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a b s t r a c t

The annual percent change (APC) has been adopted as a useful measure for analyzing
the changing trends of cancer mortality and incidence rates by the NCI SEER program.
Difficulties, however, arise when comparing the sample APCs between two overlapping
regions because of induced dependence (e.g., comparing the cancer mortality change rate
of California with that of the national level). This paper deals with a new perspective
for understanding the sample distribution of the test-statistics for comparing the APCs
between overlapping regions. Our proposal allows for computational readiness and easy
interpretability. We further propose a more general family of estimators, namely, the
so-called minimum power divergence estimators, including the maximum likelihood
estimators as a special case. Our simulation experiments support the superiority of the
proposed estimator to the conventional maximum likelihood estimator. The proposed
method is illustrated by the analysis of the SEER cancermortality rates observed from 1991
to 2006.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

According to theWorldHealth Statistics 2009, published by theWorldHealthOrganization, in 2004, the age-standardized
mortality rate in high-income countries attributable to cancer deaths was 164 per 100,000. Cancer constituted the second
highest cause of death after cardiovascular disease (its age-standardized mortality rate was equal to 408 per 100,000).
For cancer prevention and control programs, such as the Surveillance, Epidemiology and End Results (SEER) in the United
States (US), it is very important to rely on statistical tools to capture downward or upward trends of rates associated with
each type of cancer and to measure their intensity accurately. These trends in cancer rates are defined within a specific
spatial–temporal framework, that is, different geographic regions and time periods are considered.

Let rki be the expected value of the cancer rate associated with region k and the ith time point in a sequence of ordered
Ik time points {tki}

Ik
i=1. We shall assume that Region 1 starts with the earliest time. Each point represents an equally spaced

period of time, for instance a year, and thus without any loss of generality, t1i = i, i = 1, . . . , I1 (any change in origin or
scale with respect to time should not affect a measure of trend). The cancer rates are useful for evaluating either the risk of
developing cancer (cancer incidence rates) or dying from cancer (cancer mortality rates) at a specific moment. Statistically,
the trend in cancer rates is an average rate of change per year in a given relatively short period of time framework when
constant change along time has been assumed. The annual percent change (APC) is a suitable measure for comparing recent
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Fig. 1. Two overlapping regions not sharing the same period of time.

trends associated with age-adjusted expected cancer rates:

rki =

J−
j=1

ωjrkji, (1)

where J is the number of age groups, {ωj}
J
j=1 is the age distribution of the Standard Population (

∑J
j=1 ωj = 1, ωj > 0,

j = 1, . . . , J) and {rkji}
J
j=1 is the set of expected rates associated with the kth region (k = 1, 2) at the time point tki (i =

1, . . . , Ik), or the ith year, in each of the age groups (j = 1, . . . , J). For example, the SEER Program applies as standard the
US population of year 2000 with J = 19 age groups [0, 1), [1, 5), [5, 10), [10, 15), . . . , [80, 85), [85, ∗). More technical
details can be found in [4] and [14]. The APC removes differences in scale by considering the proportion (rk,i+1 − rk,i)/rk,i =

rk,i+1/rk,i − 1 under constant change assumption of the expected rates. Proportionality constant θk = rk2/rk1 = · · · =

rkIk/rk,Ik−1 constitutes the basis for defining APCk = 100(θk − 1) as a percentage associated with the expected rates {rkji}
J
j=1

of the kth region. Since themodels that deal with the APCs consider the logarithm of age-adjusted cancer rates, the previous
formula is usually replaced by

APCk = 100 (exp(β1k)− 1) , (2)

and we would like to make statistical inferences on parameter β1k (see [3] and [15] for more details about the APC).
The data that are collected for modeling the APC associated with region k, are:

• dkji, the number of deaths (or incidences) in the kth region, jth age group, at the time point tki;
• nkji the population at risk in the kth region, jth age group, at the time point tki;

so that the r.v.s that generate dkji, Dkji, are considered to be mutually independent. In a sampling framework we can define
the empirical age-adjusted cancer rates as Rki =

∑J
j=1 ωjRkji =

∑J
j=1 ωj

Dkji
nkji

, whose expected value is (1). Even though
the assumption of ‘‘independence’’ associated with Dkji simplify the process of making statistical inference, it is in practice
common to find situations in which the two APCs to be compared, APC1 and APC2, share some data because there is an
overlap between the two regions. For example, in [13] county-level data on 22 selected cancer sites during 1996–2005 are
analyzed, so that the APC of each county is comparedwith the APC of Oregon state. It is not possible to assume independence
between the data of counties (local level) and their state (global level). Moreover, the APC comparison between overlapping
regions is more complicated when the APCs are not for the same period of time. For instance in the aforementioned study
that appeared in [13], while Oregon APC was obtained for a period of time ending in 2005, the US APC was calculated for a
period of time ending in 2004 because the US data of year 2005 were not available. Fig. 1 represents the most complicated
overlapping case for two regions, where {1, 6} × {5, 8} is the set of points of the first region, {5, 9} × {2, 6} is the set the
points of the second region, {5, 6} × {5, 6} is the set of points of the overlapping region (boxed points). Each of the two
regions have a portion of space and period of time not contained in the other one (circular points for region 1 and diamond
points for region 2).

This paper is structured as follows. In Section 2 different models that establish the relationship between rki and β1k are
reviewed and the two basic tools for making statistical inferences are presented, the estimators and test-statistics for equal
APCs. Specifically, the Age-stratified Poisson Regression model, introduced for the first time in [7], is highlighted as the
model that arises as an alternative to improve the previous ones. Based on Power divergence measures, in Section 3 a
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family of estimators that generalize themaximum likelihood estimators (MLEs) are considered for the Age-stratified Poisson
Regression model. In addition, a new point of view for computing the covariance between the MLEs of β1k is introduced
inside the framework of this family of estimators and this is the key for substantially improving the Z-test statistic for testing
the equality of APCs for the Age-stratified Poisson Regression model. In addition, such a methodology provides explicit and
interpretable expressions of the covariance between the estimators ofβ1k.We evaluate the performance of thenewproposed
methodology in Section 4 through a simulation study and we also consider an application example to Breast and Thyroid
cancer data from California (CA) and the US population, extracted from the SEER*STAT software of the SEER Program.
Finally in Section 5 some concluding remarks are given.

2. Models associated with the annual percent change (APC)

When non-overlapping regions are taken into account, there are basically two models which allow us to estimate the
APC starting from slightly different assumptions, the Age-adjusted Cancer Rate Regressionmodel and Age-stratified Poisson
Regressionmodel. Themain difference between them is based on the probability distribution ofDkji, number of deaths in the
kth region, jth age group, at the time point tki: while the Age-adjusted Cancer Rate Regression model assumes normality for
log Rki with Dkji having the samemean and variance, the Age-stratified Poisson Regressionmodel assumes directly a Poisson
random variable (r.v.) for Dkji. The Age-adjusted Cancer Rate Regressionmodel establishes log Rki = β0k +β1ktki +ϵki, where

ϵki
ind
∼ N (0, σ 2

ki)with σ 2
ki =

∑J
j=1 ω

2
j rkji/nkji =

∑J
j=1 ω

2
j mkji/n2

kji under

E[Dkji] = Var[Dkji] = nkjirkji ≡ mkji, (3)

i.e. log Rki
ind
∼ N (log rki, σ 2

ki)with

rki = exp(β0k) exp(β1ktki). (4)

According to the Age-stratified Poisson Regression model [7], Dkji
ind
∼ P (nkjirkji) and for rkji it holds

log rkji = β0kj + β1ktki or log
mkji

nkji
= β0kj + β1ktki. (5)

Observe that the parametrization of both models is essentially the same because the expected age-adjusted rate rki in terms
of (5) is equal to (4), where

exp(β0k) =

J−
j=1

ωj exp(β0kj), (6)

and thus for both models it holds that

θk =


rkIk
rk1

 1
tkIk−tk1

= exp(β1k). (7)

The original estimators associated with the Age-adjusted Cancer Rate Regression model and Age-stratified Poisson
Regressionmodel are theWeighted Least Square estimators (WLSE) andMaximumLikelihood estimators (MLE) respectively.

The hypothesis testing for comparing the equality of trends of two regions, H0 : APC1 = APC2, is according to (2),
equivalent to H0 : β11 − β12 = 0. Hence, the Z-test statistic for both models can be defined as

Z =

β11 −β12Var(β11 −β12)

, (8)

whereβ1k, k = 1, 2 are the estimators of β1k associated with each region, Var(β11 −β12) is the estimator of the variance ofβ11 −β12, Var(β11 −β12). The expression of the variance is Var(β11 −β12) = σ 2
11 + σ 2

12, with σ 2
1k ≡ Var(β1k), k = 1, 2, for

non-overlapping regions.When overlapping regions are taken into account, themethodology for obtaining the estimators as
well as Z-test statistic (8) remain valid, but the given expression for Var(β11 −β12) is no longer valid. When the overlapping
regions do not share the same period of time (t11 ≠ t21 or I1 ≠ I2), we must consider a new reference point for index
i, denoted by Ī , such that t1Ī represents the time point within {t1i}

I1
i=1 where the time series associated with the second

region is about to start, i.e. we have {t2i}
I2
i=1 such that t21 = t1Ī + 1. In particular, if t1i = i, i = 1, . . . , I1, then t2i = Ī + i,

i = 1, . . . , I2. Observe that {t1i}
I1
i=Ī+1

, or equivalently {t2i}
I1−Ī
i=1 , is the time series associated with the overlapping region

(t1i = t2,i−Ī , i = Ī+1, . . . , I1). In Fig. 1 I1 = 6, I2 = 5, Ī = 4 and thus we can distinguish three subregions {5, 6}×{1, . . . , 4},
{5, 6}×{5, 6} and {5, 6}×{7, . . . , 9}. Without any loss of generality each random variable Dkji can be decomposed into two
summands

Dkji = D(1)kji + D(2)kji (9)
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where D(1)kji , i ∈ {1, . . . , Ik}, is the number of deaths (or incidences) in the kth region, jth age group, at the time point tki for
the subregion where there is no overlap in space; D(2)kji , i ∈ {1, . . . , Ik}, is the number of deaths (or incidences) in the kth
region, jth age group, at the time point tki for the subregion where there is overlap in space. Similarly, nkji = n(1)kji + n(2)kji and
mkji(βk) = m(1)

kji (βk) + m(2)
kji (βk). Observe that when i ∈ {Ī + 1, . . . , I1}, r.v.s D

(2)
1ji and D(2)

2j,i−Ī
are associated with the same

overlapping subregion. Revisiting the example illustrated in Fig. 1, it should be remarked that in the y-axis (space) there are
more points than those that represent one realization of all r.v.s D(b)kji in each time point, but grouping the points belonging
to the same vertical line inside the portion marked in dash we are referring to one realization of them (for instance, for
t11 = 1 we have two groups of points associated with D(1)1j1, D

(2)
1j1 respectively, while for t1j5 = t2j1 = 5 we have three groups

of points associated with D(1)1j5, D
(2)
1j5 or D

(2)
2j1, D

(1)
2j1). Grouping points symbolize different extension in regions. In Fig. 1 there are

20 realizations of all r.v.s D(b)kji in total, 12 for region 1, 10 for region 2 and 2 r.v.s are shared for both regions.

It is important to understand r.v.s D(b)kji , b ∈ {1, 2} as ‘‘homogeneous contributors’’ with respect to Dkji, i.e. D
(b)
kji ∼ P (m(b)

kji )

such that (10) holds, and hence {m(2)
1ji (β1)}

I1
i=Ī+1

and {m(2)
2ji (β2)}

I1−Ī
i=1 are only equal when β11 = β12 (or equivalently,

when β1 = β2). Now we can say thoroughly that under β11 = β12, the reason why Cov(β11,β12) = 0 is not true
inside Var(β11 − β12) = Var(β11) + Var(β12) − 2Cov(β11,β12) for overlapping regions is that {D1ji}i=1,...,I1;j=1,...,J and
{D2ji}i=1,...,I2;j=1,...,J are not independent, because both regions share the same the set of r.v.s {D(2)1ji }i=Ī+1,...,I1;j=1,...,J with
D(2)1ji = D(2)

2j,i−Ī
.

Assumption 1. D(b)kji
ind
∼ P (m(b)

kji ), b ∈ {1, 2}, where for n(b)kji > 0 the following holds

m(b)
kji =

n(b)kji

nkji
mkji, b ∈ {1, 2}. (10)

We accept the case where n(b)kji = 0, for some b ∈ {1, 2}, so that D(b)kji = 0 a.s. (degenerate r.v.) becausem(b)
kji = 0.

Regarding the basic models considered in the papers dealing with overlapping regions, the Age-stratified Poisson
regression model can be considered as the most realistic one, actually they have been constructed by successive
improvements on the previous models so that initially normality assumptions were taken as approximations of underlying
Poisson r.v.s. In the first paper concerned about trend comparisons across overlapping regions [7], it is remarked that ‘‘. . . the
derivation of Cov(β11,β12), . . . , is nontrivial as it requires a careful consideration of the overlapping of two regions’’. The
assumption considered by them (which is based on Pickle and White [11]) for the overlapping subregion is similar to the
assumption considered herein in the sense that the overlapping subregion follows the same distribution considered for the
whole region. A similar criterion was followed in [8,7].

3. Minimum power divergence estimators for an age-stratified Poisson regression model with overlapping

Letms be the expected value of the r.v. of deaths (or incidences)Ds associatedwith the sth cell of a contingency table with
Mk ≡ JIk cells (s = 1, . . . ,Mk). In this section, we consider model (5) in matrix notation so that the triple indices are unified
in a single one by following a lexicographic order. Hence, the vector of cell means mk(βk) = (m1(βk), . . . ,mMk(βk))

T
=

(mk11(βk), . . . ,mkJIk(βk))
T of the multidimensional r.v. of deaths (or incidences) Dk = (D1, . . . ,DMk)

T
= (Dk11, . . . ,DkJIk)

T ,
is related to the vector of parameters βk = (β0k1, . . . , β0kJ , β1k)

T
∈ Θk = RJ+1 according to

log

Diag−1(nk)mk(βk)


= Xkβk or mk(βk) = Diag(nk) exp(Xkβk), (11)

where Diag(nk) is a diagonal matrix of individuals at risk nk = (n1, . . . , nMk)
T

= (nk11, . . . , nkJIk)
T (ns > 0, s = 1, . . . ,Mk)

and

Xk =

1Ik tk
. . .

...
1Ik tk


JIk×(J+1)

= (IJ ⊗ 1Ik , 1J ⊗ tk),

with tk ≡ (tk1, . . . , tkIk)
T , a full rankMk × (J + 1) design matrix. Based on the likelihood function of a Poisson sample Dk the

kernel of the log-likelihood function is given by

ℓβk(Dk) =

Mk−
s=1

Ds logms(βk)−

Mk−
s=1

ms(βk),
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and thus the MLE of βk isβk = arg max
βk∈Θk

ℓβk (Dk) .

It is well known that there is a very close relationship between the likelihood theory and the Kullback–Leibler divergence
measure [6]. Focused on a multinomial contingency table it is intuitively understandable that a good estimator of the
probabilities of the cells should be such that the discrepancy with respect to the empirical distribution or relative
frequencies is small enough. The oldest discrepancy or distance measure we know is the Kullback divergence measure,
actually the estimator which is built from the Kullback divergence measure is the MLE. By considering the unknown
parameters of a Poisson contingency table, the expected values, rather than probabilities and the observed frequencies
rather than relative frequencies, we are going to show how is it possible to carry out statistical inference for Poisson models
through power divergence measures. According to the Kullback divergence measure, the discrepancy or distance between
the Poisson sample Dk and its vector of meansmk(βk) is given by

dKull(Dk,mk(βk)) =

Mk−
s=1


Ds log

Ds

ms(βk)
− Ds + ms(βk)


. (12)

Observe that dKull(Dk,mk(βk)) = −ℓβk (Dk)+ Ck, where Ck does not depend on parameter βk. Such a relationship allows us
to define the MLE of βk as minimum Kullback divergence estimatorβk = arg min

βk∈Θk
dKull(Dk,mk(βk)),

and the MLE of mk(βk) functionally as mk(βk) due to the invariance property of the MLEs. The power divergence measures
are a family of measures defined as

dλ(Dk,mk(βk)) =
1

λ(1 + λ)

Mk−
s=1


Dλ+1
s

mλ
s (βk)

− Ds(1 + λ)+ λms(βk)


, λ ∉ {0,−1} (13)

such that from each possible value for subscript λ ∈ R−{0,−1} a different way to quantify the discrepancy betweenDk and
mk(βk) arises. In case of λ ∈ {0,−1}, we define dλ(Dk,mk(βk)) = limℓ→λ dℓ(Dk,mk(βk)), and in this manner the Kullback
divergence appears as special case of power divergence measures when λ = 0, d0(Dk,mk(βk)) = dKull(Dk,mk(βk)) and
on the other hand case λ = −1 is obtained by changing the order of the arguments for the Kullback divergence measure,
d−1(Dk,mk(βk)) = dKull(mk(βk),Dk).

The estimator of βk obtained on the basis of (13) is the so-called minimum power divergence estimator (MPDE) and it is
defined for each value of λ ∈ R asβk,λ = arg min

βk∈Θk
dλ(Dk,mk(βk)), (14)

and the MPDE of mk(βk) functionally as mk(βk,λ) due to the invariance property of the MPDEs. Apart from the MLE (βk orβk,0) there are other estimators that are members of this family of estimators: minimum modified chi-square estimator,βk,−2; minimummodified likelihood estimator,βk,−1; Cressie–Read estimator,βk,2/3; minimum chi-square estimator,βk,1.
These estimatorswere introduced and analyzed formultinomial sampling by Cressie and Read [12], but for Poisson sampling
were applied for the first time in [10]. The so-called minimum φ-divergence estimators are a wider class of estimator that
contains MPDEs as special case (see [9] and [5] for more details) and this statistical problem could be easily extended for
these estimators.

Taking into account that the asymptotic distribution of all MPDEs tend to be ‘‘theoretically’’ the same, including the
MLE, we are going to propose an alternative method for estimating Var(β11 −β12) = Var(β11,0 −β12,0) that covers a new
element for overlapping regions, Cov(β11,β12) = Cov(β11,0,β12,0). We postulate that for not very large data sets, the MLEs,β11,0 −β12,0, might be likely improved by the estimation associated with λ = 1,β11,1 −β12,1, when overlapping regions
are considered.

In order to obtain the MPDE of (2), APCk,λ = 100(exp(β1k,λ)− 1), we need to compute the estimator of the parameter of
interest by following the next result.

Proposition 2. The MPDE of β1k,β1k,λ, is the solution of the nonlinear equation

f (β1k,λ) =

Ik−
i=1

tkiΥki = 0,
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with

Υki =

J−
j=1

mkji(βλ) ϕkji − 1

,

mkji(βλ) = nkji exp(β0kj,λ) exp(β1ki,λtki) and ϕkji =


Dkji

mkji(βλ)
λ+1

,

exp(β0kj,λ) =


Ik−

s=1

pkjsψλ+1
kjs

 1
λ+1

, j = 1, . . . , J,

pkjs =
nkjs exp(β1k,λtks)

Ik∑
h=1

nkjh exp(β1k,λtkh)

and ψkjs =
Dkjs

nkjs exp(β1k,λtks)
.

Our aim is to show thatβ11,λ −β12,λ is asymptotically normal and to obtain an explicit expression of the denominator
of the Z-test statistic (8) with MPDEs

Zλ =

β11,λ −β12,λVar(β11,λ −β12,λ)

, (15)

when the random vectors of observed frequencies of both regions, D1 and D2, share some components (those belonging
to the overlapping subregion). Since (15) is approximately standard normal for min{N1,N2} large enough, we can test
H0 : APC1 = APC2 (β11 = β12) vs. H1 : APC1 ≠ APC2 (β11 ≠ β12), so that if the value of |Zλ| is greater than the quantile
z1− α

2
(i.e., Pr(Zλ < z1− α

2
) = 1 −

α
2 ), H0 is rejected with significance level α.

The following result is the key result for estimating the variances and covariance of the estimators of interest, β1k,λ,
k = 1, 2. It allows us to establish a linear relationship between the parameter of interest and the observed frequencies
under Poisson sampling when the expected total mean Nk in each region (k = 1, 2) is large enough and the way that Nk
increases is given in Assumption 3.

Assumption 3. m∗

kji(β
0
k) = mkji(β

0
k)/Nk remains constant as Nk increases, that is,mkji(β

0
k) increases at the same rate as Nk.

Theorem 4. The MPDE of β1k,β1k,λ, k = 1, 2, can be expressed as

β1k,λ − β0
1k = σ 2

1ktTk(β0
k)X

T
k (Dk − mk(β

0
k))+ o

Dk − mk(β
0
k)

Nk



,

where superscript 0 is denoting the true and unknown value of a parameter, o is denoting a little o function for a stochastic
sequence (see Chapter 14 in [2]) and

σ 2
1k =

tTk (β0
k)X

T
k Diag(mk(β

0
k))Xktk(β0

k)
−1

=


J−

j=1

Ik−
i=1

mkji(β
0
k)(tki −tkj(β0

k))
2

−1

, (16)

tTk (β0
k) =


−tk1(β0

k) · · · −tkJ(β0
k) 1


,

tkj(β0
k) =

Ik∑
i=1

mkji(β
0
k)tki

Ik∑
i=1

mkji(β
0
k)

. (17)

Theorem 5. The MPDE of β1k,β1k,λ, k = 1, 2, is asymptotically Normal, unbiased and with variance equal to (16).

Note that Theorem 5 would be more formally enunciated in terms of
√
Nk(β1k,λ − β0

1k), because σ
2
1k is not constant

as Nk increases. We have avoided that in order to focus directly on the estimator of interest. Due to Assumption 3 andtkj(β0
k) =

∑Ik
i=1 m

∗

kji(β
0
k)tki, what is constant is

Var(

Nkβ1k,λ) = Nkσ

2
1k =


J−

j=1

Ik−
i=1

m∗

kji(β
0
k)(tki −tkj(β0

k))
2

−1

.



N. Martín, Y. Li / Journal of Multivariate Analysis 102 (2011) 1175–1193 1181

Let N be the total expected value of the region constructed by joining regions 1 and 2. Note that N ≤ N1 + N2, being
only equal with non-overlapping regions. In order to establish the way thatN increases with respect toNk, we shall consider
throughout the next assumption.

Assumption 6. N∗

k =
Nk
N (k = 1, 2) is constant as N increases, that is N increases at the same rate as Nk.

Note that for overlapping regions, N∗

1 + N∗

2 > 1 holds and under the hypothesis that β0
11 = β0

12, we have a common
true parameter vector β0

≡ β0
k (k = 1, 2). Hence, under the hypothesis that β0

11 = β0
12, since N∗

1 + N∗

2 = 1 +
∑J

j=1∑I1−Ī
i=1 m(2)

2kj(β
0)/N is constant, the overlapping death fraction,

∑J
j=1
∑I1−Ī

i=1 m(2)
2kj(β

0)/N , is also constant as N increases.

Theorem 7. Under the hypothesis that β0
11 = β0

12, the MPDE of β11 − β12,β11,λ −β12,λ, is decomposed asβ11,λ −β12,λ = X1 + X2 + X3 + Y , (18)

X1 = σ 2
11tT1 (β0)X T

1 (D
(1)
1 − m(1)

1 (β
0)),

X2 = −σ 2
12tT2 (β0)X T

2 (D
(1)
2 − m(1)

2 (β
0)),

X3 =

σ 2
11tT1 (β0)X̄ T

1 − σ 2
12tT2 (β0)X̄ T

2


(D̄(2) − m̄(2)(β0)),

Y = o

D1 − m1(β
0)

N1




+ o

D2 − m2(β
0)

N2



,

where X̄k is an amplified J(Ī + I2)× (J + 1)matrix of Xk,

X̄k =

1̄k t̄k
. . .

...

1̄k t̄k


J(Ī+I2)×(J+1)

= (IJ ⊗ 1̄k, 1J ⊗ t̄k),

1̄T
1 = (1T

I1 , 0
T
Ī+I2−I1

) and 1̄T
2 = (0T

Ī , 1
T
I2),

t̄T1 = (tT1 , 0
T
Ī+I2−I1

) and t̄T2 = (0T
Ī , t

T
2 ),

and D̄(2) = (D̄111, . . . , D̄1J,Ī+I2)
T , m̄(2)(β0) = (m̄(2)

111(β
0), . . . , m̄(2)

1J,Ī+I2
(β0))T are the vectors obtained joining D(2)k for k = 1, 2

and m(2)
k (β

0) for k = 1, 2 respectively, i.e.

D̄(2) = ((D111, . . . ,D1J Ī), (D
(2)
2 )

T )T , D(2)2 = (D211, . . . ,D2JI2)
T ,

m̄(2)(β0) = ((m(2)
111(β

0), . . . ,m(2)
1J Ī
(β0)),m(2)

2 (β
0))T , m(2)

2 (β
0) = (m(2)

211(β
0), . . . ,m(2)

2JI2
(β0))T .

Theorem 8. Under the hypothesis that β0
11 = β0

12, the asymptotic distribution of β11,λ −β12,λ is central Normal with

Var(β11,λ −β12,λ) = σ 2
11 + σ 2

12 − 2σ 2
11σ

2
12ξ12

where σ 2
1k is equal to

σ 2
1k =


J−

j=1

Ik−
i=1

mkji(β
0)(tki −tkj(β0))2

−1

=


J−

j=1

Ik−
i=1

mkji(β
0)t2ki −

J−
j=1

mkj•t2kj(β0)

−1

, (19)

with mkj• =
∑Ik

i=1 mkji(β
0),tkj(β0

k) is (17) and

ξ12 =

J−
j=1

I1−Ī−
i=1

n(2)2ji

n2ji
m2ji(β

0)(t2i −t1j(β0))(t2i −t2j(β0))

=

J−
j=1

I1−Ī−
i=1

n(2)2ji

n2ji
m2ji(β

0)(t22i +t1j(β0)t2j(β0))−

J−
j=1

I1−Ī−
i=1

n(2)2ji

n2ji
m2ji(β

0)t2i(t1j(β0)+t2j(β0)). (20)

That is, the covariance betweenβ11,λ andβ12,λ is given by

σ1,12 = Cov(β11,λ,β12,λ) = σ 2
11σ

2
12ξ12, (21)

and the correlation by ρ1,12 = Cor(β11,λ,β12,λ) = σ11σ12ξ12.
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For the expression in the denominator of (15), we need to obtain the MPDEs of σ 2
1k, k = 1, 2 and ξ12,σ 2

1k,λ, k = 1, 2 andξ12,λ respectively. A way to proceed is based on replacing β0 by the most efficient MPDE

β0
λ ≡

β0
1,λ, if N1 ≥ N2β0
2,λ, if N1 < N2.

An important advantage of this new methodology is that the expression of the denominator of (15) is explicit, easy
to compute and can be interpreted easily. The term (20) determines the sign of (21). The structure of (20) is similar
to the covariance proposed in the model of Li et al. [8] for WLSEs or as well as for the estimators in the model of Li
and Tiwari [7]. We can see that if there is no time point shared by the two regions, i.e. Ī ≥ I1, then σ1,12,λ = 0 andVar(β11,λ − β12,λ) = σ 2

11,λ + σ 2
12,λ; if there is no space overlap, then it holds m(2)

2ji (
β0
λ) = 0 for all i and j belonging to

the overlapping subregion and henceσ1,12,λ = 0 and Var(β11,λ −β12,λ) = σ 2
11,λ +σ 2

12,λ. On the other hand, when the two
regions to be compared share at least one time point and there is space overlap, Var(β11,λ−β12,λ) = σ 2

11,λ+σ 2
12,λ−2σ1,12,λ

holds, withσ1,12,λ ≠ 0. Moreover, when the period of time not shared by the two regions is large (small), the covariance
tends to be negative (positive) because the average values,t1j(β0

1,λ) andt2j(β0
2,λ), are more separated from (closer to) the

time points associated with the overlapping subregion. We shall later analyze this behavior through a simulation study, and
we shall now investigate how is the structure of ξ12 when the two regions to be compared share the whole period of time.

Corollary 9. When Ī = 0 and I1 = I2, under the hypothesis that β0
11 = β0

12

ξ12 =
1
σ 2
1(2)

+

J−
j=1

m(1)
1j•

m1j•

m(1)
2j•

m2j•
m(2)

j• (t(1)1j (β
0)−t(2)1j (β

0))(t(1)2j (β
0)−t(2)2j (β

0)), (22)

with

1σ 2
1(2)

=

J−
j=1

I2−
i=1

m(2)
2ji (β

0)(t2i −t(2)2j (β
0))2,

t(b)kj (β
0) =

Ik∑
i=1

m(b)
kji (β

0)tki

Ik∑
i=1

m(b)
kji (β

0)

,

m(b)
kj• =

Ik−
i=1

m(b)
kji (β

0), mkj• = m(1)
kj• + m(2)

kj•,

m(2)
j• =

I2−
i=1

m(2)
2ji (β

0) =

I1−
i=1

m(2)
1ji (β

0).

σ 2
1(2) represents the variance of β12,λ focused on the overlapping subregion. In particular, if region 2 is completely contained in

region 1, ξ12 = 1/σ 2
1(2) = 1/σ 2

12, m
(1)
2j• = 0 for all j = 1, . . . , J , and hence

Var(β11,λ −β12,λ) = σ 2
12 − σ 2

11. (23)

4. Simulation studies and analysis of SEER mortality data

When dealing with asymptotic results, it is interesting to analyze the performance of the theoretical results in an
empirical framework. Specifically, for Poisson sampling what is important to calibrate is the way that the total expected
value of deaths (or incidences) Nk affects the precision of the results. Other characteristics such as the percentage of
overlapping regions ‘‘in space’’ or ‘‘in time’’, as well as the suitable choice of λ values are also worth to be analyzed. As
a preliminary study, before focusing on Nk, we have considered thyroid cancer mortality (rare cancer) in three regions,
Western (W) US population (composed of Arizona, NewMexico and Texas), South Western (SW) US population (composed
of Arizona, California and Nevada) and West Coast (WC) US population (composed of California, Oregon and Washington).
APC comparison of W vs. SW (Arizona is shared) on one hand and SW vs. WC (California is shared) on the other hand
are considered. We have taken different scenarios with different time periods, 1998–2007 for SW in all scenarios and
1986–1995, 1989–1998, 1992–2001, 1995–2004 and (1998–2007) for the other region (W or WC) in each of scenarios A′,
B′, C ′, D′ and E ′ respectively. In Table 1 the percentage of expected deaths in the regions to be compared with respect to



N. Martín, Y. Li / Journal of Multivariate Analysis 102 (2011) 1175–1193 1183

Table 1
Overlapping percentages for W vs. SW and SW vs. WC in five scenarios.

Space \ Time sc A′ sc B′ sc C ′ sc D′ sc E ′

W vs. SW 18.96%; 13.03% 12.66%; 9.12% 6.94%; 5.24% 1.66%; 1.32% 0%; 0%
SW vs. WC 81.80%;78.39% 59.09%; 54.06% 34.75%; 30.30% 8.93%; 7.40% 0%; 0%

the shared part (the percentages of overlapping) are shown, when β11 = β12 = −0.005 (APC1 = APC2 ≃ −0.5) for W
vs. SW, and β13 = β14 = 0.02 for SW vs. WC (APC3 = APC4 ≃ 2.02). Observe that in the same scenario but different
couple of comparisons, the change in overlapping percentage is due to the space overlapping (the overlapping percentages
are greater for SW vs. WC, actually the shared part is a large state, California). In addition, we have chosen some values of λ,
λ ∈ {−0.5, 0, 2

3 , 1, 1.5}, in order to compare the performance of minimum power divergence estimators. In Table 3 these
results are shown for W vs. SW. From scenario B′ to E ′ (i.e. when the overlapping percentage is increasing), the covariance
is increasing, starts with negative values at B′ (1 time point is shared), decreases at E ′ (4 time points are shared), later
positive values but small are reached at F ′ (7 time points are shared) and finally at E ′ (10 time points are shared) ends
with positive and high values. It seems that more or less the sign of the covariance changes in the middle of time points
considered for each of the regions. In scenario A′ the theoretical covariance is zero, actually the two regions do not share
observations. By asterisk we have marked the variances and significance levels obtained by simulation which are greater
than its corresponding theoretical values, in order to visualize them as the worst cases. From the results it is concluded
the minimum power divergence estimators with λ = 1, that is the minimum chi-squared estimators provide empirically
efficient estimators and their Z-test statistics have good performance with respect to the theoretical significance level in
the sense that tend to be much smaller. We have omitted the results for SW vs. WC because we have seen that the space
overlapping by itself do not affect much the covariances ofβk1,λ. That is, there were no remarkable difference among the
covariances in case of choosing SW vs. WC rather than W vs. SW, because the sign of the covariances starts at the same
scenario and it is just the value of the covariancewhatmarks the difference between both of them. The behavior ofminimum
power divergence estimators is very similar too. Hence, in the simulation study that follows we are going to focus only on
fixed overlapping percentages and one of them is going to be 100% and the focus of interest are going to be the MLEs and
the MCSEs.

For studying the precision of the results when Nk changes, we have considered three proportionality constants κ ∈

{1, 1
100 ,

1
300 } associated with Nk in each of the following scenarios for Regions 1 and 2, with β1k ∈ {0.02, 0.005, 0,−0.005}

being equal for both (k = 1, 2) as it is required for the null hypothesis, i.e. APC1 = APC2 ≃ 2.02, APC1 = APC2 ≃ 0.50,
APC1 = APC2 ≃ 0, APC1 = APC2 ≃ −0.50:

• Scenario A: Low level overlapping regions, I1 = 6, I2 = 11, I1 − Ī = 3.
• Scenario B: Medium level overlapping regions, I1 = 10, I2 = 11, I1 − Ī = 7.
• Scenario C: High level overlapping regions, I1 = 8, I2 = 8, I1 − Ī = 8.

The values of nkji have been obtained from real data sets for female:

• Scenario A: Region 1 = United States (US) during 1993–1998, Region 2 = California (CA) 1996–2006.
• Scenario B: Region 1 = US during 1993–2002, Region 2 = CA during 1996–2006.
• Scenario C: Region 1 = US during 1999–2006, Region 2 = CA during 1999–2006.

From the same data sets we have taken β0kj = log(κDkj1/nkj1)− βk1tk1, focused on the Breast cancer for the first year of the
time interval (i = 1). All these data were obtained from the SEER database and hence we are taking into account J = 19
age groups. Once the previous parameters have been established we can compute in a theoretical framework the individual
variances of estimatorsβk1,λ, σ 2

1k, covariance σ1,12 and Var(β11,λ −β12,λ) = σ 2
11 + σ 2

12 − 2σ1,12. We can also compute the
theoretical value of ηk ≡ Nk/(JIk), the average expected value per cell, which is useful to see if the value ofNk is large enough,
these values are in Table 2.

Since both regions share a common space, we have generated firstly its death counts by simulation and thanks to the
Poisson distribution’s reproductive property under summation, we have generated thereafter the death counts for each
region by adding the complementary Poisson observations. In Tables 4, 6 and 8 are summarized the theoretical results as
well as those obtained by simulation for the MLEs and in Tables 5, 7 and 9 for the MCSEs. The variances and covariances
appear multiplied by 109 in all the tables. We have added tilde notation for those parameter that have been calculated by
simulation with R = 22000 replications:

σ̃ 2
1k,λ =

1
R

R−
r=1

(β1k,λ(r)− Ẽ[β1k,λ])
2, Ẽ[β1k,λ] =

1
R

R−
r=1

β1k,λ(r),

σ̃1,12,λ =
1
R

R−
r=1

(β11,λ(r)− Ẽ[β11,λ])(β12,λ(r)− Ẽ[β12,λ]).

It is important to remark that such a large quantity of replications have been chosen in order to reach a reliable precision
in the simulation study (e.g., it was encountered that R = 10000 was not large enough). The last column is referred to the
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Table 2
Average total expected means of deaths per cell.

κ β1k Scenario A Scenario B Scenario C
η1 η2 η1 η2 η1 η2

1 0.020 2538.24 331.42 2741.10 331.42 2493.85 265.98
1 0.005 2441.69 292.43 2552.96 292.43 2360.81 251.71
1 0.000 2410.67 280.62 2494.19 280.619 2318.67 247.19
1 −0.0050 2380.23 269.35 2437.28 269.35 2277.59 242.79
1

100 0.020 25.38 3.31 27.41 3.31 24.94 2.66
1

100 0.005 24.42 2.92 25.53 2.92 23.61 2.52
1

100 0.000 24.11 2.81 24.94 2.81 23.19 2.47
1

100 −0.0050 23.80 2.69 24.37 2.69 22.77 2.43
1

300 0.020 8.46 1.10 9.14 1.10 8.31 0.89
1

300 0.005 8.14 0.97 8.51 0.97 7.87 0.84
1

300 0.000 8.03 0.93 8.31 0.93 7.73 0.82
1

300 −0.0050 7.93 0.90 8.12 0.90 7.59 0.81

Table 3
Minimum power divergence estimators with λ ∈ {−0.5, 0, 2

3 , 1, 1.5} for scenarios A
′ , B′ , C ′ , D′ and E ′ .

sc λ σ 2
11 σ̃ 2

11,λ σ 2
12 σ̃ 2

12,λ σ1,12 σ̃1,12,λ Var(β11,λ −β12,λ) Var(β11,λ −β12,λ) α̃λ

A′
−0.5 106106.94 117206.91 88722.57 96004.29 0.00 −190.20 194829.51 ∗213591.59 ∗0.056

A′ 0 106106.94 106482.52 88722.57 88399.60 0.00 −131.23 194829.51 ∗195144.57 0.050
A′ 2

3 106106.94 100968.49 88722.57 84561.80 0.00 −64.51 194829.51 185659.31 0.047
A′ 1 106106.94 99842.89 88722.57 83793.94 0.00 −34.77 194829.51 183706.37 0.047
A′ 1.5 106106.94 99346.15 88722.57 83510.99 0.00 2.27 194829.51 182852.60 0.049

B′
−0.5 106106.94 117293.27 83850.45 92311.97 −4020.16 −3833.28 197997.72 ∗217271.80 ∗0.058

B′ 0 106106.94 106707.01 83850.45 85398.66 −4020.16 −3490.04 197997.72 ∗199085.75 0.051
B′ 2

3 106106.94 101342.71 83850.45 81753.09 −4020.16 −3229.76 197997.72 189555.32 0.049
B′ 1 106106.94 100261.70 83850.45 80985.96 −4020.16 −3142.66 197997.72 187532.98 0.049
B′ 1.5 106106.94 99807.30 83850.45 80649.82 −4020.16 −3047.64 197997.72 186552.39 ∗0.052

C ′
−0.5 106106.94 116056.24 79295.40 84620.24 −6035.64 −5099.81 197473.63 ∗210876.09 ∗0.055

C ′ 0 106106.94 105572.08 79295.40 78400.39 −6035.64 −4630.90 197473.63 193234.25 0.048
C ′ 2

3 106106.94 100178.76 79295.40 75138.00 −6035.64 −4302.56 197473.63 183921.87 0.046
C ′ 1 106106.94 99090.96 79295.40 74470.54 −6035.64 −4199.62 197473.63 181960.74 0.046
C ′ 1.5 106106.94 98646.02 79295.40 74214.18 −6035.64 −4094.68 197473.63 181049.56 0.049

D′
−0.5 106106.94 115548.66 74971.59 81107.54 2294.32 2271.85 176489.89 ∗192112.50 ∗0.057

D′ 0 106106.94 104872.37 74971.59 75820.32 2294.32 2148.49 176489.89 176395.71 0.050
D′ 2

3 106106.94 99400.99 74971.59 72923.02 2294.32 2060.12 176489.89 168203.77 0.048
D′ 1 106106.94 98300.76 74971.59 72306.86 2294.32 2034.16 176489.89 166539.31 0.050
D′ 1.5 106106.94 97854.16 74971.59 72044.77 2294.32 2011.33 176489.89 165876.27 ∗0.052

E ′
−0.5 106106.94 115740.28 70747.13 75885.14 15621.44 17152.32 145611.20 ∗157320.78 ∗0.055

E ′ 0 106106.94 105114.37 70747.13 71094.62 15621.44 16123.83 145611.20 143961.33 0.048
E ′ 2

3 106106.94 99710.57 70747.13 68383.44 15621.44 15273.05 145611.20 137547.92 0.047
E ′ 1 106106.94 98636.63 70747.13 67789.30 15621.44 14953.01 145611.20 136519.90 0.047
E ′ 1.5 106106.94 98219.30 70747.13 67513.89 15621.44 14557.46 145611.20 136618.26 0.049

exact significance level associated with the Z-test obtained by simulation when the nominal significance level is given by
α = 0.05,

αλ =
1
R

R−
r=1

I(|Zλ(r)| > z0.975),

where I() is an indicator function and z0.975 ≃ 1.96 the quantile of order 0.975 for the standard normal distribution.
It can be seen as expected, that in Scenario 3 the covariance is positive in all the cases, while in Scenario 1 the covariance

is negative. It is clear that the precision forVar(β11,λ −β12,λ) as well as for α̃λ gets better as κ increases. While for large
data sets (κ = 1) there is no best choice regarding λ, for small data sets (κ = 1/300) the choice in favor of λ = 1 is clear
because estimatorsβ11,λ −β12,λ are more efficient, in fact Var(β11,1 −β12,1) < Var(β11,λ −β12,λ) < Var(β11,0 −β12,0), and
the exact significance levels or estimated type I error is less than for λ = 0 in all the cases (α̃1 ≤ α̃0). Since perhaps type II
error could be better for MLEs, the power functions for both estimators have been studied. In particular, for κ = 1/300 it
was observed the same behavior as appears in Fig. 2: in equidistant differences regarding β = β11 − β12, when β0

11 is fixed,
if error II is better for MLEs when β > 0 (β < 0) then error II is better for MCSEs when β < 0 (β > 0). Hence, in overall
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Table 4
Scenario A: maximum likelihood estimators (λ = 0).

κ β1k σ 2
11 σ̃ 2

11,λ σ 2
12 σ̃ 2

12,λ σ1,12 σ̃1,12,λ Var(β11,λ −β12,λ) Var(β11,λ −β12,λ) α̃λ

1 0.020 1188.50 1196.88 1468.14 1475.38 −152.70 −153.71 2962.03 ∗2979.67 0.049
1 0.005 1233.49 1245.97 1653.48 1644.16 −166.41 −159.88 3219.78 3209.89 0.050
1 0.000 1248.91 1237.81 1720.50 1707.01 −171.20 −156.44 3311.81 3257.70 0.049
1 −0.005 1264.55 1276.82 1790.33 1801.21 −176.11 −185.35 3407.10 ∗3448.73 ∗0.052
1

100 0.020 118849.86 120545.66 146813.66 146902.40 −15269.95 −16186.46 296203.41 ∗299820.97 ∗0.052
1

100 0.005 123349.03 123414.45 165348.33 167479.53 −16640.50 −16374.79 321978.37 ∗323643.55 ∗0.052
1

100 0.000 124891.15 124618.15 172050.41 173875.81 −17119.82 −17946.96 331181.19 ∗334387.88 0.050
1

100 −0.005 126455.01 125135.69 179033.49 181356.96 −17610.72 −15914.04 340709.94 338320.73 0.047
1

300 0.020 356549.59 359581.84 440440.97 451288.03 −45809.84 −53204.15 888610.23 ∗917278.18 ∗0.052
1

300 0.005 370047.09 373291.90 496045.00 503332.51 −49921.51 −51558.77 965935.10 ∗979741.96 0.050
1

300 0.000 374673.44 375119.77 516151.22 532280.30 −51359.46 −50448.54 993543.56 ∗1008297.13 ∗0.051
1

300 −0.005 379365.02 380562.71 537100.47 562780.79 −52832.16 −58143.46 1022129.82 ∗1059630.42 ∗0.054

Table 5
Scenario A: minimum chi-square estimators (λ = 1).

κ β1k σ 2
11 σ̃ 2

11,λ σ 2
12 σ̃ 2

12,λ σ1,12 σ̃1,12,λ Var(β11,λ −β12,λ) Var(β11,λ −β12,λ) α̃λ

1 0.020 1188.50 1196.61 1468.14 1474.56 −152.70 −153.88 2962.03 ∗2978.92 0.049
1 0.005 1233.49 1245.63 1653.48 1642.03 −166.41 −158.86 3219.78 3205.38 0.049
1 0.000 1248.91 1237.43 1720.50 1704.17 −171.20 −156.10 3311.81 3253.80 0.049
1 −0.005 1264.55 1276.42 1790.33 1797.77 −176.11 −185.22 3407.10 ∗3444.64 ∗0.051
1

100 0.020 118849.86 118678.59 146813.66 131711.15 −15269.95 −14717.95 296203.41 279825.64 ∗0.051
1

100 0.005 123349.03 121351.67 165348.33 148155.30 −16640.50 −14873.11 321978.37 299253.18 0.049
1

100 0.000 124891.15 122229.69 172050.41 152728.68 −17119.82 −16259.50 331181.19 307477.36 0.048
1

100 −0.005 126455.01 122628.20 179033.49 158913.98 −17610.72 −14215.39 340709.94 309972.96 0.045
1

300 0.020 356549.59 342888.09 440440.97 340354.35 −45809.84 −42220.99 888610.23 767684.41 0.050
1

300 0.005 370047.09 354377.57 496045.00 369058.29 −49921.51 −41173.07 965935.10 805782.01 0.045
1

300 0.000 374673.44 356408.32 516151.22 388239.25 −51359.46 −38265.08 993543.56 821177.73 0.045
1

300 −0.005 379365.02 360799.63 537100.47 403732.21 −52832.16 −47176.61 1022129.82 858885.06 0.045

Table 6
Scenario B: maximum likelihood estimators (λ = 0).

κ β1k σ 2
11 σ̃ 2

11,λ σ 2
12 σ̃ 2

12,λ σ1,12 σ̃1,12,λ Var(β11,λ −β12,λ) Var(β11,λ −β12,λ) α̃λ

1 0.020 234.90 234.40 1468.14 1461.71 12.72 6.74 1677.59 ∗1682.63 0.050
1 0.005 251.10 252.79 1653.48 1648.47 13.91 10.97 1876.77 ∗1879.32 ∗0.052
1 0.000 256.77 255.02 1720.50 1713.16 14.35 7.81 1948.56 ∗1952.57 0.050
1 −0.005 262.57 261.96 1790.33 1792.15 14.83 17.78 2023.24 2018.56 0.049
1

100 0.020 23489.78 23328.11 146813.66 147774.27 1272.17 181.93 167759.10 ∗170738.52 ∗0.053
1

100 0.005 25109.90 24424.06 165348.33 147273.99 1390.58 1546.90 187677.08 168604.26 0.049
1

100 0.000 25676.71 25666.21 172050.41 171995.21 1435.45 822.83 194856.21 ∗196015.76 ∗0.052
1

100 −0.005 26257.50 26172.50 179033.49 179024.69 1483.35 708.28 202324.30 ∗203780.65 ∗0.051
1

300 0.020 70469.35 71112.09 440440.97 442433.57 3816.51 2392.77 503277.31 ∗508760.12 ∗0.052
1

300 0.005 75329.71 74737.59 496045.00 510147.59 4171.74 3181.74 563031.24 ∗578521.71 ∗0.053
1

300 0.000 77030.13 76849.11 516151.22 521168.35 4306.36 2781.06 584568.62 ∗592455.34 0.050
1

300 −0.005 78772.49 79582.80 537100.47 545463.20 4450.04 5288.71 606972.89 ∗614468.57 0.050

terms we recommend using MCSE rather than MLEs for small data sets. This is the case of the study illustrated for instance
in [13] where there are a lot of cases such that the value ofηk =

∑J
j=1
∑Ik

i=1 dkji/(JIk) is quite low (moreover, several cases
such thatηk < 12/19 appear without giving any estimation ‘‘due to instability of small numbers’’).

We have applied our proposedmethodology to comparewith real data the APC in the age-adjustedmortality rates ofWC,
WS andW (described at the beginning of this section) for different periods of time, 1969–1983, 1977–1991 and 1990–1999
respectively, with both estimators and for Thyroid cancer (rare cancer). The third one differs from the rest in the sense that
it considers a shorter period of time for its study. The rates are expressed per 100000 individuals at risk. In Fig. 3 the fitted
models are plotted and from them it seems at first sight that there is a decreasing trend for Thyroid cancer in WC and SW,
and null or decreasing trend in W. The specific values for estimates and test-statistics Zλ, for λ = 0, 1, are summarized in
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Table 7
Scenario B: minimum chi-square estimators (λ = 1).

κ β1k σ 2
11 σ̃ 2

11,λ σ 2
12 σ̃ 2

12,λ σ1,12 σ̃1,12,λ Var(β11,λ −β12,λ) Var(β11,λ −β12,λ) α̃λ

1 0.020 234.90 234.36 1468.14 1459.11 12.72 6.73 1677.59 ∗1680.02 0.050
1 0.005 251.10 252.87 1653.48 1646.88 13.91 10.79 1876.77 ∗1878.16 ∗0.052
1 0.000 256.77 255.00 1720.50 1710.41 14.35 7.53 1948.56 ∗1950.35 0.050
1 −0.005 262.57 261.91 1790.33 1790.65 14.83 17.89 2023.24 2016.78 0.049
1

100 0.020 23489.78 23039.44 146813.66 132848.97 1272.17 204.75 167759.10 155478.91 ∗0.056
1

100 0.005 25109.90 24424.06 165348.33 147273.99 1390.58 1546.90 187677.08 168604.26 0.049
1

100 0.000 25676.71 25227.72 172050.41 152123.09 1435.45 950.07 194856.21 175450.67 0.049
1

100 −0.005 26257.50 25713.71 179033.49 157016.58 1483.35 608.74 202324.30 181512.81 0.050
1

300 0.020 70469.35 68417.63 440440.97 333558.97 3816.51 2545.19 503277.31 396886.23 ∗0.055
1

300 0.005 75329.71 71630.87 496045.00 375196.57 4171.74 2568.93 563031.24 441689.58 0.049
1

300 0.000 77030.13 73435.63 516151.22 380384.11 4306.36 1980.50 584568.62 449858.76 0.046
1

300 −0.005 78772.49 75952.38 537100.47 394349.52 4450.04 3665.47 606972.89 462970.97 0.046

Table 8
Scenario C: maximum likelihood estimators (λ = 0).

κ β1k σ 2
11 σ̃ 2

11,λ σ 2
12 σ̃ 2

12,λ σ1,12 σ̃1,12,λ Var(β11,λ −β12,λ) Var(β11,λ −β12,λ) α̃λ

1 0.020 505.19 502.38 4753.38 4766.57 505.19 515.35 4248.20 4238.26 0.050
1 0.005 532.12 529.53 5006.55 4962.78 532.12 527.77 4474.43 4436.77 0.049
1 0.000 541.45 543.59 5094.21 5129.48 541.45 549.19 4552.76 ∗4574.69 0.050
1 −0.005 550.96 550.15 5183.56 5202.96 550.96 563.62 4632.60 4625.87 0.051
1

100 0.020 50518.62 50823.72 475338.31 480772.05 50518.62 52893.29 424819.68 ∗425809.19 0.050
1

100 0.005 53212.46 53963.47 500654.98 500398.48 53212.46 53825.39 447442.52 446711.16 0.049
1

100 0.000 54145.29 53655.97 509420.86 511073.61 54145.29 55232.68 455275.57 454264.23 0.050
1

100 −0.005 55096.19 55610.24 518356.01 521012.61 55096.19 56166.72 463259.82 ∗464289.42 0.050
1

300 0.020 151555.86 149118.50 1426014.92 1461021.71 151555.86 152950.11 1274459.05 ∗1304240.00 0.051
1

300 0.005 159637.38 161042.69 1501964.94 1529631.00 159637.38 160328.08 1342327.55 ∗1370017.53 0.049
1

300 0.000 162435.88 162828.12 1528262.58 1534795.18 162435.88 165625.27 1365826.70 ∗1366372.76 0.047
1

300 −0.005 165288.56 165289.23 1555068.02 1599312.35 165288.56 168363.58 1389779.46 ∗1427874.42 0.050

Table 9
Scenario C: minimum chi-square estimators (λ = 1).

κ β1k σ 2
11 σ̃ 2

11,λ σ 2
12 σ̃ 2

12,λ σ1,12 σ̃1,12,λ Var(β11,λ −β12,λ) Var(β11,λ −β12,λ) α̃λ

1 0.020 505.19 502.28 4753.38 4756.74 505.19 514.11 4248.20 4230.79 ∗0.051
1 0.005 532.12 529.39 5006.55 4956.27 532.12 527.17 4474.43 4431.32 0.049
1 0.000 541.45 543.50 5094.21 5120.89 541.45 549.07 4552.76 ∗4566.24 0.050
1 −0.005 550.96 550.04 5183.56 5194.95 550.96 563.79 4632.60 4617.41 ∗0.051
1

100 0.020 50518.62 49937.40 475338.31 417941.93 50518.62 47230.21 424819.68 373418.90 0.050
1

100 0.005 53212.46 53092.20 500654.98 434030.70 53212.46 48517.38 447442.52 390088.14 0.048
1

100 0.000 54145.29 52785.97 509420.86 441697.10 54145.29 49680.01 455275.57 395123.06 0.046
1

100 −0.005 55096.19 54621.08 518356.01 449926.19 55096.19 50651.05 463259.82 403245.16 0.047
1

300 0.020 151555.86 141857.76 1426014.92 1037025.40 151555.86 119830.05 1274459.05 939223.06 0.048
1

300 0.005 159637.38 153101.35 1501964.94 1075673.38 159637.38 123845.16 1342327.55 981084.41 0.046
1

300 0.000 162435.88 154380.49 1528262.58 1074400.76 162435.88 128138.62 1365826.70 972504.01 0.043
1

300 −0.005 165288.56 57146.31 1555068.02 1110194.55 165288.56 131114.59 1389779.46 1005111.67 0.044

Table 10. Apart from the appropriate test-statistic, we have included naive test-statistics Z̃λ, for λ = 0, 1 that are obtained by
applying the methodology for non-overlapping regions. For Thyroid cancer there is no evidence for rejecting the hypothesis
of equal APCs for WS andW but it is not clear WC andWS. Looking at the confidence intervals for each region, observe that
for WC and WS the test-statistic has more power to discriminate differences than for WS and W, because the variability is
less (the period of time considered forW is shorter). The hypothesis of equal APCs is rejected with 0.05 significance level for
WC and WS when using the naive test, and cannot be rejected when using the proper test-statistic for overlapping regions
(anyway, its p-value is close to 0.05). When dealing with common cancer types the same value of APC differences on the
sample would probably lead to reject the null hypothesis.
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Fig. 2. Power function in terms of β = β11 − β12 when β0
11 = 0, for Scenario A and κ = 1/300.

Table 10
Thyroid cancer mortality trends comparison among WC, SW and W during 1969–1983, 1977–1991 and 1990–1999 respectively: maximum likelihood
estimators and minimum chi-square estimators.

Region k λ β1k,λ β0k,λ σ 2
1k,λ σ 2

1,k,k+1,λ
APCk,λ CIAPCk,λ(95%)

WC 1 0 −0.0267 −0.3680 2.923 × 10−5
−77.292 × 10−5

−2.639 (−3.665, −1.601)
1 1 −0.0268 −0.3241 2.785 × 10−5

−73.429 × 10−5
−2.646 (−3.648, −1.635)

SW 2 0 −0.0107 −0.5404 3.044 × 10−5
−32.915 × 10−5

−1.064 (−2.128, 0.011)
2 1 −0.0106 −0.4943 2.888 × 10−5

−3.1074 × 10−5
−1.053 (−2.089, −0.005)

W 3 0 0.0003 −0.7939 13.064 × 10−5 0.031 (−2.184, 2.297)
3 1 −0.0012 −0.7084 12.421 × 10−5

−0.117 (−2.275, 2.088)

Z-test statistics for WC vs. SW: Z12,0 = −1.85, Z̃12,0 = −2.08; Z12,1 = −1.92, Z̃12,1 = −2.16.
Z-test statistics for SW vs. W: Z23,0 = −0.85, Z̃23,0 = −0.87; Z23,1 = −0.75, Z̃23,1 = −0.76.

Fig. 3. MCSE and MLE for Thyroid cancer mortality trends in WC, SW and W.
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5. Concluding remarks

In this work, we have dealt with an important problem of comparing the changing trends of cancer mortality/incidence
rates between two overlapping regions. Our new proposal allows us to correctly account for the correlation induced by the
overlapping regions when drawing statistical inference. The better finite sample performance of the minimum chi-square
estimators, in comparison with the maximum likelihood estimators, suggests the practical utility of the proposed methods
especiallywhen comparing the APCs of rare cancers. Not only do our results verify the claim of Berkson [1] that the efficiency
of the maximum likelihood estimator is questionable for the finite sample size situations, they also encompass the Poisson
models, forwhich the power divergence based theoretical results (in particular for theminimumchi-square estimators) have
remained elusive. In this paper, we havemainly focused on comparing two regions. Extending themethods to accommodate
more than two regions simultaneously is certainly worthy of future investigations.
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Appendix

Proof of Theorem 4. Let ∆Mk be the set with all possible Mk-dimensional probability vectors and CMk = (0, 1)×
Mk
· · · ×

(0, 1). The way in which N increases is so that Diag−1(nk)mk(βk) does not change, hence ms(βk) and ns increase at the
same time (s = 1, . . . ,Mk). This means that as Nk increases, parameter βk does not suffer any change and neither does the
normalized mean vector of deaths, m∗

k(β) =
1
Nk

mk(βk). Note that m∗

k(βk) ∈ ∆Mk ⊂ CMk . Let V ⊂ RJ+1 be a neighborhood

of β0
k and a function

F (λ)Nk
= (F (λ)1 , . . . , F (λ)J+1) : CMk −→ RJ+1,

so that

F (λ)i (m∗

k ,βk) =
∂dλ


Nkm∗

k ,mk(βk)


∂θki
, i = 1, . . . , J + 1,

with βk = (β0k1, . . . , β0kJ , β1k)
T

= (θk1, . . . , θkJ , θk,J+1)
T

∈ V and m∗

k = (m∗

1, . . . ,m
∗

Mk
)T ∈ ∆Mk ⊂ CMk . More thoroughly,

considering Xk = (xsi)s=1,...,Mk;i=1,...,J+1 and dλ(Dk,mk(βk)) =
∑Mk

s=1 ms(βk)φλ(
Ds

ms(β)
), where

φλ(x) =


xλ+1

− x − λ(x − 1)
λ(λ+ 1)

, λ(λ+ 1) ≠ 0,

lim
α→λ

φα(x), λ(λ+ 1) = 0,

it holds

F (λ)i (m∗

k ,βk) =

Mk−
s=1

ms(β)xsi


φλ


Nm∗

s

ms(βk)


−

Nkm∗
s

ms(βk)
φ′

λ


Nm∗

s

ms(βk)


.

It can be seen that replacing m∗

k by m∗

k(β
0
k), βk by β0

k , it holds F (λ)i (m∗

k(β
0
k),β

0
k) = 0, for all i = 1, . . . ,Mk. We shall now

establish that Jacobian matrix

∂F (λ)Nk
(m∗

k ,βk)

∂βk
=


∂F (λ)i (m∗

k ,βk)

∂θkj


i,j=1,...,Mk+J+1

is nonsingular when (m∗

k ,βk) = (m∗

k(β
0
k),β

0
k). For i, j = 1, . . . , J + 1

∂F (λ)i (m∗

k ,βk)

∂θkj
=

∂

∂θj

∂dλ

Nm∗

k ,mk(βk)


∂θki

=
∂

∂θkj


Mk−
s=1

ms(βk)xsi


φλ


Nkm∗

s

ms(βk)


−

Nkm∗
s

ms(β)
φ′

λ


Nkm∗

s

ms(βk)



=

Mk−
s=1

ms(βk)xsixsj


φλ


Nkm∗

s

ms(β)


−

Nkm∗
s

ms(β)
φ′

λ


Nkm∗

s

ms(β)


+

Mk−
s=1

Nkm∗

s xsixsj
Nkm∗

s

ms(β)
φ′′

λ


Nkm∗

s

ms(β)


,
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and because φλ(1) = φ′

λ(1) = 0, and φ′′

λ(1) = 1 for all λ,

∂F (λ)i (m∗

k ,βk)

∂θkj


(m∗

k ,βk)=(m∗
k (β

0
k ),β

0
k )

= Nk

Mk−
s=1

m∗

s (β
0
k)xsixsj.

Hence,
∂F (λ)Nk

(m∗

k,βk)

∂βk

−1

(m∗

k ,βk)=(m∗
k (β

0
k ),β

0
k )

= NkX T
k Diag(m

∗

k(β
0
k))Xk.

Applying the Implicit Function Theorem there exist:
• a neighborhood Uk of (m∗

k(β
0
k),β

0
k) in CMk × RJ+1 such that ∂F (λ)(m∗

k ,βk)/∂βk is nonsingular for every (m∗

k ,βk) ∈ Uk;
• an open set Ak ⊂ CMk that contains m∗

k(β
0
k);

• and a unique, continuously differentiable functionβ(λ)k : Ak −→ RJ+1 such thatβ(λ)k (m∗

k(β
0
k)) = β0

k and

{(m∗

k ,βk) ∈ Uk : F (λ)Nk
(m∗

k ,βk) = 0} = {(m∗

k ,
β(λ)k (m∗

k)) : m∗

k ∈ Ak}.

Since

min
m∗

k∈Ak
dλ

mk(β

0
k),mk(β(λ)k (m∗

k))


= min
βk∈Θk

dλ

mk(β

0
k0),mk(βk)


,

it holds

β(λ)k


arg min

m∗
k∈Ak

dλ

mk(β

0
k),mk(β(λ)k (m∗

k))


= arg min
βk∈Θk

dλ

mk(β

0
k0),mk(βk)


,

that isβ(λ)k (m∗

k(β
0
k)) = arg min

βk∈Θk
dλ

Nkm∗

k(β
0
k),m(βk)


. (24)

Furthermore, from the properties of power divergence measures and becauseβ(λ)k (m∗

k(β
0
k)) = β0

k , we have

0 = dλ

mk(β

0
k),m(β(λ)k (m∗

k(β
0
k)))


< dλ


mk(β

0
k),mk(βk)


, ∀mk(βk) ≠ mk(β

0
k).

By applying the chain rule for obtaining derivatives on F (λ)k (m∗

k ,
β(λ)k (m∗

k(β
0
k))) = 0with respect tom∗

k ∈ Ak, we have

∂F (λ)Nk
(m∗

k ,βk)

∂m∗

k


βk=β(λ)k (m∗

k )

+
∂F (λ)N (m∗

k ,βk)

∂βk


βk=β(λ)k (m∗

k )

∂β(λ)k (m∗

k)

∂m∗

k
= 0,

so that form∗

k = m∗

k(β
0
k)

∂β(λ)k (m∗

k)

∂m∗

k


m∗

k=m∗
k (β

0
k )

= −


∂F (λ)N (m∗

k(β
0
k), θ)

∂βk

−1
∂F (λ)(m∗

k ,β
0
k)

∂m∗

k


(m∗

k ,βk)=(m∗
k (β

0
k ),β

0
k )

.

The last expression is part of the Taylor expansion ofβ(λ)k (m∗

k) around m∗

k(β
0
k)

β(λ)k (m∗

k) =β(λ)k (m∗

k(β
0
k))+

∂β(λ)k (m∗

k)

∂m∗

k


m∗

k=m∗
k (β

0
k )

(m∗

k − m∗

k(β
0
k))+ o

(m∗

k − m∗

k(β
0
k))
 .

Taking derivatives on F (λ)i (m∗

k ,βk)with respect tom∗

j

∂F (λ)i (m∗

k ,βk)

∂m∗

j
=

∂

∂m∗

j

∂dλ

Nkm∗

k ,mk(βk)


∂θki

=
∂

∂m∗

j

Mk−
s=1

ms(βk)xsi


φλ


Nm∗

s

ms(βk)


−

Nm∗

s

ms(βk)
φ′

λ


Nm∗

s

ms(βk)


,

= −Nk
Nkm∗

j

mj(βk)
xjiφ′′

 Nkm∗

j

mj(βk)


,
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that is

∂F (λ)i (m∗

k ,βk)

∂m∗

j


(βk,m∗

k )=(β
0
k ,m

∗
k (β

0
k ))

= −Nkxji,

and hence

∂F (λ)Nk
(m∗

k ,βk)

∂m∗

k


(m∗

k ,βk)=(m∗
k (β

0
k ),β

0
k )

=

 ∂F (λ)i (m∗, θ)

∂m∗

j


(m∗,θ)=(m∗(β0),θ0)


i=1,...,B;j=1,...,Mk

= −NkX T
k ,

and

β(λ)k (m∗

k) =β(λ)k (m∗

k(β
0
k))+ (X T

k Diag(m
∗

k(β
0
k))Xk)

−1X T
k (m

∗

k − m∗

k(β
0
k))+ o

(m∗

k − m∗

k(β
0
k))
 . (25)

It is well known that for Poisson sampling Dk
Nk

converges almost surely (a.s.) tom∗

k(β
0
k) as Nk increases, which means that

Dk
Nk

∈ Ak a.s. for Nk large enough and thus according to the Implicit Function Theorem (
Dk
Nk
,β(λ)k (

Dk
Nk
)) ∈ U a.s. for Nk large

enough. We can conclude from (24)

β(λ)k


Dk

Nk


= arg min

βk∈Θk
dλ


Nk

Dk

Nk
,mk(βk)


= arg min

βk∈Θk
dλ

Dk,mk(βk)


,

which means thatβk,λ =β(λ)k (
Dk
Nk
), and hence from (25)

βk,λ − β0
k = (X T

k Diag(mk(β
0
k))Xk)

−1X T
k (Dk − mk(β

0
k))+ o

Dk − mk(β
0
k)

Nk



.

Taking into account that β1k,λ − β0
1k = eTJ+1(

βk,λ − β0
k), where eTJ+1 = (0, . . . , 0, 1), we are going to show that

eTJ+1(X
T
k Diag(mk(β

0
k))Xk)

−1
= σ 2

1k
tTk (β0

k). For that purpose we consider the design matrix partitioned according to Xk =

(U , v), where U = IJ ⊗ 1Ik , v = 1J ⊗ tk, so that for

(X T
k Diag(mk(β

0
k))Xk)

−1
=


A11 A12
A21 A22

−1

=


B11 B12
B21 B22


,

A11 = U TDiag(mk(β
0
k))U =Diag({Nkj}

J
j=1),

A12 = U TDiag(mk(β
0
k))v =


Ik−
i=1

mk1i(β
0
k )tki, . . . ,

Ik−
i=1

mkJi(β
0
k )tki

T

= AT
21,

A22 = vTDiag(mk(β
0
k))v =

J−
j=1

Ik−
i=1

mkji(β
0
k)t

2
ki,

we can use formula
B11 = A−1

11 + A−1
11 A12B22A21A−1

11
B21 = BT

12 = −B22A21A−1
11

B22 =

A22 − A21A−1

11 A12
−1

.

(26)

It follows that

eTJ+1(X
T
k Diag(mk(β

0
k))Xk)

−1
=

B21 B22


=

−B22A21A−1

11 B22


= B22

−A21A−1

11 1

,

where

A21A−1
11 =


Ik−
i=1

mk1i(β
0
k )tki, . . . ,

Ik−
i=1

mkJi(β
0
k )tki


Diag({N−1

kj }
J
j=1)

=


N−1

k1

Ik−
i=1

mk1i(β
0
k )tki, . . . ,N

−1
kJ

Ik−
i=1

mkJi(β
0
k )tki


= (tk1(β0

k), . . . ,tkJ(β0
k))
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and

B22 =


J−

j=1

Ik−
i=1

mkji(β
0
k)t

2
ki −

J−
j=1


Ik−
i=1

mkji(β
0
k )

t2kj(β0
k)

−1

=


J−

j=1

Ik−
i=1

mkji(β
0
k)t

2
ki −

J−
j=1


Ik−
i=1

mkji(β
0
k )

t2kj(β0
k)±

J−
j=1


Ik−
i=1

mkji(β
0
k )tkj

tkj(β0
k)

−1

=


J−

j=1

Ik−
i=1

mkji(β
0
k)(tki −tkj(β0

k))
2

−1

,

because
∑J

j=1

∑Ik
i=1 mkji(β

0
k )
t2kj(β0

k) =
∑J

j=1

∑Ik
i=1 mkji(β

0
k )tkj

tkj(β0
k).

Proof of Theorem 5. Reformulating Theorem 4 we obtain


Nk
β1k,λ − β0

1k


= aT

k


Nk

Dk − mk(β

o
k)

+ o

Nk


Dk

Nk
− m∗

k(β
o
k)

 ,
with aT

k ≡ σ 2
1k
tTk (β0

k)X
T
k . We would like to calculate the asymptotic distribution as a linear function of


Nk


Dk

Nk
− m∗

k(β
o
k)


L

−→
Nk→∞

N (0,Diag(m∗

k(β
0
k))).

Since

Var

aT
k


Nk

Dk − mk(β

o
k)


= aT
kVar


Nk


Nk


Dk

Nk
− m∗

k(β
o
k)


ak

= N2
k a

T
kDiag(m

∗

k(β
0
k))ak = Nkσ

2
1k,

it holds

aT
k


Nk

Dk − mk(β

o
k)
 L

−→
Nk→∞

N (0,Nkσ
2
1k). (27)

Taking into account that o
√Nk


Dk
Nk

− m∗

k(β
o
k)
 = o(OP (1)) = oP(1), according to the Slutsky’s Theorem, the

asymptotic distribution of
√
Nk
β1k,λ − β0

1k


must coincide with the asymptotic distribution of (27).

Proof of Theorem 7. From Theorem 4 subtractingβ12,λ − β0
12 toβ11,λ − β0

11 we get

(β11,λ − β0
11)− (β12,λ − β0

12) = σ 2
11tT1 (β0

1)X
T
1


(D(1)1 − m(1)

1 (β
0
1))− (D(2)1 − m(2)

1 (β
0
1))


− σ 2
12tT2 (β0

2)X
T
2


(D(1)2 − m(1)

2 (β
0
1))− (D(2)2 − m(2)

2 (β
0
1))


+ o

D1 − m1(β
0
1)

N1




− o

D2 − m2(β
0
2)

N2



.

Observe that X T
k D

(2)
k = X̄ T

k D̄
(2), k = 1, 2, and under β0

11 = β0
12 it holds X T

k m
(2)
k (β

0
k) = X̄ T

k m̄
(2)(β0), k = 1, 2. In addition,

o () function is not affected by the negative sign and under β0
11 = β0

12 it holds β0
1 = β0

2 and thus we obtain (18).

Proof of Theorem 8. We can consider the following decomposition

√
N
β11,λ −β12,λ


= (NaT

1)
√
N
D1 − m1(β

0)

N
+ (NaT

2)
√
N
D2 − m2(β

0)

N
+

√
NY , (28)
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with

√
NY = o


1
N∗

1

D1 − m1(β
0)

√
N




+ o


1
N∗

2

D2 − m2(β
0)

√
N



,

rather than (18). Note that from Assumptions 3 and 6 mk(β
0)/N = N∗

km
∗(β0) is constant as N increases and hence

√
NY = o

D1−m1(β
0)

√
N

+ o
D2−m2(β

0)
√
N

 = o (OP (1))+ o (OP (1)) = oP (1). We would like to calculate the asymptotic
distribution as a linear function of

√
N
Dk − mk(β

0)

N
L

−→
N→∞

N

0,Diag


N∗

km
∗(β0)


.

From (28) and by applying Slutsky’s theorem we can conclude that the asymptotic distribution of
√
N
β11,λ −β12,λ


is

central Normal. In order to calculate the variance we shall follow (18) so that
√
N
β11,λ −β12,λ


=

√
NX1 +

√
NX2 +

√
NX3 +

√
NY ,

with
√
NX1 = aT

1

√
N

D(1)1 − m(1)

1 (β
0)

,

√
NX2 = aT

2

√
N

D(1)2 − m(1)

2 (β
0)

,

√
NX3 =


āT
1 − āT2

√
N

D̄(2) − m̄(2)(β0)


,

√
NY = oP (1)

where āT
k ≡ σ 2

1k
tTk (β0)X̄T

k , and X1, X2 and X3 are independent random variables. Since

Var
√

NXk


= Var


aT
k

√
N

D(1)k − m(1)

k (β
0)


= NaT
kDiag(m

(1)
k (β

0))ak, k = 1, 2,

Var
√

NX3


= Var


āT
1 − āT

2

√
N

D̄(2) − m̄(2)(β0)


= N


āT
1 − āT

2


Diag(m̄(2)(β0)) (ā1 − ā2)

= N

āT
1Diag(m̄

(2)(β0))ā1 + āT2Diag(m̄
(2)(β0))ā2 − 2āT

1Diag(m̄
(2)(β0))ā2


= N


aT
1Diag(m

(2)
1 (β

0))a1 + aT
2Diag(m

(2)
2 (β

0))a2 − 2σ 2
11σ

2
12ξ12


,

with

ξ12 =tT1(β0)X̄ T
1 Diag(m̄

(2)(β0))X̄2t2(β0)

=

J−
j=1

I1−Ī−
i=1

m(2)
2ji (β

0)(t2i −t1j(β0))(t2i −t2j(β0))

=

J−
j=1

I1−Ī−
i=1

n(2)2ji

n2ji
m2ji(β

0)(t2i −t1j(β0))(t2i −t2j(β0)),

it holds

Var
√

N(X1 + X2 + X3)


= N(aT
1Diag(m

(1)
1 (β

0)+ m(2)
1 (β

0))a1

+ aT
2Diag(m

(1)
2 (β

0)+ m(2)
2 (β

0))a2 − 2σ 2
11σ

2
12ξ12)

= N(σ 2
11 + σ 2

12 − 2σ 2
11σ

2
12ξ12),

that coincides with the asymptotic variance of
√
N
β11,λ −β12,λ


.

Proof of Corollary 9. Since

tkj(β0) =t(2)kj (β
0)+

m(1)
kj•

mkj•
(t(1)kj (β

0)−t(2)kj (β
0)), k = 1, 2,
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formula (20) can be rewritten as

ξ12 =

J−
j=1

I1−Ī−
i=1

m(2)
2ji (β

0)


t2i −t(2)1j (β

0)−
m(1)

1j•

m1j•
(t(1)1j (β

0)−t(2)1j (β
0))


t2i −t(2)2j (β

0)−
m(1)

2j•

m2j•
(t(1)2j (β

0)−t(2)2j (β
0))



=

J−
j=1

I1−Ī−
i=1

m(2)
2ji (β

0)(t2i −t(2)2j (β
0))2 +

J−
j=1

I1−Ī−
i=1

m(2)
2ji (β

0)
m(1)

1j•

m1j•

m(1)
2j•

m2j•
(t(1)1j (β

0)−t(2)1j (β
0))(t(1)2j (β

0)−t(2)2j (β
0))

−

2−
k=1

J−
j=1

I1−Ī−
i=1

m(2)
2ji (β

0)(t2i −t(2)2j (β
0))

m(1)
kj•

mkj•
(t(1)kj (β

0)−t(2)kj (β
0)).

The last summand is canceled because
J−

j=1

I1−Ī−
i=1

m(2)
2ji (β

0)(t2i −t(2)2j (β
0))

m(1)
kj•

mkj•
(t(1)kj (β

0
2)−t(2)kj (β

0))

=

J−
j=1

m(1)
kj•

mkj•
(t(1)kj (β

0)−t(2)kj (β
0))

I1−Ī−
i=1

m(2)
2ji (β

0)(t2i −t(2)2j (β
0))

and
∑I1−Ī

i=1 m(2)
2ji (β

0)(t2i −t(2)2j (β
0)) = 0. Hence, it holds (22).

If region 2 is completely contained in region 1, ξ12 = 1/σ12, and therefore

Var(β11,λ −β12,λ) = σ 2
12 + σ 2

11 − 2σ 2
12σ

2
11ξ12 = σ 2

12 + σ 2
11 − 2σ 2

11,

and it follows (23).
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