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I. INTRODUCTION 

An undirected graph G is represented by an ordered pair (r, X) consisting 
of a finite set X and an adjacency relation r on X with the property that y E I’x 
implies that x E ry for all x E X [l, 2l.l The elements of X are called the 
vertices of G and are represented by points in a plane. If for some pair of 
vertices x and y E X, y E rx, then vertices x and y are called adjacent and 
their adjacency is represented by a line segment connecting the corresponding 
points in the plane. Such a line segment is denoted by an unordered pair 
(x, y) and is called an arc or a branch of G. If B is a subset of a set A, denoted 
byBCA,then,byB=B-JandIAl , we mean the set of all elements of 
B which are not in A and the number of elements in A, respectively. Let 
S C X and define 

rs = {X EX 1 x fry forsomey ES}. 

A set S C X is called an internally stable (IS) set of G if no two vertices in S 
are adjacent, i.e., 1 rS n S / = 0. An IS set S of G is a maximum internally 
stable (MIS) set, if there exists no IS set S, of G such that 1 S, 1 > 1 S 1 . 

It is easy to find an IS set of a graph G = (r, X). However, the problem 
finding a MIS set of a graph remains substantially unsolved. To find an MIS 
set, one could consider all possible subsets of vertices of the graph. Naturally, 
such a procedure is highly impractical for a large graph. Maghout [3] proposed 
an algorithm, based on Boolean functions, to generate all possible internally 
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stable sets. The main difficulty with this algorithm is that is it extremely 
inefficient and computations become time consuming for even relatively 
small graphs. A more promising approach could be based on linear integer 
programming [4] or nonlinear programming. Again, the computational 
requirements for such a procedure rapidly become impractical. Furthermore, 
since both of the above methods are analytical in nature, they yield no direct 
relationships between topological structure and the maximum internally 
stable sets. 

Berge [l] has shown that in some cases finding an MIS set of a graph is 
equivalent to finding a maximum matching of the graph. However, in most 
cases, there is no clear procedure to obtain an MIS set from a maximum 
matching. Other partial results have been obtained by Matthys [5, 61. Also, 
interesting results on discrete optimization theory have been developed by 
Reiter and Sherman [7], and may be applied to obtain a heuristic procedure 
for finding an MIS set. 

In this paper, we give a graph theoretic characterization of the MIS sets 
of a graph. This characterization is similar to one given by Edmonds [8] 
but leads to a sharper picture of the conditions under which an IS Set is 
maximum. Although this result does not immediately result in a satisfactory 
algorithm for finding an MIS set of an arbitrary graph, it does lead to a 
satisfactory algorithm for finding an MIS set of a bipartite [2] or simple [I] 
graph. The major portion of the paper is aimed at developing this algorithm 
and proving that at its termination an MIS set has been found. 

A bipartite graph G is represented by an ordered triplet (r, X, Y) con- 
sisting of two finite sets X and Y and adjacency relation r mapping X onto Y 
and I’ onto X with the property that x E X implies x $ TX and y E Y implies 
y 6 ry. It should be noted that a bipartite graph is a graph whose vertices can 
be divided into two disjoint subsets X and Y such that a vertex s E X can 
can only be adjacent to vertices y E I’ and vice versa. 

II. DEFINITIONS AND THE STATEMENT OF THE MAIN THEOREM 

Let G = (r, X) be a graph. A s&graph ofg C G is an ordered pair (r, , X1) 
with X1 C X and r,x C EC n X, for all x E X, . If r,x = rx n X1 for all 
x E Xi we adopt the notation (r, X,) for the subgraphg. Ifg, = (r, , X1) and 
g, = (r, , X,) are two subgraphs of G = (r, X) then the subgraph repre- 
sented by g, u g, is subgraph (I’, , X3) where X3 = X1 w X, and 
r,x = I’,.z u I’ax for all x E X3 . In the above definition, if g, consists of a 
single arc, say, (x1 , x2), then we assume X, = x1 u x2 and r,x, = x2 (and 
rzx, = xlj. rf (xr , x2) is an arc in the subgraph g, = (r, , X,), then by 
El - (x1 3 x2) we mean a subgraph g, = (r, , X,) where Fax = Fix for all 
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x E x; except x = xi and x : xs , and r,.r, = r,s, - sp and 
r,.v, = r,.v, - x1 . By a chain of length n in G = (r, X), we mean a sequence 
of distinct vertices x,,xlxe *.* x, such that .vj E rxj-r fori = 1, 2 ,..., n. Vertices 
x0 and s, in this chain are called the initial and final vertices of the chain. A 
graph (r, X) is connected if for any two distinct vertices N and 3’ E X, there 
exists a chain whose initial and final vertices are x and y. A circuit is a chain 
where all vertices except the initial and final vertices are distinct (and x0 = 9,). 
A subtree” of a graph G = (r, S) is a subgraph t = (r, , Xi) such that t 
contains no circuits and / r,x i > 0 for all .T E ‘Xi . An IS set S of a graph 
G = (r, X) is a complete IS set if there esists no vertex x E Xn s such that 
1 r.v ( n S = 0. If an IS set S is not complete, then there exists a vertex 
x0 E X n S such that S u x0 is an IS set. Thus, one can continue enlarging 
the resulting IS set until it is complete. If g = (r, , Xi) is a subgraph of G, 
then a pendant vertex of g is a vertex si E Xi such that / r,x, / = 1. In the 
sequel, we may call the vertices in a given IS set dark vertices and the remain- 
ing vertices light vertices. We are now ready to define an alternating tree. 

DEFINITION 1. Let S be an IS set of a graph G = (r, X). A subgraph 
g = (r, , X1) is called an alternating tree of G with respect to S ifg is a subtree 
of G which satisfies the following conditions: 

(1) There exists no pair of distinct vertices x and y E X1 n s such that 
y E rx. (No pair of light vertices in X, are adjacent in G.) 

(2) The set of all pendant vertices of g, defined by 

P={~Ex~~~~~~I =I; 
is a subset of 1s. (All pendant vertices of g are light.) 

(3) / rx n (S n x1} 1 = 0 for all x E X1 n S. (No light vertex in X, 
is adjacent to a dark vertex in X1 .) 

LEMMA 1. Ijg = (r, , X,) . IS an alternating tree of G = (r, X) with respect 
to an IS set of G, then j X, n S 1 > 1 Xl n S j . 

The proof is elementary and can be carried out by induction of 1 XI 1 
and the use of the fact that all pendant vertices of g are light. The following 
theorem gives a graph theoretic characterization of MIS sets. 

THEOREM 1. A complete IS set S,, of a graph G = (r, X) is an MIS set 
of G if and only if there exists no alternating tree in G with respect to SO . 

REMARKS. This theorem resembles the results of Berge [l] and Norman 
and Rabin [ 1,9] in connection with “maximum matchings” and “generalized 

o A subtree need not be connected. 
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matchings” of a graph. Their results were based on the existence of an alter- 
nating chain between pairs of “exposed” vertices [lo-121. The concept of an 
alternating tree is a necessary extension of the notion of the alternating 
chain, and was first defined by Edmonds [8] in a slightly different manner. 
The definition given below eliminates some of the difficulties generated by 
Edmond’s definition while at the same time yields an analogous characteriza- 
tion of the MIS sets. 

PROOF. To prove the necessity, we assume there exists an alternating 
tree g = (r, , X1) of G with respect to S,, . Consider the set of vertices 
S = {S,, - S, n X1} u {S,, n X1>. Then, S = {S, n X1} u {S,, n X,} which 
is an IS set of G due to conditions (I) and (3) of Definition 1. From Lemma 1, 
1 S 1 > 1 S, 1 , hence S, is not an MIS set of G. The proof of sufficiency 
requires an additional result to be developed in the next section. We state 
this result here as Theorem 2 and then, based on the validity of this theorem, 
we prove the sufficiency of the condition. 

THEOREM 2. A bipartite graph G = (r, X, Y) with 1 I’z 1 > 1 for all 
z E X u Y contains an alternating tree with respect to Y if and only if there 
exist subsets X, C X and Yl C Y such that rX, = Yl and 1 Xl / > [ Yl 1 . 

PROOF OF SUFFICIENCY OF THEOREM 1. Let S,, be a complete IS set and 
let S* be an MIS set of G = (r, X). We assume 1 S* / > / S,, I and we need 
to show the existence of an alternating tree with respect to S,, in G. Consider 
the following disjoint subsets of X: 

x-, = s* - so ) x0 = so - s*, X, = So n S*. 

From the hypothesis, we know that 1 Xa / > I X, 1 and since S, is a complete 
IS set I X, 1 f 0. The following properties of the above subsets of X 
are significant: 

(1) Since X, and X0 are both IS sets, no pair of vertices in X, or in X, are 
adjacent. 

(2) Similarly, since X, u X:, and X, u X, are IS sets, no vertex in X, 
or in X, is adjacent to a vertex in X, . 

(3) Since S* and S, are both complete IS sets, each vertex in X0 (or X,) 
is adjacent to a vertex in Xa (or Xs), respectively. 

Let us now consider the bipartite subgraph G1 = (r, , X, , X,) of G 
wherer,x=rxnX,forallxEX,.SinceIX,I >lX,l,and Ir,zI >l 
for all z E X, U X,, from Theorem 2, there exists an alternating tree 
t, = (rrt, Xat, Xst) of Gr with respect to X, . We claim that tl is also an 
alternating tree of G with respect to S, . This follows directly from the 
definition of the alternating tree and statement (l), (2), and (3) of this proof, 
which completes the proof of the theorem. 
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III. BIPARTITE GRAPHS AND ALTERNATING TREES 

Let G = (r, X, I’) be a bipartite graph and assume / l?. 1 c‘, 0 for all 
z E X u I-. Then, it is easy to see that I’ (or X) is a complete IS set of G. 
In this section, we present an algorithm to find an alternating tree (if there 
exists any) of G with respect to Y. It should be noted that since G is bipartite 
all we must do is to construct a tree t = (r, , ‘yl , I;) such that all pendant 
vertices of t are in X1 and TX, C E; and, by Lemma 1, ; lyl i > ~ 1; ; . The 
algorithm will be a bit stronger that it is necessary to prove Theorem 2. 
However, this will be needed to establish the results of the next section. The 
algorithm is designed to construct an alternating tree t with the most arcs. 
To do this, we construct each component3 (connected part) tj oft separately. 
Each component tj of t is constructed by a number of chains each of which 
has exactly one vertex in common with one of the previous chains and each 
chain has its initial and final vertices in X. Let Gji = (rji, Xji, Isi) and 
ti = (r,ij , Xij , Yt) be the graph and the tree obtained after i “cycles” 
of the algorithm in the construction of jth component, tj of t. Assume 
G,O = G and tjo to be an empty subgraph of Gjo, (an empty subgraph is a 
subgraph without vertices and as a result without arcs). We assume we have 
constructed components t, , t, ,..., tj-l of the desired tree t and we have also 
completed i “cycles” of the algorithm in the construction of tj . After com- 
pletion of each cycle the indices (i.e., superscript ;) are advanced by one 
(replaced by i + 1). The algorithm consists of five steps of which the third 
step is the main part of the algorithm. Consider the graph Gjo. Before the 
construction of tj has begun, the vertices of GjO are called unlabeled vertices 
and are not assigned symbolic representations. In the process of construction 
of tj each vertex that has been encountered in a chain is called a labeled vertex, 
and is assigned the appropriate symbol xk . By deleting a subset A C X of 
vertices of a graph G = (F, X), we mean constructing a graph G, = (r, X,) 
such that X, = X - A. The five steps of the algorithm are as follows: 

1. Each vertex of Xii adjacent to a pendant vertex of Gii is deleted along 
with the pendant vertex. This step is repeated as long as there are such 
vertices in Xji. If pendant vertices are created in Yj” as a result of these 
deletions, these vertices as well as their adjacent vertices in Xii are deleted. 
If i = 0, go to step 2(a). Otherwise, to to step 2(b). 

2. (a) Let x1 be any vertex in Xii adjacent to an unlabeled vertex in 
Yji. If Xii is empty go to step 4. Otherwise go to step 2(c). 

(b) Let x1 be any vertex in Xfj adjacent to an unlabeled vertex in Yji. If 
no such vertex exists go to step 4. Otherwise go to step 2(c). 

3 Subgraph g = (r, X,) of G = (r, X), X, C X, is a component of G ifg is connected 
and / TX, n T(X - X,) 1 = 0. 
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(c) Form a chain ,~~y~~sya *** continuing as long as unlabeled vertices in 
G,i are encountered. If the chain terminates in a vertex it’s E Xji, set 
t:tl=tjiU(~~,Y1)U(Xz,Yz)U **. u (ykml , xk) and return to step 2(b). 
If the chain terminates in yk E Yi, let the last vertex in the chain in Xii be 
xk and go to step 3(a). 

3. (a) From step (l), ys is not a pendant vertex. Therefore there exists 
a labeled vertex 9 f sk in Xii adjacent to yk . The subgraph 

Tji = (rkj ) xi, , I’&), 
defined by 

Tji = tji u (x1 , yl) u (yl , x2) u --- u (xk , yk) u (yk , x’“), 

contains a circuit. Let this circuit be a,b,a,b, **a b,,al with a, E Xii and b, E Yji I 
for s = 1, 2 ,..., ri . 

Define 

and 
A = {b, , b, ,..., hi;, 

011 = (a, , a2 ,..., u7J. 

Let C = 1 and go to step 3(b). 

(b) If 1 0~~ ( = 0 go to step 3(c). If 1 CY~ 1 f 0 and cu, contains no unlabeled 
vertices go to step 3(d). Otherwise go to step (3e). 

(c) Set tj equal to the empty set and construct q+, from Gji by deleting 
the vertices in {Utr a,} from Gji; return to step 1 and start the first cycle in 
the construction of tj+l . 

(d) Let e = 6’ + 1 and redefine t5$ and 0~~ by 

Pt= 1 

d-1 

y E Yij - u &I y is in a circuit in 
p=1 

Tji u (a, 9) for some i E I’ty and f E &, 
I 

and 

ac = r,‘&-r U {X E X& 1 x is in a circuit in Tt u (a, j) 

d-l 
for some 2 E Fly and j E fit-i} - u (Ye . 

p=l 

Go to step 3(b). 
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(e) (Y[ contains at least one unlabeled vertex; let one such vertex be labeled 
x~+~ . Let the (or a) vertex in /3-r which is adjacent to xK+r be bi-, . We now 
define a set of vertices {aa, 6; / p = 0, I,..., P - 2). In this set 
ui E (I’$;) n 0~~ and bi E &, and bi-, is any vertex such that bi-, is in the 
circuit in Tji u (bi-, , &+i) for Y = 2, 3 ,..., t - 1. Let a6 be an element 
of all such that the arc (bk , u;) E Tji forp = 1,2, 3,..., f - 1. Then construct 
I!+’ from tj’ as follows and return to step 2(b), setting Gj+l = Gji. I 

t:+’ = Tji u (x,,, , b;-,) U (b;-, , a;-,) U ... U (bk, u;) U (b; , a;) 

- (bi-, , &l) u (bi-2 , a;-p) u ... u (b; , a’;) u (b; 1 ai). 

4. Construct q+, from Gji be deleting all vertices in Yfj from G,’ and 
return to step 2(a) if Yj” is not empty; if 1 Y,i - Yt j = 0, go to step 5. 

5. Let t’ = (Ji=r t, = (r; , Xi , Y;). Construct the final tree t from t’ 
by adding any arc (x, y) of G = (r, X, Y) for each vertex x E X such that 
Ex C Yi withy E TX, and no circuit is formed. This represents the final step 
of the algorithm. 

Our immediate goal is to show that the algorithm generates an alternating 
tree, and eventually to show that it indeed produces an alternating tree with 
the most arcs. To reach this goal we need the following results. 

LEMMA 2. In the algorithm, for each j, if tj” = (rij , Xii , Yij) is not 
empty, then (a) subgraph tj is a connected tree, (b) 1 rijy 1 = 2 for ally E Yij , 
und(c))X~jI==/Yfjl+l. 

PROOF. We prove the lemma by induction on i. Thus, we assume the 
lemma is correct for tt and we prove it is also correct for tj+l. If tj+l is obtained 
from tji by step 2 of the algorithm, then clearly statements (a), (b), and (c) 
are correct. Suppose tf+l is obtained from tj’ by step 3(c) of the algorithm. 
From the algorithm it easily follows that T,i = (rb , Xkj , Ykj) is connected 
and 1 rijy I = 2 for all y E Y& and 1 Xkj / = / Ycj 1 . We now prove that 
tj+l obtained from Tji satisfies statements (a), (b), and (c) of the lemma by 
induction on P. We note that if / = 2, then tf+l = Tji U (b; , ui) - (b; , a;), 
where ui = xK+r. Since the arc (b; , u;) is an arc in the circuit in Tji, its 
deletion keeps the resulting graph connected and circuitless. To prove 
statements (b) and (c), we note that ] ri:ry 1 = 1 rtjy j for ally E YiT1 = YX 
and finally that Xi;’ = X: u xk+i , where xlc+r E Xii - X$ . Thus the 
lemma is correct for 8 = 2. Suppose it is also true for 4 = r, we will prove it 
for G = r + 1. In this case, let Tii = T,’ U (6; , 4) - (b; , a;), where 
& E 0~2 is now a labeled vertex. It can be seen that Tj’i satisfies the same con- 
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ditions that were satisfied by Tl. The process of obtaining tffl from Tjli is 
identical with the process outlined in step 3(e) of the algorithm but in this 
case L = r. This completes the induction, hence the lemma. 

LEMMA 3. In the algorithm, for each i and j if (Ye does not contain any 
unlabeled verticesforp = 1, 2,..., Y, then (a) / (J:=r & 1 = 1 &i (Y~ 1 and(b) ;f, 
in addition I OL~+~ I = 0, then 

PROOF. (a) Consider the graph Tji and construct from it a graph T,“, 
by deleting the vertices in (Jizl 8, from Tji and replacing the vertices in 
(J’,=i (Ye by a single vertex, say x, . It can be easily shown that 

is a connected tree and 1 riSy 1 = 2 for all y E YiS . Thus, from Lemma 2, 
Ix~sl=ly~,l+~, and we already know 1 X& / = 1 Y& I . However, 

I Xij I = I JGs I + j i, %I - 1 
p=1 

and 

The above three equalities imply that 1 &I /3, I = / U&i (Y?, ( , and hence 
part (a) of the lemma. 

(b) If I ar+l I = 0, then from step 3(c) of the algorithm, r#r C & 0~) . 
However, in any case, we have Fji{Ui:: /I,} C &I 0~~ from which part (b) of 
lemma is directly deduced. We now restate and prove Theorem 2 which was 
quoted in the previous section4. 

THEOREM 2. A bipartite graph G = (r, X, Y) with 1 l3 1 > 1 for all 
z E X u Y contains an alternating tree with respect to Y if and only if there 
exist subsets Xl C X and Yl C Y such that TX, = Yl and I Xl 1 > 1 Y, I . 

PROOF. If G = (r, X, Y) has an alternating tree t = (r*, X*, Y*) with 
respect to Y, then from Definition 1, TX* C Y*; and by Lemma 1, 
1 X* 1 > I Y* I . This proves the necessity. To prove the converse, we assume 

4 J. E. Desler of Northwestern University has privately communicated to the 
authors a direct proof of Theorem 2, which is independent of the algorithm. However, 
discussion of Desler’s method of proof would be a diversion from our main goal 
which is to eventually prove that the algorithm finds an MIS set of G. 
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there exist subsets X1 C X and Y1 C Y such that I’Xi = E; and j X1 j > 1 E; 1 
and construct the graph G, = (r, , Xi , 1;) where rFr = IIv for all x E X1 
and TX, = Yr . Now, it suffices to show that there exists an alternating tree 
in G, with respect to Yi . If 1 Y1 1 = 1, then the theorem is trivially true. 
Suppose it is true for / Yi 1 = k, we prove it for j Yi 1 = K + 1. Consider 
graph Gi = (r, , Xi , I;;). FVe follow the algorithm. In step (l), if there exists 
a vertex s E X1 adjacent to a pendant vertex we delete 3~. Then, in the resulting 
graph, G; = (r, , X1 - s, I’;), / 17i / < k and 1 Xi - s 1 > 1 Yi j; hence, 
by the induction hypothesis, the lemma is correct. Let us assume there are 
no such vertices, then we go to step 2 of the algorithm. Either a desired tree is 
formed in step 2 or we are referred to step 3 where again either a desired tree 
is formed or we must delete a set of vertices X* C X1 (in the algorithm 
X* = (J’,=i a,) from G, . Let the resulting graph (if it is not empty) be 
G; = (r, , x1 - x*, I';,, where as a consequence of Lemma 3, 
1 Yi 1 < I 1-i 1 - 1 S* / . Now, in G; , [ r,s j > 1 for all .t’ E X1 - X* and 
/ X1 - X* 1 = / S, 1 - 1 X* I > I I; 1 - I S* / > I Y; 1 . Thus, by the 
induction hypothesis there exists an alternating tree in G; with respect to 1’; 
which in turn proves the existence of the tree in G1 and therefore in G. 
We must show that Gi is not empty. To do this, one only needs to show that 
1 X, - X* 1 > 0. Let us return to step 3(c) of the algorithm. We decided to 
remove a set of vertices X* C X1 from Gi because there existed a set I’* C 1-i , 
(in the algorithm Y* = (Ji=i pa), such that r,Y* C X*, and due to Lemma 3, 
I Y* I = / X* I . But 1 I’* 1 < / E’i / < 1 Xi I , from which one concludes 
that I Xi I - 1 Y* / > 0 which implies that j Xi 1 - / X* I > 0. This is 
the desired result since I X, / - 1 X* / = j Xi - X* / . 

IV. MAXIMUM INTERNALLY STABLE SETS OF A BIPARTITE GRAPH 

In this section, we show that the algorithm, as stated in Section III, when 
it is allowed to run to its completion, provides an efficient computational 
method for finding an MIS set of a bipartite graph. To the authors’ knowledge, 
no “acceptable” computational procedure for this problem is available, as 
yet. We state the required result in the form of the following theorem. 

THEOREM 3. Let G = (r, X, Y) be a bipartite graph and assume, without 
the loss of generality, that j rz I > 0 f or all z E X v Y. (Then, Y is a complete 
IS set of G.) Let t = (r, , X, , Yt) be an alternating tree of G with respect to Y 
found by completing the algorithm, (t may be empty). Then S = (Y U X,) - Y, 
is an MIS set of G. 

To prove Theorem 3, we need some additional results which will be devel- 
oped in this section. 
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LEMMA 4. Let G = (I', X, Y) b e a connected bipartite graph with 

IXl<lYl.IfG contains a connected subgraph GI = (I’, , X, Y) such that 
1 rd 1 = 2 for ally E Y, then G contains no alternating tree with respect to Y; 
OY equivalently, there exists no subsets XI C X and YI C Y such that I’X, C YI 
and I XI I > I YI 1 . 

PROOF. Let us assume otherwise. Thus, there exist subsets X, C X and 
Yr C Y such that TX, C Yi and / Xi 1 > 1 Yi / . Since r,X, C TX,, then 
r,X, C Y1 . This implies (from Theorem 2) there exists an alternating tree 
4 = (r,, , xl,, I;,,) in G, with respect to Y where Xi, C X, and Yrt C Y1 . 
From the definition of an alternating tree, I X,, / > 1 17tt 1 and / rDty / 3 2 
for ally E 17tt and r,X,, C Ylt. SinceIrD,yI < IrDyj =2forallyEY1t, 
then rflfy = r,y for ally E Ylt . This implies that r,Yr, = rDtYrt = X1,. 
We also have r,Xr, C E;, , and the last two relations imply that there exists 
no chain beginning with an vertex in X,, v Yrt and ending at a 
vertex in (X, u II,) - (Xi, u YIJ in G, = (r,, Xi, El). Thus, if 
(X, U E;) - (X1, u Yr,) is not empty, Gi is not connected, which is a 
contradiction to the hypothesis. However, if Xr w Yr - X1, u Y,, is empty, 
then Xi = Xr, and Y1 = Yrt which implies that 1 Xrt I < I Ylt I . This is 
again a contradiction, since we have I X,, I > 1 Yrt j ; hence the lemma. 

THEOREM 4. Let G = (r, X, Y) be a bipartite graph with I Ez 1 > 0 
f0Y all z E X u Y. If t = (r, , A', , Y,) is an alternating tree of G with respect 
to Y found by the completion of the algorithm, (if t is empty, assume 
I Y, I = 1 X, 1 = 0), then there exists no alternating tree t, = (rtI , X,, , X,,) 
of G with respect to Y such that I Y,, - I’, 1 > 0. 

PROOF. We prove the theorem by induction on I Y I . If j Y I = 1, then 
the theorem can be easily shown to be correct. Assume the theorem is correct 
forIYI~k.SupposeIYI=k+l.IfjY,I=IYI,thenagainthetheo- 
rem is correct. Let us assume for the remainder of this proof that 
I Y, I < / Y I . If there exists a pendant vertex y E Y of G = (r, X, Y), 
then both trees t and tl will be alternating trees of Gr = (r, X - x, Y’) 
where x is adjacent toy and r{X - ,v} = Y’. But I Y’ 1 < k, and by induction 
hypothesis such a pair of alternating trees cannot exist. Now, let us assume 
there exist no pendant vertices in Y. Since 1 Y, / < I Y 1 , a set of vertices 
X* were deleted by the algorithm in step 3(c) on the construction of 
alternating tree t. This implies that there exist nonempty sets of vertices 
X* C X and Y* C Y such that rY* C X* and / Y* I > I X* I . (In the 
algorithm step 3(c) X* = ui=r ap and Y* = rX* 3 uL, &.) Consider the 
bipartite graph (a subgraph of G) G* = (r, X*, Y*). From the algorithm, 
it can be seen that this graph contains a connected subgraph (r, , X*, Y*) 
such that / r,y / = 2 for all y E Y*. Thus, from Lemma 4, G* does not 
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contain an alternating tree with respect to I ‘*. Since vertices X* are deleted 
from the graph by the algorithm, alternating tree t is also an alternating tree 
of G1 = (r, X - X*, Y - Y*). If t, is also an alternating tree of G1 , 
then since j Y - Y* 1 < K, this is a contradiction to the induction hypothesis. 
If t, is not an alternating tree of Gr , then a vertex in I’* must be in the 
alternating tree tr . This implies that there exists an alternating tree in 
G* = (I’, X*, Y*) with respect to Y which violates Lemma 4. Hence the 
Theorem. 

COROLLARY. Let G = (r, X, Y) be a bipartite graph with 1 l% 1 > 0 for 
all z E XV Y. Let t = (r, , X, , Y,). Then there exists no alternating tree of 
G with more arcs than t. 

PROOF. From Theorem 4, if t, = (r, , X,, , Y,,) is any alternating tree 
of G, then Y,, C Y, . Thus, any arc that can be included in tl is (or can be) 
also included in t, (see step 5 of the algorithm). This completes the proof. 

LEMMA 5. Let G = (r, X, Y) be a bipartite graph with an alternating 
free t = (rt,X, Y) with respect to Y such that / r,.z 1 > 0 for all z E X v Y. 
Then, there exists no alternating tree of G &th respect to X. 

PROOF. We prove this lemma also be induction on 1 Y 1 . If / Y 1 = 1, 
then the lemma is true. Assume that if 1 Y 1 < K, the lemma is correct. Now 
let G = (r, X, Y) b e a graph, with / Yl=k+l, and t=(rt,X,Y) 
and an alternating tree of G with respect to Y. Let tl = (rtl , X1 , Yr) be an 
alternating tree of G with respect to X. We first claim that Y1 f Y, because 
if Yr = Y, then rY, = X and from the definition of an alternating tree 
rY, = X1; thus X = X1 . The fact that alternating trees t and tl exist with 
respect to Y and X, imply that I X 1 > 1 Y 1 and ) Yr / > 1 X1 1 which 
implies 1 Y1 I > / Y I; this is a contradiction, hence Y1 C Y. Let y E Y - Yr 
and consider the graph G* = (r, x’, I’ - y) where x’ = r{Y - y>. Then 
t* = (r, , x’, Y - y) is also an alternating tree of G* with respect to Y - y 
and also tl = (rtl , X1 , Y,) is an alternating tree of G* with respect to X’. 
Since I Y - y I = k, the existence of these two alternating trees in G* 
violates the induction hypothesis. Hence the lemma. 

PROOF OF THEOREM 3. Clearly (Y v X,) - Yt = S = (Y - YJ v X, 
is an IS set; the question is, is it also an MIS set of G I If t is empty, then by 
Theorem 4, there exists no alternating tree of G with respect to Y; hence by 
Theorem 1, S is a MIS set of G and the Theorem is correct. Suppose t is not 
empty; then, we know that 1 S 1 > 1 Y I . It can be shown that S is a com- 
plete IS set (see step 5 of the algorithm). Let X1 = X, , Yr = Y, , 
X2 = X - X, , and Y2 = Y - Y, , then S = X1 v Y2. If S is not an 
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MIS set of G then there exists, from Theorem 1, an alternating tree of G with 
respect to S. Since such an alternating tree, if it exists, cannot contain any 
arc (x, y) with either x E Xi and y E Ya or x E X, and y E Yi , existence of 
the alternating tree with respect to S implies one of the following possi- 
bilities: 

(1) There exists an alternating tree with respect to I’2. in 
G, = (r, X, , I;,). This however contradicts Theorem 4. 

(2) There exists an alternating tree with respect to Xi in 
G, = (F, Xi , Yi). But the original alternating tree t = (P, , X1 , k;) is a 
tree with respect to Yi; thus Gr , by Lemma 5, contains no alternating trees 
with respect to Xi . This ends the proof of the theorem. 

V. CONCLUSIONS 

The problem of finding a maximum internally stable (MIS) set of an 
arbitrary graph is reduced to that of finding an alternating tree with respect 
to a complete internally stable set. This is conceptually similar to Norman 
Rabin [9] and Berge [l] theory which reduced the problem of finding a 
“maximum matching” or, in general, finding “maximum degree constrained 
subgraphs” of a given graph to that of finding an alternating chain between 
“exposed” vertices [lo, 11, 121. Our theory does not solve the problem of 
finding an MIS set of a graph and, in a similar manner, Norman, Rabin, and 
Berge theory didn’t solve the problem of finding a maximum matching. 
However Edmonds [lo] proposed an algorithm for finding alternating chains 
between exposed vertices of a graph resulting in a practical computational 
method for finding a maximum matching of a graph. Similarly, an algorithm 
for finding an alternating tree of a graph, if it is found, will solve the problem 
of finding an MIS set of a graph. In the meantime, our algorithm is certainly 
an acceptable method for finding the maximum internally stable set of a 
bipartite graph. 
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