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Abstract Intercellular calcium wave propagation initiated by
mechanical stress is a phenomenon found in nearly all cell types.
The waves utilize two pathways: transfer of InsP3 directly from
cell to cell through gap junction channels and release of ATP
onto extracellular purinergic receptors. The conduit for ATP has
remained elusive and both a vesicular and a channel mediated
release have been considered. Here, we describe the properties of
single pannexin 1 channels. They have a wide expression
spectrum, they are of large conductance and permeant for
ATP, and they are mechanosensitive. Hence, pannexins are
candidates for the release of ATP to the extracellular space upon
mechanical stress.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The coordinated response of cells to mechanical stress is

based on increased intracellular free calcium in the stressed

cell, which spreads like a wave front from cell to cell. Propa-

gation of the calcium wave involves the flux of InsP3 directly

from cell to cell through gap junction channels and release of

ATP onto extracellular purinergic receptors [1,2]. Connexins

are the structural components of gap junction channels [3,4]

and they have also been invoked to provide a conduit for ATP

to the extracellular space through gap junction hemichannels

[5,6]. However, with the exception of the lens specific con-

nexins, cx46 and cx50, connexins form open hemichannels only

under unphysiological conditions [7,8]. Furthermore, in as-

trocytes ablation of the main connexin, connexin 43, did not

affect propagation velocity of intercellular calcium waves al-

though coupling was reduced to 30% in spinal cord astrocytes

and 5% in cortical astrocytes [9], with the residual coupling

being mediated by other connexins and/or pannexins. Re-

cently, it has been recognized that pannexins represent a sec-

ond family of gap junction proteins in vertebrates [10–12].

Macroscopic currents in rat pannexin 1 expressing oocytes

have indicated that this pannexin, like connexins 46 and 50,

can form patent hemichannels in the non-junctional plasma

membrane in physiological calcium concentrations [12].

Pannexin 1 is widely expressed in tissues with documented

calcium wave propagation. We, therefore, tested whether its
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channel properties would be consistent with that of an ATP

conduit.
2. Materials and methods

Preparation of oocytes and electrophysiological recording were
performed as described [13]. Pannexin 1 (MRS 1) was kindly provided
by Dr. Graeme Bolger, University of Alabama, in pBluescript. The
plasmid was linearized with XhoI and in vitro transcription was per-
formed with T3 polymerase using the mMessage mMachine kit (Am-
bion). 20 nl of mRNA (50 ng/ll) was injected into oocytes. The injected
oocytes were then transferred into fresh OR2 (in mM: 82.5 NaCl, 2.5
KCl, 1.0 MgCl2, 1.0 CaCl2, 1.0 Na2HPO4, 5.0 HEPES and antibiotics
(Penicillin, 10 000 U/ml amd Streptomycin, 10 mg/ml), pH 7.5) me-
dium with elevated Ca2þ (5 mM) and incubated at 18 �C for 48 h. For
electrophysiological recordings, oocytes were transferred to regular
OR2.
Single pannexin 1 hemichannels were studied by the patch-clamp

technique [14] using a WPC 100 amplifier (E.S.F. Electronic, Goet-
tingen, Germany). Unless stated otherwise, the bath and pipette con-
tained KGlu solution (140 mM KGlu, 10 mM KCl and 5.0 mM TES,
pH 7.5). Negative pressure was applied to the membrane patch
pneumatically through a port on the pipette holder. The negative
pressure was established first in a reservoir by applying suction with a
syringe. The pressure was measured with a water manometer. Step
changes of pressure were applied to the membrane patch by connecting
the pipette via a valve mechanism either to the reservoir or atmo-
spheric pressure.
ATP flux was determined by luminometry. To open pannexin

channels, oocytes were depolarized by incubation in KGlu solution.
The supernatant was collected and assayed with luciferase/luciferin
(Promega, Madison, USA).
Channel activity was analyzed only for patches containing single

channels. For assessment of the effects of mechanical stress on open
probability of single channels, Student’s paired t tests were performed
and the p-values are indicated in the figures.
3. Results and discussion

To study the properties of single pannexin channels, human

pannexin 1 [10] (originally cloned as MRS1, GenBank Ac-

cession No. AF093239) was expressed in Xenopus oocytes and

analyzed by patch clamp. Consistent with the observed mac-

roscopic membrane currents [12], expression of human pan-

nexin 1 in single Xenopus oocytes resulted in the appearance of

a novel type of membrane channel with a large unitary con-

ductance of 475 pS in 150 mM potassium gluconate (Fig. 1)

and 550 pS in 150 mM KCl (not shown). The channel activity

has to be attributed to pannexin 1 because these large con-

ductance channels were not observed in control oocytes and

because of the distinctive features of the channel, not described

for other channels expressed in oocytes in the literature, in-
ation of European Biochemical Societies.
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Fig. 1. Single channel currents in an inside-out membrane patch ex-
cised from an oocyte expressing human pannexin 1. The patch was
held at a potential favorable for channel opening ()20 mV) before
switching to )100 mV to facilitate identification of various current
levels. An uninterrupted recording segment of 140 s is shown together
with an all point histogram of the entire segment. In addition to the
closed (c) and the full open state (o) at least one, possibly two, low level
subconductance states in addition to two intermediate and one high
subconductance state can be discerned.
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Fig. 2. (A) Single channel currents at )20 and at +20 mV. Multiple
conductance levels can be observed over a wide range of voltages. At
positive potential, the current excursions are smaller than at negative
potentials because of the channel’s preference for subconductance
states. (B) The current–voltage relationship for pannexin 1 single-
channel currents reveals a slope conductance of 475 pS at negative
potential with potassium gluconate as charge carrier.
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Fig. 3. Responses of pannexin 1 channels to voltage ramps. A 70-s
voltage ramp from )60 to +60 mV was applied to an on-cell membrane
patch containing a single pannexin 1 channel. The bath and pipette
solutions contained 150 mM potassium gluconate.
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cluding connexin channels [15–17]. The channel has unusual

properties: it exhibited at least five open states. Besides the full

open state, no less than four subconductance states with 5%,

25%, 30% and 90% of the maximal conductance can be dis-

cerned. These subconductance states were observed with KGlu

(Fig. 1) as well as KCl solutions (not shown) in pipette and

bath. Transitions between states were fast and highly variable.

They occurred between substates but also between closed and

full open states. The subconductance states were observed over

the wide range of voltages examined ()100 to +50 mV). The

channel, when active, mainly dwelled in the subconductance

states, while sojourns to the full open and closed states were

scarce (Fig. 2). Like cx46 hemichannels [15], pannexin 1

channels are gated by voltage in a complex manner. A slow

gating mechanism, probably equivalent to the loop gate of

cx46, closed the channel at potentials more negative than )20
mV. Held at positive potentials, the channels mainly dwelled in

the low subconductance states. These single channel properties

are consistent with macroscopic currents. When held more

negative than )20 mV the channels were closed, and voltage

steps to +20 mV and more positive values resulted in rapid

inactivation of the currents (data not shown, see also [12]).

Fig. 3 illustrates the response of a single channel to voltage

ramps applied after holding the patch at a potential favorable
for channel opening ()20 to +20 mV). The currents at negative

potentials are larger than at positive potentials, indicating

rectification. In addition, the preference for subconductance

states at positive potentials is noticeable.
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The permeability properties of pannexin channels are not

known. To test whether pannexin channels allow the passage

of molecules larger than the standard charge carriers, sodium,

potassium and chloride, the flux of ATP was examined. The

efflux of ATP from oocytes expressing pannexin 1 was deter-

mined by luminometry. Oocytes expressing pannexin 1 ex-

hibited an elevated ATP efflux only under conditions favoring

channel opening, i.e., when depolarized by high potassium

solution (Fig. 4). The depolarization-induced ATP release in

control oocytes and in oocytes expressing cx43 probably rep-

resents the vesicular release of ATP reported previously [18].

As an independent measure of ATP permeability, 10:1 gra-

dients of potassium ATP were applied to excised patches

containing single pannexin 1 channels. In the absence of ATP

permeability, i.e., with exclusive potassium permeability, the

reversal potential would be expected to be close to +60 mV on

the side of the lower salt concentration (cytoplasmic side).

Membrane currents instead reversed at �+25 mV, indicating

that ATP carries current in the pannexin channel (Fig. 4B).
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Fig. 4. ATP flux through pannexin 1 channels. (A) ATP release from
oocytes was determined by luminometry. When depolarized by ele-
vated potassium in the extracellular fluid, uninjected oocytes and oo-
cytes expressing connexin 43 released ATP to the extracellular space,
probably by a Brefeldin-sensitive, vesicular mechanism [18]. Expres-
sion of pannexin 1 resulted in significantly increased ATP release
(P < 0:01, versus control KGlu). (B) A voltage ramp was applied to an
excised (inside-out) patch containing a single pannexin 1 channel. To
assess permeability properties of the channel, an ion gradient was
applied. The pipette solution contained 50 mM and the bath solution 5
mM K2ATP. The average reversal potential from five independent
measurements was +25 mV, indicating substantial permeability of the
channel for ATP3�.
The permeability for ATP is, however, less than the potassium

permeability because the reversal potential is positive.

We have observed that cx46 hemichannels are sensitive to

mechanical stress (Bao, Sachs and Dahl, unpublished). To test

whether pannexin channels are also mechanosensitive, we used

a single channel patch clamp. Cell-attached or excised mem-

brane patches with single pannexin 1 hemichannels were me-

chanically stressed by suction applied to the patch pipette [19].

Fig. 5 shows typical responses of pannexin 1 channels to

stretch. Over a wide range of potentials ()50 to +50 mV), the

channels exhibited increased activity when stressed mechani-

cally. Increased channel activity occured by a switch from a

low subconductance to a higher conductance level (Fig. 5A) or

started from a totally closed channel (Fig. 5B). For quantita-

tive analysis (Fig. 5C), we used a detection threshold for

openings above the low subconductance level to capture both

types of increased activity. During prolonged stretch, channel

activity often subsided spontaneously.

These properties of pannexin 1 suggest that a non-junctional

membrane channel (gap junction hemichannel) formed by this

protein could be involved in the widespread phenomenon of

calcium wave propagation between cells. Typically elicited by

mechanical stimulation, the response of many cell types to the

stimulus is to increase cytoplasmic free calcium concentration

that propagates to neighboring and distant cells like a wave

front [1]. Propagation occurs by two pathways. One involves
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Fig. 5. Stretch-activation of pannexin 1 hemichannels. Single channel
currents were recorded from a membrane patch of an oocyte exoge-
nously expressing pannexin 1. The membrane potential was held at
)50 mV (A) and )20 mV (B). Negative pressure (�40 mbar) was ap-
plied by suction to the patch pipette during the time indicated by the
line. The patch in (B) contained two channels. Bath and pipette solu-
tions contained potassium gluconate. Open probability (C) was de-
termined for five membrane patches from different oocytes.
Means� S.E. are plotted; statistical significance of differences between
the activity before and during application of stretch uses a paired t test
as indicated: **, P < 0:01.
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gap junction channels that permit the transit of a messenger,

probably Insp3, directly from cell to cell, bypassing the ex-

tracellular space. The other is an extracellular pathway that

involves release of ATP from one cell and binding of ATP to

purinergic receptors on neighboring cells.

While the involvement of connexins is obvious for the first

pathway, several studies have implicated cx43 in the extracel-

lular pathway, too [5,6,20]. It has been proposed that hemi gap

junction channels composed of connexin 43 subunits provide

the conduit for ATP release. The proposal is based on cx43

being the major connexin in the investigated cell types and the

use of drugs that are known to interfere with gap junction

channels. While some studies support the notion that cx43

hemichannels indeed can be functional, typically such channel

activity is only observed in unphysiological low calcium con-

centrations [7] or at potentials only achieved in experimental

settings, i.e., >+60 mV [21]. Furthermore, ablation of cx43 in

mice did not change the velocity of intercellular calcium wave

propagation in spinal cord astrocytes, suggesting that efficient

ATP release can occur in the total absence of cx43 [22]. Cal-

cium waves propagate in cx43 deficient cells mainly through an

extracellular pathway. The latter pathway is augmented by a

switch in subtypes of purinergic receptors, which compensates

for the loss of the gap junction mediated propagation mode

[23].

Pannexin 1 hemichannels, on the other hand, fulfill criteria

required for an involvement in calcium wave propagation.

Pannexin 1 is widely distributed among tissues with cell com-

munication via calcium waves. The channel formed by this

protein can be opened by mechanical perturbation at the

resting membrane potential. The channel is permeable for ATP

and, finally, pannexin 1 channels can be opened at physio-

logical calcium concentration [12]. Hence, a contribution of

pannexin 1 channels to the initiation of calcium waves is

plausible. Whether pannexin 1 channels are also involved in

wave propagation remains to be determined. Such an in-

volvement is theoretically feasible in many ways.

As shown by Bruzzone et al. [12] and the present study,

pannexin 1 forms channels in the non-junctional membrane

that connects the cytoplasm with the extracellular space. Open

gap junction hemichannels, because of their large size and

permeability to ATP and second messenger molecules [24,25],

are generally deleterious to cell health. For example, the lens

connexins (cx46 and cx50) form open hemichannels in oocytes

expressing these connexins exogenously, and the cells die un-

less the hemichannels are kept shut by an elevated extracellular

calcium concentration [26]. The voltage dependence of pann-

exin 1 channels ensures that the channels do not threaten cell

viability. They will be closed at the resting membrane potential

with a large safety margin towards depolarization unless
challenged by mechanical stress, whereupon they can directly

signal to other cells via ATP.
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