Molecular phylogenetics of Orientia tsutsugamushi strains circulating in Assam based on 56-kilodalton type-specific antigen gene

S.A. Khan 1,∗, T. Bora 1, A. Richards 2, S. Chattopadhyay 1, J. Jiang 2, B. Laskar 3, P. Dutta 1

1 Regional Medical Research Centre, (ICMR) N.E. Region, Dibrugarh, India
2 Viral and Rickettsial Diseases Department Naval Medical Research Center, MD 20910-7500 USA, Silver Spring, MD, USA
3 Assam Medical College and Hospital, Dibrugarh, India

Background: In India, scrub typhus (ST) is considered to be a re-emerging infectious disease. From northeast India, ST cases have recently been reported (2012) in Assam after a gap of 68 years. The causative organism, Orientia tsutsugamushi is known to be genetically and antigenically highly variable. Sequence analysis of 56-kilodalton (kda) type-specific antigen (TSA) gene has become an important tool for genetic characterization of Orientia. This variable gene sequence is useful for analysis of genetic diversity of Orientia isolates. Although re-emergence of ST has been reported, circulating strains and their origin have yet to be identified. In the present study confirms the role of Culex and Mansonia mosquito species in the transmission of WNV in Assam. Further studies are required to address WNV transmission and maintenance during winters for implementation of vector intervention strategies.

Conclusion: Our results provide molecular evidence for the persistence and maintenance of Lineage 5 WNV in Northeast India. This study confirms the role of Culex and Mansonia mosquito species in the transmission of WNV in Assam. Further studies are required to address WNV transmission and maintenance during winters for implementation of vector intervention strategies.

http://dx.doi.org/10.1016/j.ijid.2016.02.420

Type: Poster Presentation

Final Abstract Number: 41.233
Session: Poster Session I
Date: Thursday, March 3, 2016
Time: 12:45–14:15
Room: Hall 3 (Posters & Exhibition)

Molecular phylogenetics of Orientia tsutsugamushi strains circulating in Assam based on 56-kilodalton type-specific antigen gene

S.A. Khan 1,∗, T. Bora 1, A. Richards 2, S. Chattopadhyay 1, J. Jiang 2, B. Laskar 3, P. Dutta 1

1 Regional Medical Research Centre, (ICMR) N.E. Region, Dibrugarh, India
2 Viral and Rickettsial Diseases Department Naval Medical Research Center, MD 20910-7500 USA, Silver Spring, MD, USA
3 Assam Medical College and Hospital, Dibrugarh, India

Background: In India, scrub typhus (ST) is considered to be a re-emerging infectious disease. From northeast India, ST cases have recently been reported (2012) in Assam after a gap of 68 years. The causative organism, Orientia tsutsugamushi is known to be genetically and antigenically highly variable. Sequence analysis of 56-kilodalton (kda) type-specific antigen (TSA) gene has become an important tool for genetic characterization of Orientia. This variable gene sequence is useful for analysis of genetic diversity of Orientia isolates. Although re-emergence of ST has been reported, circulating strains and their origin have yet to be identified. In the present study confirms the role of Culex and Mansonia mosquito species in the transmission of WNV in Assam. Further studies are required to address WNV transmission and maintenance during winters for implementation of vector intervention strategies.

http://dx.doi.org/10.1016/j.ijid.2016.02.420

Type: Poster Presentation

Final Abstract Number: 41.233
Session: Poster Session I
Date: Thursday, March 3, 2016
Time: 12:45–14:15
Room: Hall 3 (Posters & Exhibition)
study, we determined the prevalent strains of O. tsutsugamushi circulating in Assam and their origin with respect to 56 kDa gene.

Methods & Materials: 370 clinical serum samples from suspected scrub typhus and other unidentified fever cases were received from tertiary hospitals in Assam. Serological screening was done using Scrub Typhus Detect IgM ELISA (InBios International, Inc., USA). Positive and equivocal samples were subjected to PCR. Nested PCR was performed using primers specific for O. tsutsugamushi 56 kDa gene. Phylogenetic analysis was performed using MEGA 6 software.

Results: 19.4% sera (72/370) were found to be IgM positive and 6.4% (24/370) were equivocal. 13 of these samples were PCR positive for 56 kDa gene. Phylogenetic analysis of study strains showed variations in sequence homologies that formed 3 distinct clades that clustered with reference strains from: 1) India 2) Taiwan and 3) Thailand.

Conclusion: In summary, we have identified strains of O. tsutsugamushi circulating in Assam and established their evolutionary relationship with reference strains by analyzing a variable portion of 56kDa gene. Understanding the evolution of the prevalent strains is important to understand the genetic differences which may help in planning control strategies as well as prophylactic measures including development of vaccines.

http://dx.doi.org/10.1016/j.ijid.2016.02.421

Type: Poster Presentation

Final Abstract Number: 41.234

Session: Poster Session I

Date: Thursday, March 3, 2016

Time: 12:45-14:15

Room: Hall 3 (Posters & Exhibition)

Uganda National Acute Febrile Illness Agent Detection Serosurvey 2004-2005

1 CDC, Atlanta, Georgia, USA
2 CDC, Atlanta, USA
3 Region of Waterloo Public Health, CDC, Ontario, Canada
4 UVR, Entebbe, Uganda
5 The London School of Hygiene and Tropical Medicine, London, United Kingdom
6 NIH, Bethesda, USA

Background: Due to their non-specific clinical presentation, acute febrile illnesses (AFI) are often diagnosed clinically as diseases known to be endemic to the region in which they are found. Uganda has been the site of multiple emerging-disease outbreaks, and there are several diseases that present with undifferentiated AFI, requiring further laboratory confirmation; however, limited laboratory capacity can impair timely diagnosis and public health interventions. This results in misdiagnosis and underreporting of emerging diseases of public health importance. The 2004-2005 Uganda National AFI Agent Detection Serosurvey (AFI serosurvey)—a retrospective investigation of seroprevalence of exposure to selected infectious agents—involved testing a subset of banked sera from the 2004-2005 Uganda HIV/AIDS Serobehavioural Survey (UHSBS).

The AFI serosurvey is part of a multi-phase collaboration between Uganda Ministry of Health, Uganda Virus Research Institute (UVRI) and CDC-Atlanta/CDC-Uganda to investigate AFI in Uganda.

Methods & Materials: We selected a random 3097-sample subset from 19,656 UHSBS banked sera for inclusion in the AFI serosurvey; 2705 were ultimately analyzed after applying exclusion criteria. Data from laboratory testing were analyzed and mapped using SAS v9.3 and ArcGIS 10, respectively.

Results: Laboratory diagnostic testing results demonstrated: leptospirosis ELISA and microagglutination test (MAT) (10.4% weighted proportion, SE = 1.2%), brucellosis MAT (0.3% weighted proportion, SE = 0.1%), spotted fever group rickettsiae ELISA (56.7% weighted proportion, SE = 1.4%) and typhus group rickettsiae ELISA (41.6% weighted proportion, SE = 1.4%), malaria MSP119 ELISA (88.4% weighted proportion, SE = 0.7%), orthopoxvirus IgG ELISA (13.5% weighted proportion, SE = 0.8%), chikungunya IgM ELISA (31.1% weighted proportion, SE = 1.0%), dengue IgM ELISA (1.0% weighted proportion, SE = 0.2%) and IgG ELISA (0.7% weighted proportion, SE = 0.2%). A specimen subset (n = 198) was tested for melioidosis using indirect hemagglutination (IHA): 4.6% were seropositive.

Conclusion: Pre-existing national serosurveys can be a source of information on prevalence of AFI etiologic agents. This AFI serosurvey describes the distribution, regional risk, and interregional variability for selected diseases contributing to AFI across Uganda; it will inform prioritization of infectious disease surveillance and laboratory capacity-building activities. Results from this study combined with similarly obtained results from the ongoing testing from the 2011 Uganda AIDS Indicator Survey-based serosurvey will demonstrate changing seroprevalence patterns, allowing for evaluation of potential ecologic drivers for disease distribution variances.

http://dx.doi.org/10.1016/j.ijid.2016.02.422

Type: Poster Presentation

Final Abstract Number: 41.235

Session: Poster Session I

Date: Thursday, March 3, 2016

Time: 12:45-14:15

Room: Hall 3 (Posters & Exhibition)

Spottered fever group and typhus fever group rickettsiosis in South Western India

M. Koralur1-∗, I. Bairy2, M. Varma3, E. Athan4, J. Stenos5

1 Kasturba Medical College, Manipal, Karnataka, India
2 Melaka Manipal Medical College, Manipal Campus, Manipal, India
3 KMC Manipal, Manipal, India
4 Barwon Health, Victoria, Australia
5 Australian Rickettsial Reference Laboratory, Vic, Australia

Background: Rickettsial diseases are a group of zoonotic acute febrile illness transmitted to humans by vectors. They are classified into spotted fever group (SFG), typhus fever group (TG) and scrub typhus group (STG). STG remains the major cause of acute febrile illness requiring hospitalization in the tsutsugamushi triangle, however, the true picture of the SFG and TG rickettsiosis is not clear in India. Immunofluorescence assay (IFA) is the serological gold standard test for the diagnosis of rickettsial disease and...