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ABSTRACT 

In this paper we discuss both forward implication and backward implication, and 
the difference between them is defined. We introduce some properties of  fuzzy 
implication operators, and show the expectation, the variance, and the distribution 
o f  each fuzzy implication operator, assuming that the two propositions in a given 
compound proposition are independent of  each other and the truth values of  the 
propositions are uniformly distributed on the interval [0, 11. 
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I N T R O D U C T I O N  

If  fuzzy implication is to be used as the basis of  inference, then the truth value 
o f p  "-* q needs to be defined. In fuzzy expert systems, the problem is, given 
values f o r p  ~ q andp ,  to find a consistent value for q. Bandler and Kohout [1] 
explain some modes for inference in fuzzy expert systems related to fuzzy 
implication operators. In this paper, we show the, distributions of  fuzzy 
implication values using graphical contour lines and find the expectation and 
variance of each implication operator. These are, of  course, different for the 
different fuzzy implication operators, and we emphasize also that we can use 
these results for the interpretation of  the truth degree p --* q or as a measure of  
confidence for the conclusion q in fuzzy expert systems. Bandler and Kohout [2] 
have applied fuzzy implication operators to see nonsymmetrical dependencies 
and implication among the variables in the analysis of  clinical data through the 
theory of fuzzy relational products. When we use operators 5, 5.5, and 6 of  
Definition 2 (see next section) the difference between the forward implication 
and the backward implication ~- is simply the difference between values of  the 
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two propositions in the compound proposition, and this result, with the 
expectation and variance of fuzzy implication operators, can be understood in 
the analysis of the nonsymmetrical relation. In the design of expert systems, 
management of uncertainty is a basic and important issue, and it is related to a 
computation analysis of uncertainty from the premises to the conclusion (see 
Zadeh [3]). Fuzzy logic underlying approximate reasoning is an approach to the 
management of uncertainty and requires the use of fuzzy implication operators. 
In fuzzy expert systems, the combination of distinct incomplete pieces of 
conclusions may be performed with the evidence on each conclusion. Fuzzy 
implication in the inference processes can provide the evidence for belief or 
disbelief in the conclusion. We note that approximate reasoning can be done with 
the Dempster-Shafer theory [4] using fuzzy implication operators. Many authors 
have worked on fuzzy implication operators and their applications; see Baldwin 
[5, 6], Dubois and Prade [7], Weber [8], and Willmott [9]. 

ANALYTICAL VIEW OF FUZZY IMPLICATION OPERATORS 

In classical two-valued logic, one wishes a truth-functional connection, which 
evaluates the logical formulas of two or more propositions (e.g., " p  and q , "  " p  
or q , "  and " i f  p then q") ,  and their truth values are either true or false. 
Multiple-valued logic is required in the theory of fuzzy sets and relations. One 
Wishes to manipulate the degrees of truth that attach to fuzzy statements. The 
following discussion is related to implication and introduces some properties of 
the fuzzy implication operators listed by Bandler and Kohout [10] (see Definition 
2). 

Before we discuss multiple-valued implication, let us look at the standard 
Boolean operators on the set B = {0, 1}. 

DE~NrrIoN 1 Let p and q be propositions, and let v(p) and v(q) be the truth 
values of p and q, respectively. 

1. Conjunction: v(p and q) = min(v(p), v(q)) 
2. Disjunction: v(p and q) = max(v(p), v(q)) 
3. Negation: v(notp) = 1 - v(p) 
4. Implication: v(p --' q), given by 

0 
o(p) 

1 

v(q) 
0 1 

1 1 

0 1 

Since Zadeh introduced fuzzy sets and suggested using min (o(p), o(q)), 
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max(v(p),  v(q)), and 1 - v(p) for conjunction, disjunction, and negation, 
respectively, in the fuzzy situation, many authors have proposed other 
possibilities for these operators [11]. 

Ten fuzzy implication operators are defined in Definition 2. All such 
operators have truth values in the closed real interval [0, 1]. A fuzzy implication 
operator, ~ ,  is a binary operation from [0, 1] • [0, 1] into [0, I], which is a 
generalization of  Boolean implication; that is, the values assigned in the crisp 
"comers , "  where the values v(p) o f p  and v(q) of q are 0 (false) or 1 (true), 
must accord with those of classical Boolean logic. 

DEFINmON 2 Let a = v(p) and b = v(q), where p and q are propositions. 
Let r = v(p --* q). 

I. Standard sharp 

2. Standard strict 

3. Standard star 

4. Gaines 43 

/ ' =  I I i f a < l o r b = l  
0 otherwise 

I 1  if a<_b 
r =  0 otherwise 

I I ifa<_b 
r =  b otherwise 

r=min(b/a, I), where 0 / 0 =  I 

4.5 Modified Gaines 43 

r = m i n  1, , 
a I 

5. Lukasiewicz 

where if b = I then r =  I 

r = m i n ( l - a + b ,  1) 

5.5 Kleene-Dienes-Lukasiewicz 

r= 1 - a + a b  

6. Kleene-Dienes 

7. Early Zadeh 

r =  max(b, l - a )  

r =  max(min(a, b), 1 - a) 
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8. Wil lmott  

r = min(max( l  - a ,  b) ,  max(a ,  1 - b, min(b,  1 - a ) ) )  

The operators are l isted in order o f  increasing fuzziness and fall into three 
groups.  Operators  1 and 2 are  crisp-valued.  Operators 3 through 5, while truly 
fuzzy,  have more than half  o f  their values (for a _< b)  equal to 1. Final ly,  
operators  5.5 through 8 yield values of  I only  for a = 0 or  b = 1. 

Operator  1 is too severe to find much favor.  Operator  4 was introduced by  
Goguen [12], but Gaines [13] noticed that this implication bears a formal 
resemblance to conditional probabi l i ty  since,  using Zadeh ' s  definit ion for o ( p  
and q), v ( p  "--' q) = o (p  and q ) / o (p ) ,  while the conditional probabili ty is 
given by P(q  given p )  = P ( p  and q ) / P ( p ) .  

Sometimes,  we may suspect that two proposit ions p and q are related, but we 
do not know a priori  whether it makes more sense to consider p ---, q o r  q --* p .  
Therefore ,  we compare the truth o f  p --" q to that of  q --' p .  Let  

d =  v(p--+q) - v(q-*p) ,  

so d ~ 0 i f p  "-* q is more  true than q ---* p .  We next present formulas for d for  
each of  the 10 operators in Definit ion 2. In order  to establish these formulas, we 
use the following lemma. 

LEMMA 1 Let x,  y ,  and z be real numbers.  Then the following equalities 
h o l d :  

1. x - m i n ( y ,  z) = max(x  - y ,  x - z )  
2. x - m a x ( y ,  z) = min(x - y ,  x - z)  
3. m i n ( x , y )  - z = min(x  - z, y - z)  
4. m a x ( x , y )  - z = max(x  - z , Y  - z )  

THEORFM 1 Let a = v (p ) ,  b = v(q), and a,  b 6 [0, 1], and l e t p  --* q , p  +- 
q be the fuzzy implication f r o m p  to q and from q t o p ,  respectively.  Let  r l  = 
v ( p  --* q), r2 = v ( p  ,-- q), and d = r l  - r2 .  Then for all three implication 
operators  5, 5.5, and 6 of  Definit ion 2, d = b - a. 

Proof  For  operator  5, 

d = m i n ( 1 ,  1 - a + b ) - m i n ( l ,  1 - b + a )  

= m a x ( r a i n ( l ,  1 - a + b ) -  1, m i n ( l ,  1 - a + b ) - ( 1  - b + a ) )  

= max(min(0,  b -  a ) ,  m in (b  - a ,  2 ( b -  a))  

CASE 1. ( b >  a ) d =  max(0,  b -  a)  = b -  a 
CASE 2. (b <- a)d = max(b  - a ,  2(b - a))  = b -  a 
Therefore ,  d = b - a .  

Fo r  operator  5.5, 

d = ( 1 - a + a b ) - ( 1 - b + a b ) = b - a  
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For  opera tor  6, 

d =  ma x ( l  - a ,  b )  - max( l  - b,  a )  

= m a x ( l - a - m a x ( l - b ,  a) ,  b - m a x ( 1 - b ,  a)) 

= m a x ( m i n ( b - a ,  1 - 2 a ) ,  m i n ( 2 b - I ,  b - a ) )  

CASE 1. ( b - <  1 - a)  = ( b -  a _ <  1 - 2a)  a n d ( b  - a _  2 b -  1) 

d = m a x ( b - a ,  2 b -  1 ) = b - a  

CASE 2. (b > 1 - a)  = ( b -  a > 1 - 2a)  a n d ( b  - a < 2 b -  1) 

d =  ma x ( l  - 2a ,  b - a )  = b -  a 

Therefore,  d = b - a.  �9 

THEOREM 2 Let r l  = v ( p  ~ q )  and r 2  = v ( p  ~ q ) .  Le t  a = v ( p )  and  b 
= v(q ) .  L e t  d = r l  - r2 .  Then ,  for  all fuzzy impl icat ion operators of  
Defini t ion 2, the fol lowing relations hold:  

1. r l  - r 2  < 0 = b -  a <  0 
2. r l  - r 2  > 0 = b - a >  0 
3. b - a >  0 =  r l  - r 2 _  0 
4. b - a < 0 =  r l  - r 2  < 0 

Proof  For  opera tor  1, 

(i) 0 _ <  a <  1 , 0 _ <  b <  l : d =  0 
(ii) a = 1, b < l : d =  - 1  

(iii) a < 1, b = l : d =  1 
(iv) a = 1, b = l : d =  0 

For  opera tor  2, 

(i) a < b : d  = 1 
(ii) a = b : d =  0 

(iii) a > b : d =  - 1  

For  opera tor  3, 

(i) a < b : d =  1 - a > 0  

(ii) a = b : d =  0 
(iii) a >  b : d =  b -  1 < 0 

For  operato r 4,  

(i) a < b: d 
(il) a = b: d 

(iii) a >  b : d  

= 1 - a / b  > 0 

= 0  

= b / a  - 1 < 0 
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F o r  operator  4.5,  

(i) a < b: r l  = 1, r2  = min(a/b, (1 - b)/(1 - a)) < 1 
Therefore,  d = r l  - r2  > 0. 

( i i )  a = b : d  = 0 

0ii)  a > b: r l  = min(b/a, (1 - a ) / (1  - b)) < 1, r2  = 1 
Therefore,  d = r l  - r2  < 0. 

Fo r  operators 5, 
Fo r  operator  7, 

( i )  a < b ,  a 

( i i )  a < b ,  a 

(iii) a = b : d  

(iv) a > b, I 
(v) a > b, b 

5.5, 6, see Theorem 1. 

< 1 / 2 : d =  min(1 - 2a ,  b -  a)  > 0 
>_ 1/2:  d = 0 
= 0  
> b >__ 1 / 2 : d  = 0 
< 1 / 2 : d  = m a x ( 2 b -  1, b -  a)  < 0 

F o r  operator  8, 

(i)  b - <  1 - a , a  < b , b  > 1 / 2 : d  = 2 b -  1 > 0 

( i i )  b - <  1 - a , a  < b , a  < 1 / 2 ,  b -< 1 / 2 : d  = 0 

(iii) b _ <  1 - a , a  = b : d  = 0 

(iv) b _ <  1 - a , a  > b , a _ <  I / 2 ,  b < 1 / 2 : d  = 0 
(v) b _ <  1 - a , a  > b , a >  I / 2 ,  b _ >  1 / 2 : d =  b -  a < 0 

(vi) b___ 1 - a , a  > b , a >  1/2 ,  b < 1 / 2 : d =  1 - 2a  < 0 
(vii) b > 1 - a , a , g  b , a  < I / 2 ,  b _> 1 / 2 : d  = I - 2a  > 0 
'~vili) b > 1 - a , a  < b , a  < 1/2,  b < 1 / 2 : d =  b -  a > 0 
(ix) b > 1 - a , a  < b , a _ >  I / 2 ,  b > 1 / 2 : d  = 0 
(x) b > 1 - a , a  = b : d =  0 

(xi) b > 1 - a , a  > b , a  < I / 2 ,  b < 1 / 2 : d =  b -  a < 0 
(xii) b > 1 - a , a  > b , a  >_ 1/2,  b < 1 / 2 : d =  2 b -  1 < 0 

(xiii) b > 1 - a , a  > b , a  > I / 2 ,  b >_ 1 / 2 : d =  0 

Theorems 1 and 2 can be illustrated by the difference diagrams o f  the fuzzy 
implicat ion operators (see Figure  1). 

Fo r  each operator o f  Figure  1, we show a g~'aph of  o(p  ~ q) for various 
combinations of  o ( p )  and o(q). The abscissa and ordinate are the o(p)  and o(q) 
axes,  respectively,  on the closed interval [0, 1]. Some of  the operators  change 
their  functional form across the lines b = a ,  b = 1 - a, a = 1/2,  and/or  b = 
1/2 .  The difference, d = o(p  ~ q) - u (p  *-" q), compares the two directions 
o f  implication. I f  d > 0, then p ~ q is more  true than q ~ p .  

W e  summarize the observations o f  the behavior  of  the graphs in Figure 1, in 
Table 1. These observations lead to the following conclusion: When  operators 2 
through 6 are used, p ~ q is more true than q ~ p iff q is more  true than p ,  
based on statement 4. 
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operato~ 

! 

2 

] 

4 

4 , 5  

v ( p ~ q )  v ( p - - q l - v  (q - -p )  

b 

! �9 
| 0 *1 

,1o 

, / 1 -  - , A  
/ t  bl / b - , I  

b ' / "  16, b / 6 ' 1  

I 

b 

b 

means the open s e t .  

opera t  

$ 

5 . 5  

Figure 1. 

v ( p ~ q )  v ( p ~ q ) - v ( q ~ p )  

b 

b - o ,  

I -  o, ~ a.l> b - ~  

b 

STATISTICAL VIEW OF FUZZY I M P L I C A T I O N  OPERATORS 

In this section, we consider the expected value of  a fuzzy implication, its 
variance, and the distribution of the implication values, assuming that the 
propositions p and q are independent of each other and the truth values v(p)  and 
o(q) are uniformly distributed across the interval [0, 1]. Let a = o(p)  and b = 

Table 1. 

Statement 
Applicability 
to Operators 

1. d =  0 i f a  = b. All 

2. d = 0 i f f a  = b. 2 -6  

3.1. d >  0 i f a  < b. All 

3.2. d <  0 i f a  > b. All 

4.1. d >  0 i f f a  < b. 2 -6  

4.2. d < 0 i f f a  > b. 2 -6  

5. v09 "* q)  and d are discontinuous approaching the line a = b. 2, 3 

6. 007 "-* q)  and d are discontinuous at one or  more comer  points. I -4 .5  

7. d =  b - a .  5 , 5 . 5 , 6  

8. v~p ~ q and d are everyv.here continuous and obey statements 1--4. 5, 5.5,  6 
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o(q). Then the value of the implication I = o(p ---, q) is some function a and b, 
that is, I = l(a, b). 

Because a and b are assumed to be uniformly and independently distributed 
across [0, I], the expected value of the implication is 

E ( I ) =  I I  I(a, b) da db 
R 

and its variance is 

Var(I)=E[-((I-E(I))2]-- I I (I(a, b ) - E ( I ) )  2 da db 
R 

= E [ I  2 ] - E [ I ]  2 

whereR = {(x, y): 0 -< x -< 1 ,0  < y _ <  1} 
Table 2 lists E (I)  and Var(I) under these assumptions for the 10 operators in 

Definition 2. This table provides a benchmark for what to expect for an 
implication value and the typical spread in values, assuming that the two 
propositions are completely unrelated. 

For illustration, we show the computation process for operators 7 and 8. For 
operator 7, I = max(min(x, y) ,  1 - x) ,  let 

R 1 = {(x, y):  x<_y, x< 1/2} 

R2 = {(x, y):  x<y,  x'>-. 1/2} 

R 3 = { ( x ,  y):  x>y ,  x + y >  1} 

R 4 =  {(x, y):  x>y,  x + y <  1} 

Table 2. 

Expectation 
Operator E (I) 

Variance 
Var(l) 

I I 0 

2 I/2 = 0.5 I/4 = 0.25 

3 2/3 = 0.667 5/36 = 0.1389 

4 3/4 = 0.75 5148 = 0.1042 

4.5 In 2 = 0.693 2 - 21n 2 - (In 2) ~ = 0.1333 

5 5/6 = 0.833 1/18 = 0.0556 

5.5 3/4 = 0.75 7/144 = 0.0486 

6 2/3 = 0,667 1/18 = 0.0556 

7 5/8 = 0.625 3/64 = 0.0469 

8 7/12 = 0.583 5/144 = 0.0347 
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Then 

and 

E ( I ) =  I I  Idxdy  
R 

R1 R2 

R3 R4 

=7/24+  [ /12+ 1/8+ 1/8 =5/8  

Var(I)= S S I2 dx dy-E(1) 2 
R 

RI R2 

R3 R4 

-- 15/64 + I I / 192 + 7/96 + 7/96- 25/64 = 3/64 

For operator 8, I = min(max(l - x, y), max(x, I - y, min(y, I - x))). Let 

Rl={(x,y): O<x<1-y, I/2<y_< I} 

R2 = {(x, y): 0_<x_< I/2, x_<y< I/2} 

R3 = {(x, Y): y<x< I -y, O<y<_ I/2} 

Rg= {(x, y): I/2<<_x<_ I, I -x<y<x} 

R5 = {(x, y): I/2<x<_ I, x<_y<_ I} 

R6-- {(x, y): 0_<x< I/2, I -x<.y< I} 

Then 

E(,,=IS 
R 

II (i y),.,, 
RI R2 

R3 R4 

R5 R6 

= 1/ I2+ 1/12+ 1/8+ 1/8+ 1/12+ 1 /12=7/ I2  
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and 

Var ( I )=  SI I 2 d x d y - E 2 ( I )  
R 

R I  R2  

R3  R 4  

+ I I x 2 d x d y + S I ( 1 - x ) Z d x d y - E ( I )  2 
R5  R 6  

= 11/192 + 11/192 + 7/96 + 7/96 + 11 /192-  49/144 = 5/144 

Let c be a fuzzy implication value, and let F(c) denote the cumulative 
distribution function: 

F(c) = Prob{ I_< c} 

Figure 2 is derived from Figure 1 and is a contour plot of the same implication 
values. We find the cumulative distribution function through the area on the ab 
plane with the implication values less than or equal to c, and the areas are 
computed with Figure 2. Figure 3 describes the distribution of c. 

�9 We can also consider the probability density function of each fuzzy 
implication operator by finding the derivative of the distribution function F(c), 
that is 

dF(c) 
F'(c) = ~  

dc 

For example, in the cases of operators 4.5 and 7, we find F'(c). 

For operator 4.5, 

For operator 7, 

( I / ( c +  1) 2. if c <  1 
F'(c) 

I /2  if c-- 1 

I 2 c  
F ' ( c )  = - 2 c + 3  

if c <  1/2 
if c_> 1/2 

CONCLUSIONS 

In this paper we have investigated some properties of fuzzy implication 
operators. The difference between the forward implication ~ and the backward 
implication ~ ,  using operators 5, 5.5, and 6, is simply the difference between 
values of the two propositions in the compound proposition. 



Properties of Fuzzy Implication Operators 283 

operator 1 

I 

operator 2 

" a~ O 

operator 

%, 

operator 4.~ ~ 

operator 5 

c•ab I 
operator5.5 

operator 6 

Ca•t 
0 

operator 

clb 

0 

operator 

F i g u r e  2 .  

�9 e ,~ ,p  ~ 

�9 ~.'v " l~  +1 

O~ "lk 

o r /  

o &  
- :p 

�9 ,*- o.& 
r b ~  

*$ 
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operator cumulative distribution function 

(c) 

'ol, I c 

E'(c) = 1 I f  c = I 

r (c) 

't o i c 

r 
Fr :IXl2 t c c : o  

tl if c = i 

r (c) 

* ! 

2 
c + c If c < 1 

i f  r = i 

F (e) 
i f  c < 1 
I f  C = 1 

4 . 5  

F (e) 
E ( c )  = ~ c / l ( c  + I )  i f  c < 1 

if c = 1 

F (c) 2 
Lx/2c  l ~ c < l  

i f  C = 1 

E (=) 
s.s , [ ~ ,  ~' (c)  = 

r 
o I 

c + (1 - c )  I n  (1 - c)  

~ ,  2 
6 I E ( c )  = c 

c 
o '~ 

F (c) 
7 , [ . . . . . / . ~ ,  ~ ( e ) =  

~I~. , C 

2 
I c I f  c < 1 /2  

2 
- ( c  - 3 / 2 )  + 5 / 4  i f  e >_ X / 2  

(e) 

,;4.---S 
o ,/~. ; 

2 

r (e) 2 
3 (c - I )  + i i f '  > I / 2  

Figure 3. 

The expectation and variance of I is different for the different fuzzy 
implication operators. If o(p) and o(q) are uniformly distributed and indepen- 
dent of each other, then I is not uniformly distributed for any of the 10 kinds of 
fuzzy implication operators. 
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