
Theoretical Computer Science 410 (2009) 5455–5466

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Computational study on planar dominating set problemI

Marjan Marzban a, Qian-Ping Gu a,∗, Xiaohua Jia b
a School of Computing Science, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
b Department of Computer Science, City University of Hong Kong, Hong Kong

a r t i c l e i n f o

Keywords:
PLANAR DOMINATING SET
Branch-decomposition
Fixed-parameter algorithms
Data reduction
Computational study

a b s t r a c t

Recently, there has been significant theoretical progress towards fixed-parameter
algorithms for theDOMINATINGSETproblemof planar graphs. It is known that the problem
on aplanar graphwithn vertices anddominating number k can be solved inO(2O(

√
k)n) time

using tree/branch-decomposition based algorithms. In this paper, we report computational
results of Fomin and Thilikos algorithm which uses the branch-decomposition based
approach. The computational results show that the algorithm can solve the DOMINATING
SET problem of large planar graphs in a practical time and memory space for the class of
graphs with small branchwidth. For the class of graphs with large branchwidth, the size of
instances that can be solved by the algorithm in practice is limited to about one thousand
edges due to a memory space bottleneck. The practical performances of the algorithm
coincide with the theoretical analysis of the algorithm. The results of this paper suggest
that the branch-decomposition based algorithms can be practical for some applications on
planar graphs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected graph G(V , E), a k-dominating set D of G is a subset of k vertices of G such that for every vertex
v ∈ V (G), either v ∈ D or v is adjacent to a vertex u ∈ D. The dominating number of G, denoted by γ (G), is the minimum k
such that G has a k-dominating set. Given G and an integer k, The DOMINATING SET problem is to decide if γ (G) ≤ k. The
optimization version of the problem is to find a dominating set Dwith |D| = γ (G). The DOMINATING SET problem is a core
NP-complete problem in combinatorial optimization and graph theory [25]. It also has wide practical applications such as
resource allocations [29], domination problems in electric networks [27], and wireless ad hoc networks [42]. The books of
Haynes et al. give a survey on the rich literature of algorithms and complexity of the DOMINATING SET problem [28,29]. A
recent experimental study on the heuristic algorithms for the DOMINATING SET problem can be found in [39].
The DOMINATING SET problem is NP-hard. Approximation algorithms and exact fixed-parameter algorithms have been

extensively studied to tackle the intractability of the problem. A minimization problem P of size n is α-approximable if
there is an algorithm which runs in polynomial time in n and produces a solution of P with value at most αOPT , where
OPT is the value of the optimal solution of P and α ≥ 1. If P is (1 + ε)-approximable for every fixed ε > 0, P is
polynomial time approximable (i.e., has a PTAS). Problem P is fixed-parameter tractable if given a parameter k, OPT can
be computed in O(f (k)nO(1)) time, where f (k) is a computable function in k. For an arbitrary undirected graph G of n

I A preliminary version of this paper appeared in the Proc. of the 2nd International Conference on Combinatorial Optimization and Applications (COCOA
2008) [M. Marzban, Q. Gu, X. Jia. Computational study on dominating set problem of planar graphs, in: Proc. of the 2nd International Conference on
Combinatorial Optimization and Applications, COCOA 2008, in: LNCS, vol. 5165, 2008, pp. 89–102]
∗ Corresponding author. Tel.: +1 778 782 6705; fax: +1 778 782 3045.
E-mail addresses:mmarzban@cs.sfu.ca (M. Marzban), qgu@cs.sfu.ca (Q.-P. Gu), csjia@cityu.edu.hk (X. Jia).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.04.012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82819117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:mmarzban@cs.sfu.ca
mailto:qgu@cs.sfu.ca
mailto:csjia@cityu.edu.hk
http://dx.doi.org/10.1016/j.tcs.2009.04.012

5456 M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466

vertices, the DOMINATING SET problem is known (1 + log n)-approximable [30], but not approximable within a factor
of (1 − ε) ln n for any ε > 0 unless NP ⊆ DTIME(nlog log n) [22]. The problem is also known fixed-parameter intractable
unless the parameterized complexity classes collapse [20,21]. If the problem is restricted to planar graphs, it is known as
the PLANAR DOMINATING SET problem which is still NP-hard [25]. But the PLANAR DOMINATING SET problem is known
admitting a PTAS [9] and fixed-parameter tractable [20].
In recent years, there have been significant improvements on the time complexity of algorithms for various fixed-

parameter tractable problems in planar graphs. The improvements result in exponential speedups of the algorithms,
reducing the running time from2O(k)nO(1) to 2O(

√
k)nO(1), for the problemswith parameter k. Examples of such subexponential

time algorithms include those which solve the PLANAR VERTEX COVER problem, the PLANAR DOMINATING SET problem,
and PLANAR LONGEST PATH problem in O(23.57

√
kk+n), O(211.98

√
kk+n3), and O(210.52

√
kn+n3) time, respectively [15]. The

subexponential algorithms mentioned above use the tree/branch-decompositions of graphs introduced by Robertson and
Seymour as a tool [36–38]. More specifically, those algorithms (1) compute a tree or branch decomposition of small width
for the input graph and (2) solve the problems by the dynamic programming method based on the found decomposition.
There are two key ingredients in realizing the speedups. The first is that a tree or branch decomposition of width l = O(

√
k)

can be computed in O(nO(1)) time for those problems with parameter k and the second is that Step (2) can be computed in
2O(l)nO(1) time. It is not difficult to realize Step (2) in 2O(l)nO(1) time for a class of problems represented by the vertex cover
and dominating set problems, where global infomation is not needed in the dynamic programming. For a class of problems
represented by the longest path problem and connected dominating set problem,where some global information is required
in the dynamic programming, Dorn et al. give an approach based on the sphere cut branch decompositions and non-crossing
partitions to realize Step (2) in 2O(l)nO(1) time [19].
Demaine et al. introduce a new framework for designing fixed-parameter algorithms with 2O(

√
k)nO(1) running time

[13]. This framework builds on the bidimensionality theory and can be applied to extend the subexponential time fixed-
parameter algorithms for the class of problems including vertex cover and dominating set problems in planar graphs to a
broader class of graphs excluding a fixed graph as a minor. The work of [17] further makes such extensions possible for the
non-local problems represented by the longest path and connected dominating set problems. The survey papers of [14,18]
give a summary on the progresses of the subexponential fixed-parameter algorithms, the bidimensionality theory and its
algorithmic applications.
The PLANAR DOMINATING SET problem has been extensively studied. First fixed-parameter algorithms for the problem

on graphs with γ (G) = k have running time O(11kn) [20] and O(8kn) [7]. The exponential speedups give algorithms for
the problem with running time O(2c

√
kn), where c is some constant [4,23,31]. Most of the subexponential algorithms use

a tree-decomposition based algorithm: For a planar graph G with γ (G) = k, a tree decomposition of width b
√
k, b is a

constant, is computed and the dynamic programming part runs in O(22b
√
kn) time [4]. One problem with those algorithms

is that the constant c = 2b is too large for solving the PLANAR DOMINATING SET problem in practice. Instead of a
tree decomposition, a branch decomposition can be used in the above dynamic programming algorithms for the PLANAR
DOMINATING SET problem. Fomin and Thilikos give such an algorithm (called FT Algorithm in what follows) of running
time O(2(3 log4 3)bw(G)k + n3), where bw(G) is the branchwidth of G [23]. Fomin and Thilikos prove that bw(G) ≤ 3

√
4.5k

and O(2(3 log4 3)bw(G)) = O(215.13
√
k), reducing the constant c to 15.13 [23,24]. Dorn proposes an approach of applying the

distance product of matrices to the dynamic programming step in branch/tree-decomposition based algorithms for the
problem [15]. If a conventional O(n3) time algorithm is used for the distance product of matrices, this approach has the
same constant c = 15.13 as that of FT Algorithm. It is known that the distance product of integer matrices can be realized
by the fast matrix multiplication [44]. If the distance product of matrices is realized by the O(nω) (ω < 2.376) time fast
matrix multiplication method [12], the constant c is improved to 11.98. However, the constant hidden in the Big-Oh may
be huge when the fast matrix multiplication is used. Dorn also proves that the PLANAR DOMINATING SET problem can be
solved in O(3tw(G)nO(1)) time, where tw(G) is the treewidth of G [16]. The tree decomposition used in Dorn’s proof is closely
related to the branch decomposition and the algorithm of [16] has the same sublinear exponent in the time complexity as
that of the algorithm in [15]. An encouraging fact on branch decomposition is that an optimal branch decomposition of a
planar graph can be computed in polynomial time [26,41]. Thismakes the branch-decomposition based algorithms receiving
increasing attention for the problems on planar graphs.
Another important progress on the algorithmic tractability of the PLANAR DOMINATING SET problem is that the problem

is shown having a linear size kernel [8]. More specifically, Alber et al. give an O(n3) time algorithm which, given a planar
graph Gwith γ (G) = k, produces a reduced graph H (kernel) such that H has O(k) vertices, γ (H) = k′ ≤ k, and a minimum
dominating set of G can be constructed from a minimum dominating set of H in linear time [8]. In general, H and k′ are
smaller than G and k, respectively, since in the reduction process, a number of vertices in a minimum dominating set of H
have been decided. This reduction process reduces the sublinear exponent from c

√
k to c
√
k′ and thus improves the running

time of the fixed-parameter algorithms for the PLANARDOMINATING SET problem. This result is used in FT Algorithmwhich
has three major steps [23]: Step I computes a kernel H of G by the data reduction process of [8] in O(n3) time. Step II finds
an optimal branch decomposition of H with width bw(H). This can be done by algorithms of [10,26] in O(k3) time. Step III
computes a minimum dominating set D′ of H using the dynamic programming method based on the branch decomposition
in O(2(3 log4 3)bw(H)k) time and constructs a minimum dominating set D of G from D′ in linear time. It is proved in [23,24] that

M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466 5457

the branchwidth bw(H) ≤ 3
√
4.5k′ and FT Algorithm has time complexityO(215.13

√
k′k+n3). Thememory space required in

Step III is O(3bw(H)k) = O(210.1
√
k′k) bytes for computing the dominating number γ (H) only and O(210.1

√
k′k2) for computing

a minimum dominating set D′ of H . Alber et al. report that the data reduction computes a much smaller kernel in practice
for a class of planar graphs [3,8]. Recently, Bian et al. report that an optimal branch decomposition of a planar graph can be
computed efficiently in practice [10,11]. These results provide the base for testing the practical efficiency of FT Algorithm
for the PLANAR DOMINATING SET problem.
Although significant theoretical progresses have been made towards the fixed-parameter algorithms for the PLANAR

DOMINATING SET problem, limited work has been done on the practical performances of these algorithms. Alber et al. give
experimental evaluations on the tree-decomposition based algorithms for several problems including the vertex cover and
dominating set problems in planar graphs [5,6]. The experimental studies are performed on a class of random maximal
planar graphs and their subgraphs generated by LEDA [2,34] and the results for the PLANAR DOMINATING SET problem
can be found in [5]. In this paper, we report the computational study on FT Algorithm for the PLANAR DOMINATING SET
problem. In our implementations of FT Algorithm, in addition to the data reduction rules of [3,8], we introduce new data
reduction rules and use the recent works on planar branch decompositions. The new data reduction rules further reduce the
kernel size and improve the running time of FT Algorithm. We have tested our implementations of FT Algorithm on several
classes of planar graphs, including the random maximal planar graphs and their subgraphs from LEDA [2,34], Delaunay
triangulations of point sets taken from TSPLIB [35], triangulations and intersection graphs of segments from LEDA, Gabriel
graphs, and planar graphs from PIGALE library [1]. The computational results show that the size of instances that can be
solved in a practical time and memory space mainly depends on the branchwidth of the kernels. For example, as shown in
the Appendix, the random maximal planar graphs and their subgraphs have branchwidth at most four. This class of graphs
are used as the test instances in previous studies for the data reduction [3,8] and the tree-decomposition based algorithms
for the PLANAR DOMINATING SET problem [5]. Step I reduces the problem size significantly and the PLANAR DOMINATING
SET problem can be solved in about twentyminutes for instances of size about forty thousand edges in this class. On the other
hand, for Delaunay triangulation and Gabriel graphs, because the branchwidth of kernels increases fast in instance size, the
size of instances that can be solved in a practical time andmemory space is limited to about one thousand edges (thememory
space required in Step III is a bottleneck for solving instance of large branchwidth). For triangulation graphs, intersection
graphs, and graphs from PIGALE library, the branchwidth of kernels increases slowly or does not grow in instance size. Large
instances of size about thirty thousand edges in these classes can be solved in a practical time and memory space. These
results coincide with the theoretical analysis of FT Algorithm [23]: it runs and requires memory space exponentially in the
branchwidth of the kernel of size O(k) and k ≥ b(bw(G))2 for some constant b. Because the kernel of G has O(k) vertices,
the analysis suggests that a large branchwidth of the instance implies a large kernel, Step I may not reduce the problem size
much, and the kernel may have a large branchwidth. For a kernel H with large branchwidth, FT Algorithm is not practical
because Step III of the algorithm runs and requires memory space exponentially in the branchwidth of H . Compared with
the previous study of [5], our study is conducted over a much broader range of graphs with much larger sizes. For the same
class of graphs used in both studies, the results suggest that FT Algorithm is more efficient than the algorithm used in [5].
We also report the computational results of using distance product of matrices proposed by Dorn in Step III of FT

Algorithm. When a conventional O(n3) time distance product of matrices is used, Dorn’s algorithm has the same sublinear
exponent in the time complexity as that of FT Algorithm and the practical performances of the two algorithms are very
similar as well. Theoretically, the sublinear exponent of FT Algorithm can be improved when the fast matrix multiplication
is used for realizing the distance product of matrices in Step III. However, for the distance product of matrices in practice,
the fast matrixmultiplicationmethod is slower and requiresmorememory space than the conventionalO(n3) timemethod.
The results of this paper give a concrete example on using branch-decomposition based algorithms for solving important

hard problems in planar graphs and show that the PLANAR DOMINATING SET problem can be solved in practice for some
applications. This work may bring the theory of branch decomposition closer to practice.
The rest of the paper is organized as follows: In the next section, we review FT Algorithm and the approach of applying

the distance product of matrices in the dynamic programming step. We introduce the data reduction rules in Section 3.
Computational results are reported in Section 4. The final section concludes the paper.

2. Fomin and Thilikos algorithm

We first introduce some definitions and terminology. Readers may refer to a textbook on graph theory (e.g., the one by
West [43]) for basic definitions and terminology on graphs. In this paper, graphs are undirected unless otherwise stated. Let
G be a graph with vertex set V (G) and edge set E(G). A branch decomposition of G is a tree TB such that the set of leaves of TB
is E(G) and each internal node of TB has node degree three. For each link e of TB, removing e separates TB into two subtrees.
Let E ′ and E ′′ be the sets of leaves of the subtrees. Let Se be the set of vertices of G incident to both an edge of E ′ and an
edge of E ′′. The width of e is |Se| and the width of TB is the maximum width of all links of TB. The branchwidth bw(G) of G
is the minimum width of all branch-decompositions. We call a link e = {x, y} a leaf link if one of x and y is a leaf node of
TB, otherwise an internal link. Notice that Se is a set which separates G into two subgraphs induced by edges of E ′ and E ′′,
respectively.
We say a vertex u is dominated by a vertex v if u and v are adjacent. A vertex set U is dominated by a vertex set V if for

every vertex u ∈ U there is a vertex v ∈ V such that u and v are adjacent or u ∈ V . Given two graphs G and H , we say

5458 M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466

size(H) ≤ size(G) if |V (H)| ≤ |V (G)| and |E(H)| ≤ |E(G)|. In the rest of the paper, the PLANAR DOMINATING SET problem
is used for the optimization version of the problem unless otherwise stated.
Now we briefly review FT Algorithm. Readers may refer to [23] for more details. FT Algorithm solves the PLANAR

DOMINATING SET problem of G in three steps. Step I computes a kernel H of G by the data reduction process such that
size(H) ≤ size(G), γ (H) ≤ γ (G), and a minimum dominating set D of G can be computed from a minimum dominating set
D′ of H in linear time. Step II finds an optimal branch decomposition TB of H . Step III computes a minimum dominating set
D′ of H using the dynamic programming method based on TB and constructs a minimum dominating set D of G from D′.
In Step I, the data reduction rules introduced in [8] are used to decide if some vertices of G can be included into D or

excluded for computing D. If a vertex v has been decided to be included in D, v is colored black. If v has been decided to be
excluded for computing D in the future, v is removed from G. Every other vertex is colored grey. After the reduction process,
we get a kernel H(B ∪ C, E), where B and C are the sets of black and grey vertices, respectively. The specific reduction rules
will be introduced in the next section.
To compute an optimal branch decomposition TB of H , either the edge-contraction algorithms [26,41] or the divide-and-

conquer algorithms [10] can be used. The divide-and-conquer algorithms are faster for large graphs in practice.
In Step III, given a kernel H = (B ∪ C, E), we find a minimum D′ ⊆ (B ∪ C) such that D′ ⊇ B and D′ dominates all

vertices of C . As shown later, a minimum dominating set D of G can be constructed from D′ in linear time. To compute D′,
first the branch decomposition TB of H is converted into a rooted binary tree by replacing a link {x, y} of TB by three links
{x, z}, {z, y}, and {z, r}, where z and r are new nodes to TB, r is the root, and {z, r} is an internal link. For every internal link
e of TB, e has two children links incident to e. For every link e of TB, let Te be the subtree of TB consisting of all descendant
links of e. Let He be the subgraph of H induced by the edges at leave nodes of Te. To compute a minimum dominating set
D′ of H , we find all dominating sets (solutions) of He from which D′ may be constructed for every link e of TB by a dynamic
programming method: the solutions of He for each leaf link e is computed by enumeration and the solutions for an internal
link e is computed by merging the solutions for the children links of e. To find a solution of He, each vertex of Se is colored
by one of the following colors.

Black denoted by 1, meaning that the vertex is included in the dominating set.
White denoted by 0,meaning that the vertex is dominated at the current step of the algorithmand is not in the dominating

set.
Grey denoted by 0̂, meaning that we have not decided to color the vertex into black or white yet at the current step.

A solution of He subject to a coloring λ ∈ {0, 0̂, 1}|Se| is a minimum set De(λ) satisfying

• for u ∈ B ∩ Se, λ(u) is black;
• every vertex of V (He) \ Se is dominated by a vertex of De(λ); and
• for every vertex u ∈ Se if λ(u) is black then u ∈ De(λ), if λ(u) is white then u 6∈ De(λ) and u is dominated by a vertex of
De(λ).

Intuitively, De(λ) is a minimum set to dominate the vertices of He with grey vertices removed, subject to the condition that
the vertices of Se are colored by λ. For every coloring λ ∈ {0, 0̂, 1}|Se|, ae(λ) is defined as |De(λ)| if there is a solution of He
subject to λ, otherwise as+∞.
For a leaf link e, colorings λ and sets De(λ) are computed by enumeration. Assume that an internal link e has children

links e1 and e2 in TB. The colorings λ of Se and sets De(λ) are computed from the colorings λ1 of Se1 , sets De1(λ1), colorings
λ2 of Se2 , and sets De2(λ2). Let X1 = Se \ Se2 , X2 = Se \ Se1 , X3 = Se ∩ Se1 ∩ Se3 , and X4 = (Se1 ∪ Se2) \ Se. A coloring λ of Se is
formed from λ1 and λ2 if:
(1) For u ∈ X1, λ(u) = λ1(u).
(2) For u ∈ X2, λ(u) = λ2(u).
(3) For u ∈ X3, if λ1(u) = λ2(u) = 1 then λ(u) = 1; if λ1(u) = λ2(u) = 0̂ then λ(u) = 0̂; and if λ1(u) = 0 and λ2(u) = 0̂,
or λ1(u) = 0̂ and λ2(u) = 0 then λ(u) = 0.

(4) For u ∈ X4, λ1(u) = λ2(u) = 1, or λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and λ2(u) = 0.

For a coloring λ of Se formed from λ1 and λ2, the minimum dominating set De(λ) is the minimum set among the sets of
De1(λ1) ∪ De2(λ2). For e = {z, r}, a minimum set De(λ) among all colorings λ of Se is a minimum dominating set of H .
Notice that the original description of FT Algorithm for Step III in [23] does not have the part for handling the vertices

colored black in data reduction process. We have added this part and our description is slightly different from the original
one.
In the implementation of FT Algorithm, we put ae1(λ1) (and a pointer to De1(λ1)) in a table T1. Similarly, we put ae2(λ2)

in a table T2. Table T1 has at most 3|Se1 | = 3|X1|+|X3|+|X4| entries and Table T2 has at most 3|Se2 | = 3|X2|+|X3|+|X4| entries. We
use the following index for the entries of T1 and T2: The entries of T1 are first partitioned into 3|X1| groups by the colors of
the vertices in X1. Similarly the entries of T2 are partitioned into 3|X2| groups. The entries of each table within each group
is further identified by the colors of the vertices in X3 ∪ X4. To find a minimum De(λ) from De1(λ1) and De2(λ2), we first
compute

ae(λ) = min
λ1,λ2formλ

{ae1(λ1)+ ae2(λ2)− #1(X3 ∪ X4, λ1)},

M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466 5459

where #1(X3∪X4, λ1) is the number of vertices in X3∪X4 taking color 1 in λ1. The colors of λ1’s and λ2’s which form λ are the
entries in the group of T1 and the entries in the group of T2 identified by the colors of λ for vertices of X1 and X2, respectively.
Then, a corresponding minimum De(λ) is computed. The results of ae(λ) are kept in a table T of at most 3|Se| = 3|X1|+|X2|+|X3|
entries. The memory space required for computing table T and De(λ) is O((3|Se| + 3|Se1 | + 3|Se2 |)k) = O(3bw(H)k) because
max{|Se|, |Se1 |, |Se2 |} ≤ bw(H) and max{|De(λ)|, |De1(λ1)|, |De2(λ2)|} ≤ |V (H)| = O(k). If we only compute γ (H) then
we only need to compute table T and the required memory space is O(3bw(H)). Since there are O(k) links in the branch
decomposition TB, the total memory space required in Step III is O(3bw(H)k2) for computing a minimum dominating set and
O(3bw(H)k) for computing the dominating number of H . We call the above index method.
Dorn proposes using distance product of matrices to compute the minimum De(λ) for all colorings λ [15]. We also

implemented this approach (distance product method): The entries of Table T1 are arranged into r = 3|X3|matrices A1, . . . , Ar
of 3|X1| rows and 3|X4| columns (|X3| ≤ 2 for a planar graph with a fixed embedding and a branch decomposition found by
the algorithms used in this paper [15]). The entries of Table T2 are arranged into r matrices B1, . . . , Br of 3|X4| rows and 3|X2|
columns. Each row of Al (1 ≤ l ≤ r) is identified by a sequence of |X1| colors and each column of Bl is identified by a sequence
of |X2| colors, with each color from {0, 0̂, 1}. Each column of Al (each row of Bl) is identified by a sequence of |X4| colors. We
arrange the columns of Al in the increasing alphabetic order, defined by 0 < 0̂ < 1, of the color sequences. We arrange the
rows of Bl in the increasing alphabetic order, defined by 0̂ < 0 < 1, of the color sequences.We define a one-to-onemapping
between the colorings of {0, 0̂, 1}|X3| and 1, 2, . . . , r based on the alphabetic order defined by 0 < 0̂ < 1. The value ae1(λ1)
in each element of Al (1 ≤ l ≤ r) is changed to ae1(λ1) − #1(X3 ∪ X4, λ1). For every l with 1 ≤ l ≤ r , the distance product
Cl = Al×Bl is computed,whereCl is amatrix of |X1| rows and |X2| columns, andCl[i, j] = min{Al[i, k]+Bl[k, j], 1 ≤ k ≤ 3|X4|}.
We say a coloring l of {0, 0̂, 1}|X3| is formed by colorings l1 and l2 of {0, 0̂, 1}|X3| if

• For u ∈ X3, if l1(u) = l2(u) = 1 then l(u) = 1; if l1(u) = l2(u) = 0̂ then l(u) = 0̂; and if l1(u) = 0 and l2(u) = 0̂, or
l1(u) = 0̂ and l2(u) = 0 then l(u) = 0.

Every element Cl[i, j] is further updated bymin{Cl1 [i, j], . . . , Clp [i, j]}, where l1, . . . , lp are the colorings of {0, 0̂, 1}
|X3| which

form coloring l.
If a conventional O(n3) time algorithm is used for the distance product of the matrices, Step III takes (2(3 log4 3)bw(H)k) =

O(215.13
√
k′k) time, and requires O(3bw(H)k2) and O(3bw(H)k)memory spaces for computing a minimum dominating set and

γ (H) of H , respectively, the same as those of the index method. If the distance product of matrices is realized by the O(nω)
(ω < 2.376) time fast matrix multiplication method, Step III has time complexity O(211.98

√
k′nO(1)). In practice, the fast

matrix multiplication method is slower due to the big hidden constant behind the Big-Oh than the conventional distance
productmethod. The fastmatrixmultiplicationmethod also requiresmorememory space due to the recursive computation.

3. Data reduction

In this section, we introduce the data reduction rules used in our implementation of FT Algorithm for Step I. All reduction
rules of [3,8] are used. To enhance the data reduction effect, we also propose some new reduction rules. Following the
convention of FT Algorithm, we color each vertex of G by black or grey, and may remove some vertices from G by those
reduction rules. After the data reduction step, we get a kernel H(B ∪ C, E), recall that B and C are the sets of black and grey
vertices, respectively. For a vertex v, letN(v) = {u|{u, v} ∈ E(G)},N[v] = N(v)∪{v}, B(v) = B∩N(v), and C(v) = C∩N(u).
For a setU of vertices, letN(U) = ∪v∈UN(v). For a vertex u, if there is a black vertex v ∈ N[u], wemark u dominated. Initially,
every vertex of G is unmarked. In the data reduction step, some vertices are marked. Let X be the set of marked vertices and
Y be the set of unmarked vertices. For v ∈ V (G), the following is introduced in [8]:

N1(v) = B(v) ∪ {u|u ∈ C(v),N(u) \ N[v] 6= ∅},
N2(v) = {u|u ∈ N(v) \ N1(v),N(u) ∩ N1(v) 6= ∅}, and
N3(v) = N(v) \ (N1(v) ∪ N2(v)).

Rule 1 ([8]). For v ∈ V (G), ifN3(v)∩Y 6= ∅ then removeN2(v) andN3(v) from G, color v black, andmarkN[v] dominated.
For a pair of vertices v,w ∈ V (G), let N(v,w) = N(v)∪ N(w) \ {v,w}, B(v,w) = B∩ N(v,w), C(v,w) = C ∩ N(v,w),

and N[v,w] = N[v] ∪ N[w]. The following is introduced in [8]:

N1(v,w) = B(v,w) ∪ {u|u ∈ C(v,w),N(u) \ N[v,w] 6= ∅},
N2(v,w) = {u|u ∈ N(v,w) \ N1(v,w),N(u) ∩ N1(v,w) 6= ∅},
N3(v,w) = N(v,w) \ (N1(v,w) ∪ N2(v,w)).

Rule 2 ([8]). For v,w ∈ V (G) with both v and w grey, assume that |N3(v,w) ∩ Y | ≥ 2 and N3(v,w) ∩ Y can not be
dominated by a single vertex of N2(v,w) ∪ N3(v,w).

Case 1: N3(v,w) ∩ Y can be dominated by a single vertex of {v,w}.

5460 M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466

• (1.1) If N3(v,w) ∩ Y ⊆ N(v) and N3(v,w) ∩ Y ⊆ N(w) then remove N3(v,w) and N2(v,w) ∩ N(v) ∩ N(w)
from G and add new gadget vertices z and z ′ with edges {v, z}, {w, z}, {v, z ′}, and {w, z ′} to G.

• (1.2) If N3(v,w) ∩ Y ⊆ N(v) but N3(v,w) ∩ Y 6⊆ N(w) then remove N3(v,w) and N2(v,w) ∩ N(v) from G,
color v black, and mark N[v] dominated.

• (1.3) If N3(v,w) ∩ Y ⊆ N(w) but N3(v,w) ∩ Y 6⊆ N(v) then remove N3(v,w) and N2(v,w) ∩ N(w) from G,
colorw black, and mark N[w] dominated.
Case 2: If N3(v,w) ∩ Y can not be dominated by a single vertex of {v,w} then remove N2(v,w) and N3(v,w)

from G, mark v andw black, and mark N[v,w] dominated.

In Rule 1 and Rule 2 (Cases 1.2, 1.3, and 2) of [8], gadget vertices are used to guarantee some vertices to be included in
the solution set. In [3] the rules are implemented in a way that the vertices to be included in the solution set are removed.
Our descriptions are slightly different from the previous ones: we do not use gadget vertices nor remove the vertices to be
included to the solution set but color them black. Our descriptions allow us to have new reduction rules given below that
may further reduce the size of the kernel.

Rule 3.
3.1: For v,w ∈ V (G)with v black andw grey, if (N3(v,w) ∩ Y) \ N(v) 6= ∅ then remove N2(v,w) ∪ N3(v,w),

colorw black, and mark N[w] dominated; otherwise remove (N2(v,w) ∪ N3(v,w)) ∩ N(v).
3.2: For v,w ∈ V (G)with v grey andw black, if (N3(v,w)∩ Y) \ N(w) 6= ∅ then remove N2(v,w)∪ N3(v,w),

color v black, and mark N[w] dominated; otherwise remove (N2(v,w) ∪ N3(v,w)) ∩ N(w).
3.3: For v,w ∈ V (G)with both v andw black, remove N2(v,w) ∪ N3(v,w).

Lemma 3.1. Given a graph G, let G′ be the graph obtained by applying Rule 3 for v,w ∈ V (G). Then size(G′) ≤ size(G),
γ (G′) ≤ γ (G), and a minimum dominating set D′ of G′ that contains all black vertices of G′ is a minimum dominating set of
G that contains all black vertices of G.

Proof. For v,w ∈ V (G)with v black andw grey, assume that (N3(v,w)∩Y)\N(v) 6= ∅. For u ∈ (N3(v,w)∩Y)\N(v) and x
which dominates u, x ∈ {w}∪N2(v,w)∪N3(v,w). SinceN(N2(v,w)∪N3(v,w)) ⊆ N[v]∪N[w], we should includew intoD
to dominate (N3(v,w)∩Y)\N(v). Therefore,we can removeN2(v,w)∪N3(v,w) fromG. Assume that (N3(v,w)∩Y)\N(v) =
∅. For u ∈ (N2(v,w) ∪ N3(v,w)) ∩ N(v), u is dominated by v and N(v) ∪ N(u) ⊆ N(v) ∪ N(w). This implies that we can
at least includew rather than u to get D. At this point, we can not decide if we should includew into D or not because there
might be a vertex x with N(w) ⊆ N(x) that should be included in D. But we can exclude (N2(v,w) ∪ N3(v,w)) ∩ N(v)
from D. Since (N2(v,w) ∪ N3(v,w)) ∩ N(v) is dominated by v, we can remove (N2(v,w) ∪ N3(v,w)) ∩ N(v) from G. This
completes the proof for (3.1).
The proof for (3.2) is a symmetric argument of that for (3.1).
For v,w ∈ V (G) with both v and w black, since N(N2(v,w) ∪ N3(v,w)) ⊆ N[v] ∪ N[w], we can remove N2(v,w) ∪

N3(v,w) from G. �

Rule 4 ([3]).
4.1: Delete edges between vertices of X (vertices marked dominated).
4.2: If u ∈ X has |C(u)| ≤ 1 then remove u.
4.3: For u ∈ X with C(u)∩ Y = {u1, u2}, if u1 and u2 are connected by a path of length at most 2 then remove u.
4.4: For u ∈ X with C(u) ∩ Y = {u1, u2, u3}, if {u1, u2}, {u2, u3} ∈ E(G) then remove u.

To perform the data reduction, we first apply Rule 1 for every vertex of G. Next for every pair of vertices v and w of G,
we apply either Rule 2 or Rule 3 depending on the colors of v andw. Then we apply Rule 4. We repeat the above until Rules
1–4 do not change the graph. From the results of [8,3] on Rules 1, 2, and 4, and Lemma 3.1, we have the following result.

Theorem 3.1. Given a planar graph G, let H(B ∪ C, E) be the kernel obtained by applying the reduction rules described above
and D′ be a minimum vertex set of H(B∪ C, E) such that D′ ⊇ B and D′ dominates C. Then a minimum dominating set D of G can
be constructed from D′ in linear time.

In our implementation of FT Algorithm, D′ = D. Since the vertices of B are included to D′ in Step I, the number of vertices
to be included inD′ in Step III is |D|−|B|. Therefore, the size of the dominating set for the kernel decided in Step III is actually
k′ = γ (G)− |B|. If Step I gives an non-empty set B of black vertices, k′ is smaller than k = γ (G).
Given a planar graph G, let H(B ∪ C, E) be the kernel obtained from Step I, TB be an optimal branch decomposition of H ,

and l(H) = max{|C ∩ Se|, e ∈ E(TB)}. It is shown in [8] that H(B∪ C, E) can be computed in O(n3) time. TB can be computed
by either the edge-contraction algorithm [26] or a divide-and-conquer algorithm [10] in O(|E(H)|3) time. It is shown in [23]
that Step III has time complexityO(2(3 log4 3)l(H)|E(H)|). Therefore, FT Algorithm takesO(2(3 log4 3)l(H)|E(H)|+n3) time to solve
the PLANAR DOMINATING SET problem. Notice that l(H) ≤ bw(H) and in what follows, we use l(H) for the branchwidth of
kernel H .

M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466 5461

4. Computational results

We implemented FT Algorithm and tested our implementations on six classes of planar graphs from some libraries
including LEDA [2,34] and PIGALE [1]. LEDA generates two types of planar graphs. One type of graphs are the random
maximal planar graphs and their subgraphs and the other type of graphs are the planar graphs based on some geometric
properties, including the Delaunay triangulations and triangulations of points, and the intersection graphs of segments,
uniformly distributed in a two-dimensional plane. Instances of Class (1) are the randommaximal graphs and their subgraphs
generated by LEDA. This class of instances have been used by Alber et al. in their studies on the data reduction rules used in
Step I [3,8] and the tree-decomposition based subexponential algorithms for the vertex cover and dominating set problems
[5,6]. Instances of Class (2) are Delaunay triangulations of point sets taken from TSPLIB [35]. Instances of Classes (3) and (4)
are the triangulations and intersection graphs generated by LEDA, respectively. Instances of Class (5) areGabriel graphs of the
points uniformly distributed in a two-dimensional plane. Instances of Classes (2)–(5) are graphs based on some geometric
properties. TheDOMINATING SET problemon those graphs has important applications such as the virtual backbone design of
wireless networks [32]. Instances of Class (6) are randomplanar graphs generated by the PIGALE library [1]. PIGALE provides
a number of planar graph generators. We used a function in the PIGALE library that randomly generates one of all possible
2-connected planar graphs with a given number of edges based on the algorithms of [40].
Step I of FT Algorithm is implemented as described in the previous section. To compute an optimal branch decomposition

TB, we use the divide-and-conquer algorithm [10]. For Step III, both the index and distance product methods are used. To
save memory, we compute the colorings λ and sets De(λ) for each link e of TB in the postorder. Once the colorings λ and sets
De(λ) are computed for a link e, the solutions for the children links of e are discarded. The computer used for testing has an
AMD Athlon(tm) 64 X2 Dual Core Processor 4600+ (2.4 GHz) and 3 Gbytememory. The operating system is SUSE Linux 10.2
and the programming language used is C++.
We report the computational results for finding both γ (G) and a minimum dominating set of G by FT Algorithm with

the index method in Step III in Table 1.1 For Step I, we give the number |B| of vertices of an optimal dominating set
decided in the data reduction and the running time of the step. For Step II, we give the size |E(H)| and branchwidth
l(H) = max{|C ∩ Se|, e ∈ E(TB)} of kernel H , and the running time of the step. For Step III, we give the dominating number
γ (G) obtained by FT Algorithm and the running time of the step. The running time is in seconds, and Steps I, II, and III have
time complexitiesO(|E(G)|3),O(|E(H)|3), andO(2(3 log4 3)l(H)|E(H)|), respectively.We use the number of edges to express the
size of an instance or a kernel. For each instance size, we have tested three graphs of similar size for Classes (1) and (3)–(6),
and Table 1 contains the graph with the worst case running time. Notice that multiple graphs of similar size in Class (2) are
not available. The average performance of FT Algorithm over three graphs for some large instances is given in Table 3. We
also report the running time of FT Algorithm for computing γ (G) only for some large instances in Table 1. For those instances
(marked with an ‘‘*’’) FT Algorithm can not compute a minimum dominating set by the computer used in this study because
it requires more than 3 GByte memory space but can compute the γ (G).
As shown in the Appendix, the instances of Class (1) have branchwidth at most four. These instances have small kernels

and Step I is very effective. For the instances included in the table, |B| is very close to γ (G) (i.e., Step I finds most vertices
in an optimal dominating set) and the kernels are much smaller than the original instances. For some smaller instances not
reported in the table, Step I already finds optimal dominating sets. Because the kernels have small size and branchwidth,
FT Algorithm is efficient for the instances in this class, for example, an optimal dominating set can be computed for large
instances of size up to about 40,000 edges in about 20 min. It is reported in [5] that instances of size about 6000 edges can
be solved in about 30 min by a tree-decomposition based algorithm on a computer with a CPU of 750 MHz and 720 MBytes
memory space. These results suggest that FT Algorithm is more efficient than the algorithm used in [5] for the graphs in this
class.
For Classes (2) and (5), the branchwidth of instances increases fast in instance size (e.g., Class (2) instances rd400 of 1183

edges and u2152 of 6312 edges have branchwidth 17 and 31, respectively, Class (5) instances Gab800 of 1533 edges and
Gab2000 of 3911 edges have branchwidth 16 and 26, respectively). For the instances tested, the kernelH of an instanceG has
the same branchwidth and same size as or only slightly smaller than those ofG. The computation time increases significantly
when the branchwidth of the kernels increases. This coincides with the theoretical time complexity of FT Algorithm which
runs exponentially in l(H).
For Classes (3) and (4), the branchwidth of instances increases slowly in instance size. The data reduction is effective for

instances in these classes. For most instances, the kernel size is at most half of the instance size and the branchwidth of the
kernel is usually smaller than that of the instance as well. Our data show that the minimum dominating set can be found for
instances of size up to about thirty thousand edges in a practical time andmemory space. For large instances, the size |E(H)|
of kernel H is also important to the running time of Step III. For example, FT Algorithm takes more time to solve Instance
rand15000 than that for rand10000. The time difference comes from the differences of both l(H) and |E(H)|. For Class (6),
the branchwidth of instances does not grow in the instance size. FT Algorithm is efficient for the instances in this class.

1 Compared with the data in the preliminary version of this paper [33], the running time of FT Algorithm is improved due to an improvement in the
implementation of Step III.

5462 M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466

Table 1
Computational results (time in seconds) of FT Algorithm with the index method in Step III for instances of Classes (1)–(6). For the instances marked with
‘‘*’’, the time is for computing the dominating number only because the 3 GByte memory is not enough for computing a minimum dominating set.

Class Graph |E(G)| bw(G) Step I Step II Step III Total
G |B| Time |E(H)| l(H) time γ (G) Time Time

(1) max1500 3860 4 228 12 78 3 <1 236 <1 12
max6000 7480 4 2214 55 32 2 <1 2219 <1 55
max8000 13395 4 2186 336 194 3 <1 2211 <1 337
max11000 28537 4 1679 799 208 4 1 1695 <1 800
max13500 38067 4 1758 1203 302 3 1 1779 <1 1204

(2) kroB150 436 10 0 <1 436 10 <1 23 10 10
pr226 586 7 12 1 126 6 <1 21 <1 1
pr299 864 11 1 <1 824 11 1 47 35 37
tsp225 622 12 0 <1 622 12 1 37 109 110
a280 788 13 1 <1 730 13 1 43 336 337

(3) tri2000 5977 8 136 57 3192 7 140 321 1 198
tri4000 11969 9 252 256 6888 7 1641 653 6 1903
tri6000 17979 9 312 566 11691 8 2991 975 19 3576
tri8000 23975 9 497 830 13524 7 6900 1283 20 7750
tri10000 29976 9 605 1434 17298 7 15028 1606 33 16495

(4) rand3000 4928 9 554 21 1918 6 8 823 1 30
rand6000 10293 11 836 95 5598 9 25 1563 30 150
rand10000 17578 13 1192 376 10706 10 381 2535 112 869
rand15000 26717 14 1570 875 17810 12 354 3758 1540 2769
rand16000* 28624 13 1612 826 19700 13 2063 4002* 3028 5917
rand20000* 35975 14 1993 1904 24786 14 3632 4963* 8457 13993

(5) Gab100 182 7 3 <1 162 7 <1 24 1 1
Gab300 552 10 5 <1 516 10 1 70 23 25
Gab500 949 13 4 1 919 12 56 115 181 238
Gab600* 1174 14 11 2 1097 14 5 135* 3067 3074
Gab700* 1302 14 8 1 1255 14 9 162* 5700 5710

(6) p1277 2128 9 116 9 1353 9 13 323 2 24
p2518 4266 9 329 32 1876 5 27 621 1 60
p4206 7124 8 513 92 3543 6 16 1057 2 110
p5995 10082 8 738 188 4920 5 20 1495 1 209
p7595 12788 7 965 336 5908 6 18 1903 <1 354

For instances of large size and small branchwidth, Step III may not dominant the running time. Our results show that the
O(n3) time data reduction and branch decomposition finding take more time than the dynamic programming part for those
instances.
Table 1 only contains the instances well scaled within some size ranges. We have tested FT Algorithm on graphs with

size different from those in Table 1. The results are similar to those in the table, the running time mainly depends on l(H)
and then |E(H)|.
FT Algorithm requires in Step III O(210.1l(H)k2) and O(210.1l(H)k) memory spaces for computing a minimum dominating

set and γ (H) of kernel H , respectively. The memory requirement seems a bottleneck for solving instances with large
branchwidth.We report thememory space (inMBytes) used by FT Algorithm in Table 2 for large instances in Classes (1)–(6).
Our data show that FT Algorithm can compute a minimum dominating set and the dominating number for instances with
the branchwidth of kernels at most 13 (l(H) ≤ 13) and at most 14 (l(H) ≤ 14), respectively, by 3 GBytes memory space.
The average memory space over three graphs used by FT Algorithm for some large instances is given in Table 3.
Our computational results confirm the theoretical analysis of FT Algorithm: It is efficient for graphs with small

branchwidth but time and memory consuming for graphs with large branchwidth. This suggests that the branchwidth of a
planar graph is a key parameter to decide if a problem on the graph can be solved efficiently or not. For example, Class (1)
graphs have branchwidth at most four and thus admit efficient algorithms for many hard problems. On the other hand, the
problems on graphs in Classes (2) and (5) are less tractable because these graphs have large branchwidth.
Both the theoretical analysis and computational study suggest that computing a kernel H with smaller l(H) and |E(H)|

is a most effective way to improve the efficiency of FT Algorithm. For this purpose, we proposed new reduction rules (Rule
3). Recall that H is the kernel obtained by new reduction rules (Rules 1, 2, 3, and 4) and let H ′ be the kernel obtained by
applying only the previous known reduction rules (Rules 1, 2, and 4). Since all nodes colored black (resp. nodes deleted)
by previous rules are also colored (resp. deleted) by new rules, l(H) ≤ l(H ′) and |E(H)| ≤ |E(H ′)|. For Classes (2) and (5),
l(H) = l(H ′) = bw(G) and |E(H)| = |E(H ′)| = |E(G)| for most instances, that is, the effect of data reduction is very limited.
However, for instances in other classes, data reduction is effective and our new rules improve the efficiency of FT Algorithm.
For instances of Classes (1), (3), (4), and (6), Table 4 shows the computational results of FT Algorithm when previous rules
and new rules are used. In the table, told and tnew (resp. |B′| and |B|) are the total running times (resp. the numbers of vertices
in an optimal dominating set decided in Step I) when previous rules and new rules are used, respectively. The data show
that l(H) = l(H ′) and |E(H)| < |E(H ′)| for most instances. The total running time is improved when new rules are used:

M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466 5463

Table 2
Memory space (in MBytes) of FT Algorithmwith the index method in Step
III for instances of Classes (1)–(6). For the instances marked with ‘‘*’’, the
memory space is for computing the dominating number only. X indicates
that the problem can not be solved for the instance because it requires
more than 3 Gbytes memory space.
Class Instance |E(G)| bw(G) l(H) Memory (MBytes)

(1) max11000 28537 4 4 480
max13500 38067 4 3 720

(2) a280 788 13 13 510
rd400* 1183 17 17 X (>3000)

(3) tri8000 23975 9 7 710
tri10000 29976 9 7 1210 (Step III,1030)

(4) rand10000 17578 13 10 470
rand15000 26717 14 12 1800
rand20000* 35975 14 14 2000
rand25000* 45278 15 15 X (>3000)

(5) Gab300 552 10 10 40
Gab500 949 13 12 660
Gab700* 1302 14 14 1200
Gab800* 1533 16 16 X (>3000)

(6) p5995 10082 8 5 150
p7595 12788 7 6 240

Table 3
Average performance of FT Algorithm over three graphs for each instance size. The time is in seconds and memory is
in Mbytes.
Class Graph Average Average Average Average Average Worst Average Worst

|E(G)| bw(G) l(H) γ (G) time time memory memory

(1) max13500 38322 4 3 1763 1011 1204 720 720
(3) tri10000 29973 9 7 1609 13342 16495 1200 1360
(4) rand15000 26706 15 11 3764 2040 2769 1190 1800
(5) Gab500 945 13 12 117 200 238 670 710
(6) p7595 12760 7 6 1894 316 353 240 240

Table 4
The results (time in seconds) of using new data reduction rules and without using the new rules in Step I.

Class Graph |E(G)| bw(G) Results without new rules Results with new rules
G |B′| |E(H ′)| l(H ′) Time |B| |E(H)| l(H) Time

(1) max1500 3860 4 225 118 3 12 228 78 3 12
max6000 7480 4 2212 41 2 58 2214 32 2 55
max8000 13395 4 2183 218 3 353 2186 194 3 337
max11000 28537 4 1671 287 4 892 1679 208 4 800
max13500 38067 4 1752 362 4 1291 1758 302 3 1204

(3) tri2000 5977 8 102 3787 7 353 136 3192 7 198
tri4000 11969 9 214 7541 7 1941 252 6888 7 1903
tri6000 17979 9 277 12370 8 3895 312 11691 8 3576
tri8000 23975 9 421 14953 7 10192 497 13524 7 7750
tri10000 29976 9 551 18273 7 18945 605 17298 7 16495

(4) rand3000 4928 9 545 1987 6 30 554 1918 6 30
rand6000 10293 11 832 5675 9 154 836 5598 9 150
rand10000 17578 13 1176 10861 11 892 1192 10706 10 869
rand13000 22953 13 1454 14856 10 1662 1589 14646 10 1169
rand15000 26717 14 1553 17984 12 2834 1570 17810 12 2769

(6) p1277 2128 9 112 1371 9 41 116 1353 9 24
p2518 4266 9 291 2139 6 69 329 1876 5 60
p4206 7124 8 478 3780 6 116 513 3542 6 110
p5995 10082 8 671 5372 5 224 738 4920 5 209
p7595 12788 7 917 6231 6 363 965 5908 6 354

tnew < told for most instances in the table. The improvement is instance dependent and tnew/told varies from 56% to 100%.
The average of tnew/told over the five instances of Class (1) is about 95%. Similarly, the averages of tnew/told for Classes (3), (4),
and (6) are about 80%, 90%, and 85%, respectively. The improvement of the total running time is obtained mainly from Step
III. The running time of Step I when new rules are used is about the same as that when previous rules are used (instance
dependent) and we omit the details here.

5464 M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466

Table 5
The results (time in seconds) of using distance productmethod and indexmethod
in Step III.
Class Graph |E(G)| Distance product time Index method time

(1) max8000 13395 <1 <1
max11000 28539 2 <1
max13500 38067 <1 <1

(2) pr299 864 25 35
tsp225 622 104 109
a280 778 310 336

(3) tri5000 14969 56 7
tri6000 17974 62 11
tri7000 20980 163 14

(4) rand5000 8451 12 2
rand6000 10293 21 30
rand8000 13816 83 38

(5) Gab100 182 1 1
Gab200 366 1 2
Gab300 552 18 23

(6) p1277 2128 3 2
p5995 10092 46 3
p7595 12691 5 1

Step III of FT Algorithm can also be realized by the distance product method proposed by Dorn [15].When a conventional
O(n3) time method is used to realize the distance product of matrices, the distance product method has the same time
complexity as that of the indexmethod. Theoretically, using the fastmatrixmultiplication for the distance product of integer
matrices [44] can reduce the order of time complexity. In practice, using the fast matrix multiplication (e.g., the Strassen’s
method) for distance product of matrices is slower than the conventional method. We report in Table 5 the running times
of Step III by the index method and the distance product method (with conventional distance product). Our data show that
the running times of the two methods are similar. Both methods require a similar size of memory space as well.

5. Concluding remarks

We tested the practical performances of FT Algorithm on a wide range of planar graphs. The computational results
coincide with the theoretical analysis of the algorithm, it is efficient for graphs with small branchwidth but may not be
practical for graphs with large branchwidth. By a computer with a CPU of about 2.4 GHz and 3 GMBytes memory space, it is
possible to find a minimum dominating set (resp. the dominating number) for graphs with the branchwidth of their kernels
at most 13 (resp. 14) in a few hours. Since FT Algorithm runs and requires memory space exponentially in the branchwidth
l(H) of a kernel H for a given graph, it is worth to develop more powerful data reduction rules to reduce l(H). It is also
worth to develop heuristics to reduce l(H) to compute approximate solutions for the PLANAR DOMINATING SET problem
by branch-decomposition based algorithms. Those heuristics should provide guaranteed solutions very close to the optima
but run faster and use less memory space than FT Algorithm for graphs with large branchwidth. It is interesting to compare
the performance of FT Algorithm with the PTAS for the PLANAR DOMINATING SET problem. Another research problem is to
perform computational studies on the subexponential algorithms for other problems, especially those non-local problems
such as the longest path and connected dominating set problems, in planar graphs.

Acknowledgements

The authors thank anonymous reviewers for constructive comments. The work was partially supported by NSERC
Research Grant of Canada and Research Grant Council of Hong Kong (Project No. CityU 114307).

Appendix

We show that the instances of Class (1) (the random maximal graphs and their subgraphs generated by LEDA) has
branchwidth at most four. We prove this statement by constructing a branch decomposition of width at most four for any
maximal graph in this Class. Let Gn be a maximal graph of n vertices in Class (1). For n = 3, Gn is the graph with three edges
(see Fig. 1). For n ≥ 4, Gn is created by adding a new vertex in a randomly chosen face f of Gn−1 and three edges between
the new vertex and the three vertices incident to f [2,34]. Let E3 = E(G3). For 4 ≤ j ≤ n, let uj and Ej be the new vertex and
the set of edges, respectively, added to create Gj. For each Ei, 3 ≤ i ≤ n, we create a rooted binary tree Ti with root ri and
three leaves (see Fig. 1). We assign the three edges of Ei to the leaves of Ti, one edge per leaf in an arbitrary way. We say Ei
is a parent of Ej if i < j and the end vertices of the three edges of Ej except uj are also end vertices of edges of Ei. If Ei is a

M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466 5465

Megre trees for Eiand its children into one tree

Fig. 1.Merge the rooted binary trees Ti into one binary tree.

parent of Ej, Ej is called a child of Ei. Obviously for j ≥ 4, each Ej has a unique parent and for i ≥ 3, each Ei has at most three
children. We merge the rooted binary trees Ti, 3 ≤ i ≤ n, into a rooted binary tree T by the following recursive procedure.

• Merge_Tree(Ei)
If Ei has any child Ej then call Merge_Tree(Ej) for every child Ej of Ei; otherwise output the rooted binary tree Ti and

RETURN.
Merge the rooted trees obtained from Merge_Tree(Ej) for all Ej by connecting the roots of the binary trees into one

rooted binary tree T ′; merge T ′ and Ti by connecting the roots of them into a rooted binary tree T (see Fig. 1 for themerge
process); output T and RETURN.

Calling Mereg_Tree(E3) merges all rooted binary trees Ti, 3 ≤ i ≤ n, into a rooted binary tree T . For an arbitrary link e of T ,
let Te be the subtree consisting of all descendant links of e in T . For a link e of T such that Te has at most two leaves, |Se| ≤ 4.
For a link e such that Te has at least three leaves, Te has at least one rooted binary tree Tj as a subtree. For such a link e, an Ej is
maximal in Te if Te does not have a subtree Ti for Ei such that Ei is a parent of Ej. If Te has only onemaximal Ej then Se ⊆ V (Ej),
where V (Ej) is the set of end vertices of edges in Ej. Assume that Te has more than one maximal Ej. Let Ei be the parent of
those E ′j s. Then Se ⊆ V (Ei). In either cases, |Se| ≤ 4. Therefore, T is a branch decomposition of Gn (we need to remove the
root of T) with width at most four. This implies that Gn has branchwidth at most four. It is known that the branchwidth of a
subgraph of Gn is at most the branchwidth of Gn. Thus, the instances of Class (1) have branchwidth at most four.

References

[1] Public Implementation of a Graph Algorithm Library and Editor. http://pigale.sourceforge.net/, 2008.
[2] The LEDA User Manual, Algorithmic Solutions, Version 4.2.1. http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html, 2008.
[3] J. Alber, N. Betzler, R. Niedermeier, Experiments on data reduction for optimal domination in networks, in: Proc. of the International Network
Optimization Conference, INOC2003, 2003, pp. 1–6.

[4] J. Alber, H.L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier, Fixed parameter algorithms for dominating set and related problems on planar graphs,
Algorithmca 33 (2002) 461–493.

[5] J. Alber, F. Dorn, R. Niedermeier, Experiments on optimally soving NP-complete problems on planar graphs. Manuscript, http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf.

[6] J. Alber, F. Dorn, R. Niedermeier, Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs, Discrete Applied
Mathematics 145 (2) (2005) 219–231.

[7] J. Alber, H. Fan, M. Fellows, H. Fernau, R. Niedermeier, Refined search tree technique for dominating set on planar graphs, in: Proc. of the 26th
Mathematical Foundations of Computer Science, MFCS2001, in: LNCS, vol. 2136, 2001, pp. 111–122.

[8] J. Alber, M.R. Fellows, R. Niedermeier, Polynomial time data reduction for dominating set, Journal of the ACM 51 (3) (2004) 363–384.
[9] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, Journal of ACM 41 (1994) 153–180.
[10] Z. Bian, Q. Gu, Computing branch decompositions of large planar graphs, in: Proc. of the 7th International Workshop on Experimental Algorithms,

WEA 2008, in: LNCS, vol. 5038, 2008, pp. 87–100.
[11] Z. Bian, Q. Gu, M. Marzban, H. Tamaki, Y. Yoshitake, Empirical study on branchwidth and branch decomposition of planar graphs, in: Proc. of the 9th

SIAMWorkshop on Algorithm Engineering and Experiments, ALENEX’08, 2008, pp. 152–165.
[12] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation 9 (1990) 251–280.
[13] E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos, Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free

graphs, Journal of ACM 52 (6) (2005) 866–893.
[14] E.D. Demaine, M.T. Hajiaghayi, The bidimensionality thoery and its algorithmic applications, Computer Journal 51 (3) (2008) 292–302.
[15] F. Dorn, Dynamic programming and fast matrix multiplication, in: Proc. of the 14th Annual European Symposium on Algorithms, ESA2006, in: LNCS,

vol. 4168, 2006, pp. 280–291.
[16] F. Dorn, How to use planarity efficiently: New tree-decomposition based algorithms, in: Proc. of the 33rd InternationalWorkshop on Graph-Theoretic

Concepts in Computer Science, WG2007, in: LNCS, vol. 4769, 2007, pp. 280–291.
[17] F. Dorn, F.V. Fomin, D.M. Thilikos, Catalan structures and dynamic programming in H-minor-free graphs, in: Proc. of 2008 ACM/SIAM Symposium on

Discrete Algorithms, SODA08, 2008, pp. 631–640.
[18] F. Dorn, F.V. Fomin, D.M. Thilikos, Subexponential parameterized algorithms, Computer Science Review 2 (1) (2008) 29–39.

http://pigale.sourceforge.net/
http://pigale.sourceforge.net/
http://pigale.sourceforge.net/
http://pigale.sourceforge.net/
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4973\&rep=rep1\&type=pdf

5466 M. Marzban et al. / Theoretical Computer Science 410 (2009) 5455–5466

[19] F. Dorn, E. Penninkx, H. Bodlaender, F.V. Fomin, Efficient exact algorithms for planar graphs: Exploiting sphere cut branch decompositions, in: Proc.
of the 13th Annual European Symposium on Algorithms, ESA05, in: LNCS, vol. 3669, 2005, pp. 95–106.

[20] R.G. Downey, M.R. Fellow, Parameterized complexity, in: Monographs in Computer Science, Springer-Verlag, 1999.
[21] R.G. Downey, M.R. Fellows, Fixed parameter tractability and completeness, Congressus Numerantium 87 (1992) 161–187.
[22] U. Fiege, A threshold of ln n for approximating set cover, Journal of ACM 45 (1998) 634–652.
[23] F.V. Fomin, D.M. Thilikos, Dominating sets in planar graphs: Branch-width and exponential speed-up, SIAM Journal on Computing 36 (2) (2006)

281–309.
[24] F.V. Fomin, D.M. Thilikos, New upper bounds on the decomposability of planar graphs, Journal of Graph Theory 51 (1) (2006) 53–81.
[25] M.R. Garey, D.S. Johnson, Computers and Intractability, a Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
[26] Q. Gu, H. Tamaki, Optimal branch-decomposition of planar graphs in O(n3) time, ACM Transactions on Algorithms 4 (3) (2008) 30:1–30:13.
[27] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning, Domination in graphs applied to electronic power networks, SIAM Journal on Discrete

Mathematics 15 (4) (2002) 519–529.
[28] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in graphs, in: Monographs and Textbooks in Pure and Applied Mathematics, vol. 209, Marcel

Dekker, 1998.
[29] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, in: Monographs and Textbooks in Pure and Applied Mathematics,

vol. 208, Marcel Dekker, 1998.
[30] D.S. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences 9 (1974) 256–278.
[31] I.A. Kanj, L. Perkovic, Improved parameterized algorithms for planar dominating set, in: Proc. of the 27thMFCS, in: LNCS, vol. 2420, 2002, pp. 399–410.
[32] Xiang-Yang Li, Algorithmic, geometric and graphs issues in wireless networks, Journal of Wireless Communications and Mobile Computing (WCMC)

6 (2) (2003) 119–140.
[33] M. Marzban, Q. Gu, X. Jia, Computational study on dominating set problem of planar graphs, in: Proc. of the 2nd International Conference on

Combinatorial Optimization and Applications, COCOA 2008, in: LNCS, vol. 5165, 2008, pp. 89–102.
[34] K. Mehlhorn, S. Näher, LEDA: A Platform for Combinatorial and Geometric Computing, Cambridge University Press, New York, 1999.
[35] G. Reinelt, TSPLIB—A traveling salesman library, ORSA Journal on Computing 3 (1991) 376–384.
[36] N. Robertson, P.D. Seymour, Graph minors I. Excluding a forest, Journal of Combinatorial Theory, Series B 35 (1983) 39–61.
[37] N. Robertson, P.D. Seymour, Graph minors II. Algorithmic aspects of tree-width, Journal of Algorithms 7 (1986) 309–322.
[38] N. Robertson, P.D. Seymour, Graph minors X. Obstructions to tree decomposition, Journal of Combinatorial Theory, Series B 52 (1991) 153–190.
[39] L.A. Sanchis, Experimental analysis of heuristic algorithms for the dominating set problem, Algorithmica 33 (2002) 3–18.
[40] G. Schaeffer, Random sampling of large planar maps and convex polyhedra, in: Proc. of the 31st Annual ACM Symposium on the Theory of Computing,

STOC’99, 1999, pp. 760–769.
[41] P.D. Seymour, R. Thomas, Call routing and the ratcatcher, Combinatorica 14 (2) (1994) 217–241.
[42] P.J. Wan, K.M. Alzoubi, O. Frieder, A simple heuristic for minimum connected dominating set in graphs, International Journal of Foundations on

Computer Science 14 (2) (2003) 323–333.
[43] D.B. West, Introduction to Graph Theory, Prentice Hall Inc., Upper Saddle River, NJ, 1996.
[44] U. Zwick, All pairs shortest paths using bridging sets and rectangular matrix multiplication, Journal of ACM 49 (2002) 289–317.

	Computational study on planar dominating set problem
	Introduction
	Fomin and Thilikos algorithm
	Data reduction
	Computational results
	Concluding remarks
	Acknowledgements
	Appendix
	References

