic transition systems.
Furthermore, we present a funct8r, and show that all discrete probabilistic transition
systems and a large class of continuous probabilistic transition systems can be represented
as P-coalgebras.

Before considering continuous systems, we first have a look at discrete probabilistic
transition systems.

Definition 18. A discrete probabilistic transition system consists of a finiteSs#ftstates,
a set Act of actions and a transition functionS x Act x § — [0, 1] such that

foralls € Sanda € Act, Y £, (s)<1 (2)

s'eS

Such a system is also called a partial labelled Markov chain in the literature (see, for
example[11]). The functiory. , describes the reaction of the system to the actiselected
by the environment. This represents a reactive model of probabilistic systems. For a detailed
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discussion of this reactive model and other models, and the relationship of the reactive one
to those other models we refer the reader to the work of Van Glabbeek[&6RIGiven

the system is in state and reacts to action chosen by the environment,, (s') is the
probability that the system makes a transition to the stafdote that this is a conditional
probability. Also notice that we consider subprobabilities as weusmstead of =, in2).

These subprobabilities allow for the possibility that the system may refuse an action. The
probability of refusal of the actiom given the system is in stateis

1- Z Is.a (S/)-

s'eS

Example 19. Consider the discrete probabilistic transition system with the stgte§ s1,
s{, s2, 53, the actiorz, and the transitions

52
7 r\a,z+a
a,l e al ¢
S0 ——— 51 a,l S:ﬁ; 0
A \/,%e
53

The actioru is refused in states with probability 1.

The key behavioural equivalence on the states of a discrete probabilistic transition system
is probabilistic bisimulation. This notion is due to Larsen and JRdjiand presented in:

Definition 20. An equivalence relatioR on the setS of states of a discrete probabilis-
tic transition system is a probabilistic bisimulationsif R so implies )zt (s) =
Y ek Isa.a () for all R-equivalence classés of states and € Act.

Statess; ands, are probabilistic bisimilar i1 R s for some probabilistic bisimula-
tion R.

Next, we introduce continuous probabilistic transition systems.

Definition 21. A continuous probabilistic transition system consists of aSseft states, a

g-algebraX on S, afinite set Act of actions and a transition functionS x Actx ~ — [0, 1]

such that

(1) foralls € Sanda € Act, the functiory, , (1) : 2 — [0, 1] is a subprobability measure,
and

(2) foralla € ActandB € X, the functiorr. , (B) : S — [0, 1] is measurable.

Such a system is also called a partial labelled Markov process in the literature (see, for
example,[11]). Another way of expressing (1) and (2) is tha} is a stochastic kernel
for eacha € Act. The main difference between the definition of discrete and continuous
systems is the use of @algebra in the latter. Given the system is in sta@nd reacts
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to actiona chosen by the environment,, (B) is the probability that the system makes a
transition to a state in the sét

Example 22. Consider the continuous probabilistic transition system with the set of states
[0, 1] and its Borels-algebra, actiona andb, and the transition function determined by

Isa = Uy,
tp({3) =1

with the measure:, as defined in Exampl&0. Note that the probability of making an
a-transition from one state to another is always 0.

A discrete probabilistic transition system is just a special case of a continuous one where
the g-algebra is discrete and the transition subprobability measure is determined by a sub-
probability distribution.

Probabilistic bisimulation has been generalized to the continuous setting by Blute
etal.[7].

Definition 23. A setB is R-closed ifs; € B andsy R s> impliessz € B.

An equivalence relatioR on the sef of the states of a continuous probabilistic transition
system is a probabilistic bisimulationsif R so impliest,, , (B) = ts,., (B) for all R-closed
measurable set® anda € Act.

Statess; ands, are probabilistic bisimilar i1 R s2 for some probabilistic bisimula-
tion R.

Next, we introduce a functoP : PMet; — PMety such thatP-coalgebras represent
probabilistic transition systems. The funct®ris built from a number of functors. Below

we only present their action on objects. Their action on arrows can be obtained in a standard

way (see, for example, America and Ruttgi@sSection 5).

e 1is the terminal object functor. This functor maps each object to the terminal object of
PMet; which is the singleton space.

e ¢ - — is the scaling functor. The scaling lay — of an object inPMet; leaves the set
unchanged and multiplies all distancesdyror the rest of this paper, we fixto be an
arbitrary value in the open intervéd, 1).

e + is the coproduct functor. The coproduct object of the obj&ctsxdY in PMet; is the
disjoint union of the sets underlying the spag&eandY endowed with the pseudometric

dx (v,w) ifve Xandw € X,
dxt+y (v,w) =13 dy (v,w) if veYandweY,
1 otherwise

e M, is the functor introduced in Sectieh
o —A%ijs the power functor. For an objektin PMet;, XAis theAct-indexed product of
copies ofX equipped with the supremum metric.
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The functorP is defined by
P=M 1+c- —) %

This functor can expressed in terms of the auxiliary func@m@sndR as follows.

R=1+c¢-—,
Q = M;(R(-)),
P = Q(_)Act.

A P-coalgebra consists of a pseudometric spaitegether with a nonexpansive function
t: S — P(S). The space corresponds to the set of states of the probabilistic transition
system. The nonexpansive function S — P (S) characterizes the transitions of the
system. Given a stateand an actiom, , , is a tight Borel probability measure at(S).
It captures the reaction on actierof the system in state We useM; (R (S)) to represent
subprobabilities or§. The probability of refusal of actioa in states is given byz , (1).
The role ofc - — will be discussed later.

Note that eachP-coalgebra can be interpreted as a continuous probabilistic transition
system, since nonexpansive functions are measurable.

Proposition 24. Every discrete probabilistic transition system can be represented by a
P-coalgebra.

Proof. We endow the set of state® of the system with the discrete metric. Conse-
quently, every subset of the pseudometric SpRE®) is a Borel set. For every state
and actioru, the Borel probability measung, is the discrete Borel probability measure
determined by

ts.a (1) = probability of refusal of actiom in states,
ts.« ({s’}) = probability of making am-transition from state to states’.

Obviously, the measurg , is tight. Becauses is endowed with the discrete metric, the
functiont from S to P (S) is nonexpansive. [

Example 25. The continuous probabilistic transition system of Exang@ean be viewed
as aP-coalgebra by endowing its state space with the Euclidean metric.

A continuous probabilistic transition system can be viewed Bscaalgebra if its sef

of states can be endowed with a pseudomelyisuch that

e the Borelo-algebra induced by the pseudometticcoincides with ther-algebra of the
system,

o for all statess and actions:, the system’s subprobability measuyg is tight, and

e the system’s transition function is nonexpansive.

We refer the reader forward to the conclusion for further discussion of these restrictions.
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6. A pseudometric on probabilistic transition systems

Next, we present our pseudometric on probabilistic transition systems. Furthermore, we
show that states have distance 0 if and only if they are probabilistic bisimilar. The pseudo-
metric on the states of a probabilistic transition system will be defined as a pseudometric
kernel.

A function ¢ from a setS to a pseudometric space defines a distance functiafy,
on S. We call this distance function theseudometric kernehduced by¢. The distance
betweens; ands; in S is defined as the distance of theirimages in the pseudometric
spaceX.

Definition 26. Let¢ : § — X. The distance functiody : S x S — [0, 1] is defined by
dy (51, 52) = dx (¢ (s1), ¢ (52))-

One can easily verify that the pseudometric kethyeis a pseudometric. Note thatand
s2 have distance 0 if they are mappedd®yo the same element iki. For example, i) is
a constant function then all distances are 0.

In order to exploit a pseudometric kernel to provide the $eif states of a proba-
bilistic transition system with a pseudometric, we need to introduce the pseudometric
spaceX and the functionp. The former will be (the carrier of) the termin&l-coalgebra
and the latter will be the uniqu-homomorphism from the probabilistic transition sys-
tem viewed as &-coalgebra to the terminab-coalgebra. The details will be provided
below.

First, exploiting the pseudometric terminal coalgebra theorem, we prove that there exists
a terminalP-coalgebra.

Theorem 27. There exists a terminaP-coalgebra( fix (P), i).

Proof. According to America and Rutten[®, Theorem 5.4]the functorsl and + are
locally nonexpansive and the scaling functoris locally contractive. As we have seen in
Propositionl7, the functorM; is locally nonexpansive. As a consequence, the funetor

is locally contractive. According to Propositidril and Theoreni3, the functorM;, and
hence the functoP, preserves positivity and completeness. Therefore, we can conclude
from Theoren® that there exists a termin&l-coalgebrd fix (P), i). [

Furthermore, the carrier of the terminRicoalgebra is a compact metric space. We will
exploit this property in Sectio8.

Proposition 28. fix (P) is a compact metric space.

Proof. By Proposition11 and Theoreml3, the functorM,, and hence the functapP,
preserves positivity and compactness. Hence, we can conclude from Théahatnthe
metric spaceix (P) is compact. [
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Since(fix (P), i) is a terminalP-coalgebra, there exists a unigiehomomorphismp
from a P-coalgebrds, ¢) to the terminalP-coalgebra.

S—d)>fix (P)

P(S) W P (fix (P))
The pseudometric kerng}, induced by is a pseudometric on the set underlying the carrier
S of the P-coalgebra. As eacR-coalgebrds, ¢) represents a continuous probabilistic tran-
sition system, having the set underlyifigs its set of states, we thus obtain a pseudometric
on this set of states. To stress its coalgebraic nature, insteggve¢ will often writedc .

Since the identity map offix (P) is the uniqueP-homomorphism from the terminal
P-coalgebra to itself, we can conclude that the coalgebraic pseudonietdan the set
underlying the carrier of the termin&l-coalgebra coincides with the meteigy (p) on the
carrier of the terminaP-coalgebra.

In order to be able to explicitly compute some coalgebraic distances, we present a char-
acterization of the pseudometric @gnh(S).

Proposition 29. For all uq, s € O (S),
dg (s) (ul,uz)=SUP{fS fdul—/s Sdup | fec- S0, 1]}

+(uy (DO, (1)),
where
o = r—r" ifr>r,
=10 otherwise
Proof.

do sy (g, o)
=supf [y | fduzlfeR(S)—f[O,ll}
R(S) R(S)

=sup (r~u1(1)+/sfdu1>—<r~uz(1)+/sfduz>

|re[0,1]/\fEC-S—l>[0,1]}

= sup (/S fd,ul—fsfdu2)+r-(,ul(1)—/lz(1))

|re[0,1]/\f6c-S—l>[0,1]}
=SUD{/Sfdul—/sfduzlfGC~S—f[O,1]}+(u1(l)Ouz(1)). O

Once we can managg (s), we can computéc as well.
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Example 30. Consider the discrete probabilistic transition system introduced in
Examplel9. Let ¢ be the uniqueP-homomorphism from the?-coalgebra representing
this system to the termindt-coalgebra. Then

dc (s2, s3)
= diix (p) (¢ (52), P (s3))
=dp (fix(py) (i (¢ (52)),1i (¢ (s3))) (i is anisometry)
= dp (fix(Py) (P (9) (t (s2)), P ($) (t (s3))) (¢ is a P-homomorphism)
= SUD{/ (f o ¢)disya —/ (fod)disga | f €c-fix(P) 7 [0, 1]}
fix (P) fix (P)
+(ts,.q0 (DOt,,4 (1)) (Proposition29)
=sup{ f (@) | f ec-fix(P) 7 [0.11} + oD
=1

The rest of the distances can be computed in the same way. All of them are collected in the
following table.

&

50 55 51 51 52 53
56 c%e

2 2 2
51 42 c —A—Zc + 8%

2 2 2

si ¢ -ZZC + e 226 c —A—Zc +e((1+ 8)02 —0) ce
52 c c 5 5 +ec
53 1 1 1 1 1

The distance between states is a trade-off between the depth of observations needed to
distinguish the states and the amount each observation differentiates the states. The relative
weight given to these two factors is determined-Bying between 0 and 1: the smaller the
value ofc the greater the discount on observations made at greater depth. In particular, this
is reflected by the fact thak (so, s5) = ¢ - dc (s1, s7) in the above example.

Example 31. Consider the continuous probabilistic transition system with the set of states
[0, 1] and its Borelr-algebra, a single actian and the transition function determined by

Is.a = SUo
with the measure as defined in Exampl#0. We have that

de(s,1)=1—5.
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We conclude this section by showing that our pseudometric contains probabilistic
bisimilarity.

Proposition 32. Let(S, t) be aP-coalgebra representing a probabilistic transition system
Let S be an analytic space. States have dista@dé and only if they are probabilistic
bisimilar.

Proof. For allsq, so € S,

dc (s1,52) =0
iff dg (s1,52) =0 (Theorend?2)
iff s1 andso are probabilistic bisimilar
(se€[10, Corollary 6.1.6 and Theorem 6.1.10] [

7. A real-valued modal logic

We present a real-valued modal logic. This logic is closely related to the probabilis-
tic modal logic of Larsen and Skd24] and to a real-valued modal logic introduced by
Desharnais et a]11]. Along the lines of the latter paper, we define a pseudometric in terms
of the logic. In the next section, we show that this pseudometric is the same (up to a fixed
multiplying factor) as the one we introduced in Sectton

Desharnais et al. defined a pseudometric in terms of a real-valued modal logic. Their
work builds on ideas of Kozej21] to generalize logic to handle probabilistic phenomena.

In particular, the modality is interpreted as integration. A minor variation on their logic is
introduced in the following definition.

Definition 33. The logicL is defined by

@u=1]{a)p|min(p,e)|1-¢]|pog

whereq is an action andg is a rational in0, 1].

Informally, there is the following correspondence between formula&amd formulae
in the probabilistic modal logic of Larsen and Skou. True is represented by 1, conjunction
is represented by min, negation by-1 and the modal connective), decomposes &&)
andog.

In analogy to one of De Morgan’s laws, max can be expressed in the logic in terms of
min and 1- as follows:

max(g, ) =1—min(1— ¢, 1— ).

Given a probabilistic transition system represented byPfumalgebrg S, r), each formula
¢ can be interpreted as a functim@m from S to [0, 1] as follows.
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Definition 34. For eachp € L, the functionq)(S,,) : S — [0, 1] is defined by

Lsn(s) =1,
((a) (/))(S,t) () =c- fs D (s,1) dts,a,
(Min (@, Y)) (5.0 () = MiN(@g 4 (), Y g0 (5)),
1- @)(S,z) () =1- Ps.1) (s),
(0Oq)(s.1) () = D s.1) (5)Oq.

Next, we verify that for each formula, the functione g ,, is c-contractive and hence
measurable.

Proposition 35. For all ¢ € £, the functiony g ,, is c-contractive

Proof. By structural induction orp. We only consider the most interesting case.

|((@) )5,y (51) — (@) @)(s.1) (52)]

c fs @5y dspa — ¢ /; ®s.0y Usz.a

=c- ‘/ Ps.1) dis; 0 — / Ps.1) dts;.a
S S

=c-max{/sfp<s,,) dfma‘/g@(&z) dtsz,av/S(Pw,t) dlvz,a—fs@(s,n dtsl,a}

<c- dQ () (tS]_,(lv tsz,a)
(Proposition29, andg s ,, is c-contractive by induction)

<c-dps) (tsy, Isy)
<c-ds(s1,s2) (tisnonexpansive) [

The logicL induces a pseudometric as follows.

Definition 36. The distance functiod, : S x S — [0, 1] is defined by

dp (s1,52) = SUP @54 (51) — @(s.py (52)-
el

Clearly, the above-introduced distance function is a pseudometric.

Our logic differs from the one presented by Desharnais efldl. Instead ofpOg
they write | ¢],. Furthermore, they introducgpl?. In the presence of negatiofip1?
is redundant as it is equivalent to mip, 1 — |1],). Finally, they introduce a countable
supremum over formulae.

The logic considered by Desharn§if] lacks negation, but does inclufie]? and max.
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The presence of negation in our logic has an impact on the distances as is shown in:
Example 37. Consider the following probabilistic transition system.

2~

No) s1
) at SR
a,l a,
$3 S4\

NI

S5

a,l

The system in statg terminates with probability O, in statg with probability% andin state

s2 with probability 1. The expected number of transitions to termination starting insgtate

s1 andss is oo, 0o, and 2, respectively. Based on these kind of observations, one may infer
that statesg behaves more like state than states. This is reflected by the pseudometric
dr. For this example, we fix to be%. Then the statesy ands; are% apart, witnessed

by (a) (a) 1. The statesg ands, are at distanc% which is witnessed by the formulae,
defined by

1 ifn=0,
Pn=11- (1= (a) qo,,_l)Q%) otherwise

However, in the pseudometric induced by the logic without negationdaathds, andsg
ands» are% apart. In both case$q) (a) 1 is a witness.

To distinguish the set endowed with the original pseudomet#icfrom the seS endowed
with the logical pseudometrig¢,, we denote the former space by, ds) and the latter by
(S,dc).

The interpretatiorp g ,y is not only ac-contractive, and hence a nonexpansive, function
from (S, ds) to [0, 1] as we have shown in Propositi8h. It is also a nonexpansive function
from (S, d) to [0, 1] as we will show next.

Proposition 38. For all ¢ € £, the functiony g ;) is nonexpansive with respectdg.

Proof. For allsy, s2 € S,

Q5.1 (51) — @ g4y (s2)]
=max{@ s (s1) — Q5.4 (52), (1 = @)(s5.1) (s1) — (1 — @)s.1) (52)}

< SUP @54y (51) — Qg4 (52)
pel

=dg (51, 52). O

Each nonexpansive function frof$i, d) to [0, 1] can be approximated by interpretations
of formulae of our logicC provided that the spadg, dg) is compact.
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Proposition 39. If the pseudometric spadé, ds) is compact then the set

{osnloel} 3)
is dense inS, dp) g [O, 1].

Proof. Letd > 0andf < (S, d,) e [0, 1]. It suffices to show that there exists a formula
¢ in L such thatf and¢ g ,, are at mosb apart.

Below, we will exploit the following straightforward variation on the Stone—\Weierstrass
approximation theorem for continuous functions.

Lemma (Ash[3, LemmaA.7.2)] Let X be a compact pseudometric space. Adite a subset
ofX—1>[0, 1]suchthatfy, f> € Aimpliesmin (f1, f2), max(fi, f2) € A.If f € X—10,1]
can be approximated up tat each pair of points by functions i then f itself can also
be approximated up té by functions inA.

Since for alls1, s2 € S,

dr (s1, 52)

= SUP @54y (51) — @54 (52)
el

<c-ds(s1,s2) (Proposition35)

and the spacés, ds) is compact, we can conclude that d ) is a compact pseudometric

space. According to Propositi®8, the set8) is a subset ofS, d) — [0, 1]. Obviously, B)

is closed under min and max. Lat s2 € S. Hence, according to Ash’s lemma, it suffices to

show that there exists a formufain £ such thatf (s;) ande g ;) (s;) are at mosb apart.
Without loss of generality, assume thats1) > f (s2). Since

A= f(s1) — f (s2)
<dr (s1,52) (f isnonexpansive)

= SUP @5 ;) (51) — @54y (52)
pel

there exists aformul@ suchthat! =6 < ¢ g ) (s1) — @5 ) (52). L€t p, g @ndr be rationals
in [0, 1] such that

P €lpyy (52) = 0, @5 (52)],
g €l4—0,4],

relf(s2), f(s2)+ 6l

We leave it to the reader to verify that the formula
1-(@—min(pop,1-(109))Or)
has the desired property[]

Note that 1, min, max,2 and©gq all play a role in the above proof.



F. van Breugel, J. Worrell / Theoretical Computer Science 331 (2005) 115-142 135

The interpretations of a formula with respect to differéhtoalgebras are in general
different. But whenever there isBrhomomorphism betweeR-coalgebras they are related
as follows.

Proposition 40. Let¢ be aP-homomorphism from &-coalgebra(s, r) to a P-coalgebra
(', t"y. Then for all formulaep,

Psr .y © ¢ = Ds.1)-

Proof. By structural induction orp. We only present the most interesting case. For all
s es,

({a) @) s,y (@ (5))
=C- /5"/ @(S/‘t/) d[(;)(s),a
—c- [ 00 P @ O1a [Vod=P @
=C- / QD(S/J/) d(ts’a [e] (,Zs_l)
S/
=c- /S (@s.1y 0 P)dts o

=c~'/;(p(5’,> ds, . (induction)

= ({a) @)(s.1) (5). O

Note that once you have the interpretation of a formula with respect to the terminal
P-coalgebra, then you can infer it under any otRecoalgebra.

8. Relating the coalgebraic and logical distances

For a large class of probabilistic transition systems we have introduced a coalgebraic
distance functioric and a logical distance functiafy. In this section we relate the two
pseudometrics. Before considering the general case, we firstrelate the two distance functions
on the set underlying the carrier of the termiakoalgebra. Recall that the coalgebraic
pseudometrielz on the set underlying the carrier of the termifakcoalgebra coincides
with the metricdsix (py On the carrier of the terminat-coalgebra.

Proposition 41. For all x1, x2 € fix (P),

dr (x1, x2) — de (r1. x2)



136 F. van Breugel, J. Worrell / Theoretical Computer Science 331 (2005) 115-142

Proof. Consider the functionwhich maps each € fix (P) toitself. For allx1, x2 € fix (P),
dr (1(x1), 1(x2))
&
_dg (x1,x2)
c
_ SURper Ptix(p),iy X1 = @iix(p),iy) (X2)
c

<de (x1,x2)  (@fix(p).i) IS c-contractive by PropositioB5).
Consequently; is a nonexpansive function from the spad (P), d¢) to the space
((fix (P), %).
Next, we introduce a structuresuch that(({ fix (P), dTL), t) is a P-coalgebra. Because

1 is nonexpansive, each Borel set®f fix (P), dTﬁ) is also a Borel set oR (fix (P), d¢).
Therefore, we can take the functiogiven by

tx,a (B) = ix,a (B)

for x € fix(P), a € Actand Borel seB of R (fix (P), dTF). Since the function is nonex-
pansive and the measug, is tight, we can conclude that the measurg is tight as well
(cf. Propositionl5).

To conclude that is the structure of &-coalgebra with carrie¢fix (P), "Tﬁ), we have
left to show that is nonexpansive. Lety, x> € fix (P). Then

dP (fiX(P),dTl.:) (txl, fxz) = aseligt dQ (fiX(P),dTL) (l‘x1,u, txz,a)~

Leta € Act. Without loss of generality, assume that, (1) <1y,.4 (1). Then,
dQ (ﬁX(P),d(—{:) (txl,a, tJCz,a)

=sup{/ fdrxl,a—/ fdrxz,a|fec-<fix(P>,d7f~>—;[o,1]}
fix (P) fix (P)

(Proposition29)
< sup [ ?(fix (P),i) Uxr.a —/ ?fix(p).iy xza
peLl Jiix(P) fix (P)
(Proposition28 and39)
_ SURper (@) @)tix(p).i) (1) — (@) @)(iix(p).i) (X2)

C
< dr (x1, x2) .
C
From the definition of and: we can easily derive thatis a P-homomorphism from the
P-coalgebra(fix (P), d¢), i) to the P-coalgebra( fix (P), dT,L), t). We denote the unique

P-homomorphism from theP-coalgebra((fix (P), dT‘}), t) to the terminal P-coalgebra
{(fix (P), dc), i) by ¢.
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¢

T
(fix (P), 4£) (fix (P). dc)

—
1

t i

P @
T
P (fix(P), 42) P (fix (P), dc)
Lo

P

Obviously, the identity map offix (P) is the uniqueP-homomorphism from the terminal
P-coalgebra((fix (P), dc), i) to itself. Since¢ o 1 is also such a?-homomorphism, we
can conclude thap o 1 equals the identity map ofix (P). Therefore, both) and: are
isometries. This observation completes the proail

Note that in the above proof the modalily) is used, together with Propositi@® in
whose proof 1, min, max,-1 and©gq all play a role.

Next, we consider the general case where we have a probabilistic transition system
represented by thB-coalgebras, ¢). Then we have the following:

Theorem 42. For all s1, s2 € S,
dr (s1, 52)
SEL20 — de (51, 2).

Proof. We denote the uniquB-homomorphism from th@-coalgebrgs, ¢) to the terminal
P-coalgebra fix (P), i) by ¢. For alls1, s2 € S,

dr (scl, 52) @
= dc (¢ (slc)’ ¢ (52)) (Propositior40) (5)
=dc (¢ (s1), ¢ (s2)) (Propositior41) (6)
= dc (51, 52). @)

Note that 4) and 6) refer to different logical pseudometrics: the oneSand the one on
fix (P), respectively. Also notice thaYand (7) refer to different coalgebraic pseudometrics:
the one onfix (P) and the one o8, respectively. [J

In [9], we studied a minor variation on the functBr In that paper, we considered the
functor

P =c-M,(1+—)A%

This functor is also locally contractive and preserves positivity and completeness and,
therefore, has aterminal coalgebra. The carriers of the terrAicallgebra and the terminal
P’-coalgebra are related as follows.
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Proposition 43. fix (P') = c - fix (P).

Proof. According to Lemma4, there exists an isometryfrom fix (P) to P (fix (P)).
Clearly,i is also an isometry from- fix (P) to c - P (fix (P)) which equalsP’ (¢ - fix (P)).
Using Lemmad again, we can conclude théik (P") = ¢ - fix(P). O

Consequently, the coalgebraic pseudometric induced by the fuRttmincide with the
logical pseudometric.

9. Conclusion
9.1. Related work

As we have already seen in Sectiohand8, our coalgebraic pseudometric is closely
related to the logical pseudometric of Desharnais ¢18111] In [11], they also introduce
a probabilistic process algebra. A number of combinators of the process algebra, includ-
ing probabilistic choice, are shown to be nonexpansive. This is a quantitative analogue
of probabilistic bisimulation being a congruence. It allows for compositional verification
of probabilistic transition systems. Since our coalgebraic pseudometric is related to their
logical pseudometric, we can conclude that those combinators are also nonexpansive with
respect to our pseudometric. Furthermore, Desharnais et al. present a decision procedure for
their pseudometric. That is, they provide an algorithm to approximate the logical distances
to a prescribed degree of accuracy. The algorithm involves the generation of a representa-
tive set of formulae of their real-valued modal logic. They only consider formulae with a
restricted number of nested occurrences of the modal connective. Their algorithm approx-
imates the distances in exponential time[8h we present an algorithm to approximate
our coalgebraic distances. The problem of approximating such distances can be reduced
to a particular linear programming problem: the transportation problem. Since the latter
problem can be solved in polynomial time, we obtain a polynomial time decision procedure
for our distances. We see this practical algorithm as one of the advantages of our coalgebraic
approach over the logical approach of Desharnais et al. Another advantage of our approach
is that we work within a uniform framework, the theory of coalgebras. We do not know
whether there exists a terminal coalgebra of our functor quals 1, and hence we cannot
use our framework to define a pseudometric whequals 1. However, the logical approach
of Desharnais et al. also works in that case. Furthermore, Desharnais et al. consider a larger
class of continuous probabilistic transition systems than we do in this paper. However, we
are confident that we can extend our results as we will discuss below. In conclusion, we
believe that both approaches have their merits and demerits. The results in Semtéoon
very valuable as they allows us to transfer results from one setting to the other.

As far as we know14] by Giacalone et al. is the first paper to advocate the use of pseudo-
metric spaces to provide a robust and quantitative notion of behavioural equivalence. They
stress the importance of combinators being nonexpansive with respect to the pseudometric,
making compositional verification possible. The class of discrete probabilistic transition
systems they consider is rather restricted. A decade later, we are able to deal with all
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discrete probabilistic transition systems and a large class of continuous probabilistic tran-
sition systems.

De Vink and Rutter{33] show that discrete probabilistic transition systems and some
continuous probabilistic transition systems can be viewed as coalgebras. Their main con-
tribution is the proof that the kernel of the homomorphism from a coalgebra, representing
a probabilistic transition system, to the terminal coalgebra coincides with probabilistic
bisimilarity. They only exploit metrics to represent continuous systems as coalgebras. Their
metric on the terminal coalgebra only provides qualitative information. For example, in De
Vink and Rutten’s setting the statesandsg of the system presented in the introduction are
¢ apart ife differs from 0. More generally, the distance between two states in their setting is
" wheren is the depth of a probabilistic bisimulation between them. De Vink and Rutten
consider the endofunctor

(1+ M, (c- =)~

on the category of complete ultrametric spaces and nonexpansive funddpmienotes

the Borel probability measures with compact support. The main differences between our
functor and their functor are the following. First of all, they consider a distance function on
Borel probability measurd83, Definition 5.3]different from the one presented in Defini-

tion 8. Their distance function only captures qualitative information as the above example
illustrates. Secondly, they consider the category of complete ultrametric spaces and nonex-
pansive functions whereas we consider the considerably larger category of pseudometric
spaces and nonexpansive functions. This allows us to capture many more interesting con-
tinuous probabilistic transition systems as coalgebras, including systems where the state
space is the real interv@0, 1] endowed with the Euclidean metric. Furthermore, they
consider Borel probability measures with compact support whereas we consider the more
general tight Borel probability measures. Again this allows us to represent more systems
as coalgebras. Finally, their model only allows states to refuse transitions with probabil-
ity 0 or 1. In conclusion, our functor allows to model many more interesting continuous
systems, and all the results for their functof33, Section 5§ can be generalized to our
setting.

Baier and Kwiatkowsk@4] study a functor which is closely related to the one of De Vink
and Rutten. Our work can be compared to theirs in the same way it is compared to the work
of De Vink and Rutten in the paragraph above.

In his thesig[17], Den Hartog exploits ultrametric spaces very similar to the terminal
coalgebra of De Vink and Rutten. The metric structure is only used to model infinite be-
haviour. As a consequence, qualitative information suffices. We believe that metrics closely
related to the one we present in this paper may be used in his setting as well, possibly
providing additional quantitative information about his models.

Kwiatkowska and NormafR2,23,26]present a number of closely related metrics. Like
Den Hartog, they use their metric as a means to model recursion. However, their metric is not
an ultrametric and contains quantitative information. Let us compare the metric introduced

3The proof of[33, Theorem 5.8}s incomplete. We also have no proof for this result in our setting.
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by Norman in26, Section 6.1jvith our pseudometric. Consider the following probabilistic
transition system.

S0 51
1\L
1 1
2 2 52
1 1
2 2
53 I 54 I S5

Clearly, the statesy ands; are not probabilistic bisimilar. In Norman'’s setting the states have
distance 0. In our pseudometric, states only have distance 0 if they are probabilistic bisimilar.

In our setting the states ai‘ztze apart. This example shows that his distance function gives rise

to a topology different from ours. The main differences between his and our approach are
the following. First of all, he uses a linear-time model whereas we consider a branching-time
model. Secondly, he only handles discrete systems whereas we also consider continuous
ones. Finally, we use the usual categorical machinery and various standard constructions
whereas his definitions are more ad hoc. We believe however that his metric can also be
characterized by means of a terminal coalgebra.

Results similar to the ones in this paper have been presented by the second author in
his thesig34, Chapter 4]n the setting of bimodules and generalized metric spaces. The
coalgebraic distance of statgsands» can be characterized as the smallRst1, s2) where
R is a bimodule satisfying certain conditions (484, Theorem 4.5.12for the details).

This is the quantitative analogue of the characterization of probabilistic bisimilarity as the
largest probabilistic bisimulation.

9.2. Future work

Let us isolate two distinct consequences of our use of the pseudometric presented in
Section3. First of all, we can talk about approximate equivalence of states. Secondly, we
can model a large class of continuous probabilistic transition systems as coalgebras. An
apparent restriction with regard to the latter point is the requirement that the structure of a
P-coalgebra, that is, the system’s transition function, be nonexpansive. Properly speaking,
continuous probabilistic transition systems as formulated in Defintibare coalgebras
of (a variant of) the Giry monad on the category of measurable spaces and measurable
functions[15]. However, we conjecture that the terminadcoalgebra{ fix (P), i) is also
terminal when seen as a coalgebra of the Giry functor, and that our results can be extended
to continuous probabilistic transition systems in general.

In Proposition28 we have shown that the carrier of our terminal coalgebra is compact
and hence separable. Furthermore, we conjecture that the unigue homomorphism from the
initial algebra of a finitary version oP—this finitary version represents finite discrete
probabilistic transition systems with rational probabilities—to the termirabalgebra is
a dense embedding. Hence, every continuous system can be approximated by a finite one
(see als¢12]).
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