A Concurrent Graph Semantics for Mobile Ambients

Fabio Gadducci and Ugo Montanari

Dipartimento di Informatica
Università di Pisa
Pisa, Italy

Abstract

We present an encoding for finite processes of the mobile ambients calculus into term graphs, proving its soundness and completeness with respect to the original, interleaving operational semantics. With respect to most of the other approaches for the graphical implementation of calculi with name mobility, our term graphs are unstructured (that is, non hierarchical), thus avoiding any “encapsulation” of processes. The implication is twofold. First of all, it allows for the reuse of standard graph rewriting theory and tools for simulating the reduction semantics. More importantly, it allows for the simultaneous execution of independent reductions, which are nested inside ambients, thus offering a concurrent semantics for the calculus.

Key words: concurrent graph rewriting, graphical encoding of process calculi, mobile ambients, reduction semantics.

1 Introduction

After the development of so-called optimal implementation of λ-calculus, many authors proposed graphical presentations for calculi with name mobility, in particular for the π-calculus [24]. These proposals usually introduce a syntactical notation for graphs, then they map processes into graphs via that notation. With a few exceptions [13,27], the resulting graphical structures are eminently hierarchical (that is, roughly, each node/edge/label is itself a structured entity, and possibly a graph), thus forcing the development of ad-hoc mechanisms for graph rewriting, in order to simulate process reduction.

1 Research partly supported by the EC TMR Network General Theory of Graph Transformation Systems (GETGRATS); by the EC Esprit WG Applications of Graph Transformations (APPLIGRAPH); and by the Italian MURST Project Teoria della Concorrenza, Linguaggi di Ordine Superiore e Strutture di Tipi (TOSCA).

2 Email: gadducci@di.unipi.it, ugo@di.unipi.it

©2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.
In this paper we present instead a general proposal for mapping processes of calculi with name mobility into unstructured, non-hierarchical graphs. As the main example we chose mobile ambients [6], partly for its rising popularity in the community, while still lacking an analysis of its concurrency features; and partly because the complex name handling presented by its reduction rules highlights the power of our framework.

In fact, we believe that the intuitive appeal of non-hierarchical graphs, and the local nature of the associated rewriting mechanism, may help cast some light on the distributed features of the calculus. To this end, our first step is to prove the soundness and correctness of our encoding of processes into graphs, in the sense that two processes are structurally equivalent if and only if the corresponding graphs are isomorphic. Our second step is to prove that the encoding is faithful with respect to the reduction semantics, in the sense that standard graph rewriting techniques may now be used to simulate reduction steps on processes by sequences of rewrites on their encodings.

One of the additional advantages of formulating the reduction semantics of mobile ambients in terms of graph rewriting is the existence of a well-developed concurrent semantics [1], which extends the concurrent semantics of Petri nets and which allows to derive graph processes, event structures and prime algebraic domains from graph transformation systems. A concurrent semantics puts an upper limit to the amount of parallelism that is intrinsic in the reductions, and moreover it allows to derive causality links between reduction steps, which can be useful in better understanding the behaviour of a process, e.g. with respect to security and non-interference.

The paper has the following structure: In Section 2 we recall the mobile ambients calculus, and we discuss two alternative reduction semantics. In Section 3 we introduce a set-theoretical presentation for (ranked term) graphs, and we define two operations on them, namely sequential and parallel composition [7,8]. These operations are used in Section 4 to formulate our encoding for processes of the mobile ambient calculus, which is then proved to be sound and complete with respect to structural congruence. Finally, in Section 5 we recall the basic tools of graph rewriting, according to the dpo approach, and we show how four simple graph rewriting rules allow for simulating the reduction semantics of the mobile ambients calculus. We then argue how the information on causal dependencies between rewriting steps offered by the concurrent semantics of graph rewriting may be used for detecting interferences among process reductions, according to the taxonomy proposed in [22]. We close the paper with a few remarks, concerning the relevance of mapping processes into unstructured graphs from the point of view of parallelism; the generality of the approach, and its relationship with ongoing work on the graphical presentation of algebraic formalisms; and finally, the way to extend our results, in order to handle recursive processes.
\[P = Q \] for \(P, Q \) \(\alpha \)-convertible;

\[P \mid Q = Q \mid P, \quad P \mid (Q \mid R) = (P \mid Q) \mid R, \quad P \mid 0 = P; \]

\((\nu n)(\nu m)P = (\nu m)(\nu n)P\) \hspace{1cm} \((\nu n)(P \mid Q) = P \mid (\nu n)Q\) \hspace{1cm} for \(n \not\in fn(P) \).

\[(\nu n)m[P] = m[(\nu n)P] \] for \(n \neq m \)

Fig. 1. The set of axioms without deadlock detection

\[(\nu n)0 = 0\]

Fig. 2. The additional axiom for deadlock detection

2 Structural congruences for mobile ambients

This section shortly introduces the finite, communication-free fragment of the mobile ambients calculus, its structural equivalence and the associated reduction semantics. In addition, we describe two alternative structural equivalences for the calculus, proving that the associated reduction semantics are in fact “coincident”, in a way to be made precise later on, to the original semantics.

2.1 The original calculus

Definition 2.1 (processes) Let \(N \) be a set of atomic names, ranged over by \(m, n, o, \ldots \). A process is a term generated by the following syntax

\[P ::= 0, n[P], M.P, (\nu n)P, P_1 | P_2 \]

for the set of capabilities

\[M ::= \text{in} \, n, \, \text{out} \, n, \, \text{open} \, n. \]

We let \(P, Q, R, \ldots \) range over the set \(\text{Proc} \) of processes.

We assume the standard definitions for the set of free names of a process \(P \), denoted by \(fn(P) \). Similarly for \(\alpha \)-convertibility, with respect to the restriction operators \((\nu n)\). Using these definitions, the dynamic behaviour of a process \(P \) is described as a relation over abstract processes, i.e., a relation obtained by closing a set of basic rules under structural congruence.

Definition 2.2 (reduction semantics) The reduction relation for processes is the relation \(R_m \subseteq \text{Proc} \times \text{Proc} \), closed under the structural congruence \(\equiv \) induced by the set of axioms in Figure 1 and Figure 2, inductively generated by the following set of axioms and inference rules

\[m[n[\text{out} \, m.P \mid Q] \mid R] \rightarrow n[P \mid Q] \mid m[R] \]

\[n[\text{in} \, m.P \mid Q] \mid m[R] \rightarrow m[n[P \mid Q] \mid R] \]

\[\text{open} \, n.P \mid n[Q] \rightarrow P \mid Q \]

\[P \rightarrow Q \]

\[P \mid R \rightarrow Q \mid R \]

\[n[P] \rightarrow n[Q] \]

where \(P \rightarrow Q \) means that \(\langle P, Q \rangle \in R_m \).
An important novelty in calculi with name mobility is the use of structural congruence for presenting the reduction semantics. This is intuitively appealing, since abstract processes allows for a simple representation (that is, modulo a suitable equivalence) of the spatial distribution of a system. Many equivalences, though, may be taken into account. Let us denote respectively as $P \rightarrow_d Q$ the reduction relation obtained by closing the inference rules presented in Definition 2.2 with respect to the structural congruence, denoted by \cong_d, induced by the set of axioms in Figure 1; and by $P \rightarrow_f Q$ the reduction relation obtained by closing the inference rules presented in Definition 2.2 with respect to the structural congruence, denoted by \cong_f, induced by the set of axioms in Figure 1 and Figure 3.

The first equivalence \cong_d is finer than \cong, since it just forbids the identification of the deadlocked processes 0 and $(\nu n)0$. Nevertheless, the mapping from abstract processes according to \cong_d, into abstract processes according to \cong, faithfully preserves the reduction semantics, as stated by next theorem.

Proposition 2.3 (deadlock and reductions) Let P, Q be processes. (1) If $P \rightarrow_d Q$, then $P \rightarrow Q$. Vice versa, (2) if $P \rightarrow Q$, then there exists a process R such that $P \rightarrow_d R$ and $Q \cong R$.

In other terms, the mapping does not add reductions. Sometimes, these kinds of mapping are also called transition preserving morphisms [11], a special form of the general notion of open map [18]. A similar property is satisfied by the mapping from abstract processes according to \cong_d, into abstract processes according to \cong_f, adding the distributivity of restriction with respect to capability (that is, letting the restrictions float to the top of a term).

Proposition 2.4 (distributivity and reductions) Let P, Q be processes. (1) If $P \rightarrow_d Q$, then $P \rightarrow_f Q$. Vice versa, (2) if $P \rightarrow_f Q$, then there exists a process R such that $P \rightarrow_d R$ and $Q \cong_f R$.

Our main theorem will present an alternative characterisation of the relation \rightarrow_f by means of graph rewriting techniques.

3 Graphs and term graphs

We open the section recalling the definition of (ranked) term graphs: We refer to [5,7] for a detailed introduction, as well as for a comparison with standard definitions such as [3]. In particular, we assume in the following a chosen signature (Σ, S), for Σ a set of operators, and S a set of sorts, such that the arity of an operator in Σ is a pair (ω_s, ω_t), for ω_s, ω_t strings in S^*.

$$(\nu n)M.P = M.(\nu n)P \text{ for } n \notin fn(M)$$

Fig. 3. The additional axiom for capability floating
Definition 3.1 (graphs) A labelled graph \(d \) (over \((\Sigma, S)\)) is a five tuple \(d = (N, E, l, s, t) \), where \(N \), \(E \) are the sets of nodes and edges; \(l \) is the pair of labeling functions \(l_e : E \to \Sigma \), \(l_n : N \to S \); \(s, t : E \to N^* \) are the source and target functions; and such that for each edge \(e \in \text{dom}(l) \), the arity of \(l_e(e) \) is \((l_n^*(s(e)), l_n^*(t(e)))\), i.e., each edge preserves the arity of its label.

With an abuse of notation, in the definition above we let \(l_n^* \) denote the extension of the function \(l_n \) from nodes to strings of nodes. In the following, we denote the components of a graph \(d \) by \(N_d, E_d, l_d, s_d \) and \(t_d \).

Definition 3.2 (graph morphisms) Let \(d, d' \) be graphs. A (graph) morphism \(f : d \to d' \) is a pair of functions \(f_n : N_d \to N_{d'} \), \(f_e : E_d \to E_{d'} \) that preserves the labeling, source and target functions.

In order to inductively define an encoding for processes, we need to define some operations over graphs. The first step is to equip them with suitable “handles” for interacting with an environment, built out of other graphs.

Definition 3.3 ((ranked) term graphs) Let \(d_r, d_v \) be graphs with no edges. A \((d_r, d_v)\)-ranked graph \((a \text{ graph \ of \ rank } (d_r, d_v))\) is a triple \(g = \langle r, d, v \rangle \), for \(d \) a graph and \(r : d_r \to d, v : d_v \to d \) the injective root and variable morphisms.

Let \(g, g' \) be ranked graphs of the same rank. A ranked graph morphism \(f : g \to g' \) is a graph morphism \(f_d : d \to d' \) between the underlying graphs that preserves the root and variable morphisms.

Two graphs \(g = \langle r, d, v \rangle \) and \(g' = \langle r', d', v' \rangle \) of the same rank are isomorphic if there exists a ranked graph isomorphism \(\phi : g \to g' \). A \((d_r, d_v)\)-ranked term graph \(G \) is an isomorphism class of \((d_r, d_v)\)-ranked graphs.

With an abuse of notation, we sometimes refer to the nodes in the image of the variable (root) morphism as variables (roots, respectively). Moreover, we often use the same symbols of ranked graphs to denote term graphs, so that e.g. \(G_{d_r, d_v} \) denotes a term graph of rank \((d_r, d_v)\).

Definition 3.4 (sequential and parallel composition) Let \(G_{d_r, d_v}^d, H_{d_r, d_v}^{d'} \) be term graphs. Their sequential composition is the term graph \(G_{d_r, d_v}^d \bowtie H_{d_r, d_v}^{d'} \) of rank \((d_r, d_v)\) obtained by first the disjoint union of the graphs underlying \(G \) and \(H \), and second the gluing of the roots of \(G \) with the corresponding variables of \(H \).

Let \(G_{d_r, d_v}^d, H_{d_r, d_v}^{d'} \) be term graphs, such that \(d_v \cap d'_v = \emptyset \). Their parallel composition is the term graph \(G_{d_r, d_v}^d \parallel H_{d_r, d_v}^{d'} \) of rank \((d_r \cup d'_r, d_v \cup d'_v)\) obtained by first the disjoint union of the graphs underlying \(G \) and \(H \), and second the gluing of the roots of \(G \) with the corresponding roots of \(H \).

3 Let \(G_{d_r, d_v}^d = \langle r, d, v \rangle \) and \(H_{d_r, d_v}^{d'} = \langle r', d', v' \rangle \) be term graphs. Then, \(G \parallel H = \langle r'', d'', v'' \rangle \), for \(d'' \) the disjoint union of \(d \) and \(d' \), modulo the equivalence on nodes induced by \(r(x) = v'(x) \) for all \(x \in N_{d_r} \), and \(r'' : d_r \to d'', v'' : d_v \to d'' \) the uniquely induced arrows. Let now \(G_{d_r, d_v}^d = \langle r, d, v \rangle \) and \(H_{d_r, d_v}^{d'} = \langle r', d', v' \rangle \) be term graphs. Then, \(G \parallel H = \langle r'', d'', v'' \rangle \), for \(d'' \) the disjoint union of \(d \) and \(d' \), modulo the equivalence on nodes induced by \(r(x) = v'(x) \) for all \(x \in N_{d_r} \cap N_{d'_r} \), and \(r'' : d_r \cup d'_r \to d'', v'' : d_v \cup d'_v \to d'' \) the uniquely induced arrows.
Fig. 4. Two term graphs, and their sequential composition

Note that the two operations are defined on “concrete” graphs. Nevertheless, the result is clearly independent of the choice of the representative, and it implies that both parallel and sequential composition are associative.

Example 3.5 (sequential composition) Let us consider the signature \((\Sigma_e, S_e)\), for \(S_e = \{s_1, s_2\}\) and \(\Sigma_e = \{f : s_1s_2 \rightarrow s_1s_2s_1, g : s_2 \rightarrow s_2s_1\}\). Two term graphs, built out of the signature \((\Sigma_e, S_e)\), are shown in Figure 4. The nodes in the domain of the root (variable) morphism are depicted as a vertical sequence on the right (left, respectively); edges are represented by their label, from where arrows pointing to the target nodes leave, and to where the arrows from the source node arrive. The root and variable morphisms are represented by dotted arrows, directed from right-to-left and left-to-right, respectively.

The term graph on the left has rank \((\{1, 2, 3\}, \emptyset)\), five nodes and one edge (labelled by \(f\)); the term graph on the middle has rank \((\{1, 2, 3\}, \{1, 2, 3\})\), four nodes and one edge (labelled by \(g\)). For graphical convenience, in the underlying graph the nodes of sort \(s_1\) are denoted by \(\bullet\), those of sort \(s_2\) by \(\circ\).

Sequential composition of term graphs is performed by matching the roots of the first graph with the variables of the second one, as shown by the term graph on the right: It has rank \((\{1, 2, 3\}, \emptyset)\), six nodes and two edges, and it is obtained by sequentially composing the other two.

A (term graph) expression is a term over the signature containing all ranked term graphs as constants, and parallel and sequential composition as binary operators. An expression is well-formed if all occurrences of both parallel and sequential composition are defined for the rank of the argument subexpressions, according to Definition 3.4; the rank of an expression is then computed inductively from the rank of the term graphs appearing in it, and its value is the term graph obtained by evaluating all operators in it.

4 Channels as wires: from processes to term graphs

The first step in our implementation is to encode processes into term graphs, built out of a suitable signature \((\Sigma_m, S_m)\), and proving that the encoding preserves structural convertibility. Then, standard graph rewriting techniques are used for simulating the reduction mechanism.

The set of sorts \(S_m\) contains the elements \(s_p\) and \(s_a\). The first symbol is reminiscent of the word process, since the elements of sort \(s_p\) can be considered as processes reached by a transition. The second sort, \(s_a\), is reminiscent of ambient, and the elements of this sort correspond to names of the calculus.
The operators are \{in : s_p \to s_ps_q, out : s_p \to s_ps_q, open : s_p \to s_ps_q\} \cup \{amb : s_p \to s_ps_q\} \cup \{go : \lambda \to s_p, idle : \lambda \to s_p\}. The elements of the first set simulate the capabilities of the calculus; the amb operator simulates ambients. Note that there is no operator for simulating name restriction; instead, the operators go and idle are syntactical devices for detecting the status of those nodes in the source of an edge labeled amb, thus avoiding to perform any reduction below the outermost capability operator, as shown in Section 5.

The second step is the characterisation of a class of graphs, such that all processes can be encoded into an expression containing only those graphs as constants, and parallel and sequential composition as binary operators. Thus, let us consider a name \(e \not\in \mathcal{N}\): Our choice is depicted in Figure 5 and Figure 6.

Definition 4.1 (encoding for processes) Let \(P\) be a process, and let \(\Gamma\) be a set of names, such that fn\((P)\) \(\subseteq \Gamma\). The encoding \([P]_\Gamma^{go}\) maps a process \(P\) into a term graph, as defined below by structural induction,

\[
[P]_\Gamma^{go} = [P]_\Gamma \otimes go
\]

\[
[0]_\Gamma = 0 \otimes (\bigotimes_{o \in \Gamma} new_o)
\]

\[
[n[P]]_\Gamma = ([P]_\Gamma \otimes idle); (amb_n \otimes (\bigotimes_{o \in \Gamma} id_o))
\]

\[
[M.P]_\Gamma = [P]_\Gamma; (M_n \otimes (\bigotimes_{o \in \Gamma} id_o)) \text{ for } M \text{ capability with } fn(M) = \{n\}
\]

\[
[(\nu n)P]_\Gamma = [P]_{\Gamma \cup \{m\}}^{\{m\}}; (\nu_m \otimes (\bigotimes_{o \in \Gamma} id_o)) \text{ for name } m \not\in \Gamma
\]

\[
[P | Q]_\Gamma = [P]_\Gamma \otimes [Q]_\Gamma
\]

where we assume the standard definition for name substitution.

Thus, the mapping prefixes the term graph \([P]_\Gamma\) with the occurrence of a “ready” tag, the go operator: It will denote an activating point for reduction.

The mapping is well-defined, in the sense that the result is independent of the choice of the name \(m\) in the rule for restriction; moreover, given a set of names \(\Gamma\), the encoding \([P]_\Gamma^{go}\) of a process \(P\) is a term graph of rank \((\{e\} \cup \Gamma, 0)\).

Example 4.2 (a graphical view of firewalls) We present the implementation of a firewall access, as proposed by Cardelli and Gordon [6]. First, some graphical conventions. The encoding of a process \(P\) is a term graph \(G = [P]_{\{k\}}\) of rank \((\{e, k\}, 0)\): We represent it by circling the expression, from where two dashed arrows leave, directed to the roots of \(G\) (hence, to the nodes of \(G\) pointed by \(e\) and \(k\), respectively). The term graph \([k[open k.Q]]_{\{k\}}^{go}\) is shown in Figure 7.
The process \((\nu w)(w[\text{open } k.P] \mid k[\text{in } k.\text{in } w.0])\), simulating a firewall, is instead implemented by the ranked term graph in Figure 8.

The mapping \([\cdot]^{\circ}_\Gamma\) is not surjective, because there are term graphs of rank \((\{e\} \cup \Gamma, \emptyset)\) that are not the image of any process; nevertheless, our encoding is sound and complete, as stated by the proposition below.

Proposition 4.3 Let \(P, Q\) be processes, and let \(\Gamma\) be a set of names, such that \(\text{fn}(P) \cup \text{fn}(Q) \subseteq \Gamma\). Then, \(P \cong_f Q\) if and only if \([P]^{\circ}_\Gamma = [Q]^{\circ}_\Gamma\).

Our encoding is thus sound and complete with respect to equivalence \(\cong_f\). It is easy to see e.g. that the processes \((\nu n)\text{out } m.\text{in } n.0\) and \(\text{out } m.(\nu n)\text{in } n.0\), for \(n \neq m\), are mapped to the same term graph, represented in Figure 9.

5 Reductions as graph rewrites

We open the section recalling the basic tools of the double-pushout (dpo) approach to graph rewriting, as presented in [9,10], and introducing a mild generalisation of its well-understood process semantics [1]. We then provide a graph rewriting system \(\mathcal{R}_m\) for modeling the reduction semantics of mobile ambients. Finally, we discuss the concurrent features of the rewriting system \(\mathcal{R}_m\), as captured by the process semantics, arguing that they enhance the analysis of the causal dependencies among the possible reductions performed by a mobile ambient process, with respect to the original interleaving semantics.
\[p : \begin{array}{c}
\begin{array}{c}
ed_L \xleftarrow{l} d_K \xrightarrow{r} d_R \\
m_L \downarrow \quad m_K \downarrow \quad m_R \downarrow
\end{array}
\end{array} \]

different produce (1) and (2) are pushout squares in the category
\[G_{\Sigma,S} \]
of graphs and graph morphisms (over the signature \((\Sigma,S)\)).

A derivation \((of length n)\) \(\rho\) in a gts \(\mathcal{G}\) is a finite sequence of direct derivations
\[d_G \xrightarrow{p_1/m_1} \ldots \xrightarrow{p_n/m_n} d_H, \]
where \(p_1, \ldots, p_n\) are productions of \(\mathcal{G}\).

5.1 Tools of \textit{dpo} graph rewriting

Definition 5.1 (graph production and derivation) A graph production
\(p : \sigma \) is composed of a production name \(p \) and of a span of graph morphisms
\(\sigma = (d_L \leftarrow l d_K \rightarrow d_R). \) A graph transformation system \((or \cts)\) \(\mathcal{G} \) is a set
of productions, all with different names. Thus, when appropriate, we denote a
production \(p : \sigma \) using only its name \(p \).

A graph production \(p : (d_L \leftarrow l d_K \rightarrow d_R) \) is injective if \(l \) is injective. A
graph transformation system \(\mathcal{G} \) is injective if all its productions are so.

A double-pushout diagram is like the diagram depicted in Figure 10, where
top and bottom are spans and (1) and (2) are pushout squares in the category
\[G_{\Sigma,S} \]
of graphs and graph morphisms (over the signature \((\Sigma,S)\)). Given a
production \(p : (d_L \leftarrow l d_K \rightarrow d_R) \), a direct derivation from \(d_G \) to \(d_H \) via
production \(p \) and triple \(m = (m_L, m_K, m_R) \) is denoted by \(d_G \xrightarrow{p/m} d_H \).

A derivation \((of length n)\) \(\rho \) in a gts \(\mathcal{G} \) is a finite sequence of direct derivations
\[d_G \xrightarrow{p_1/m_1} \ldots \xrightarrow{p_n/m_n} d_H, \]
where \(p_1, \ldots, p_n\) are productions of \(\mathcal{G}\).

Operationally, the application of a production \(p \) to a graph \(d_G \) consists of
three steps. First, the match \(m_L : d_L \rightarrow d_G \) is chosen, providing an occurrence
of \(d_L \) in \(d_G \). Then, all objects of \(G \) matched by \(d_L \leftarrow l(d_K) \) are removed, leading
to the context graph \(d_D \). Finally, the objects of \(d_R \leftarrow r(d_K) \) are added to \(d_D \),
obtaining the derived graph \(d_H \).

The role of the interface graph \(d_K \) in a rule is to characterise the elements
of the graph to be rewritten that are read but not consumed by a direct derivation.
Such a distinction is important when considering concurrent derivations, possibly
defined as an equivalence class of concrete derivations up-to so-called
shift equivalence \([9]\), identifying (as for the analogous, better-known permutation equivalence
of \(\lambda\)-calculus) those derivations which differ only for the
scheduling of independent steps. Roughly, the equivalence states the inter-
changeability of two direct derivations \(d_1 \Rightarrow d_2 \Rightarrow d_3 \) if they act either on
disjoint parts of \(d_1 \), or on parts that are in the image of the interface graphs.

A more concrete, yet equivalent notion of abstract derivation for a gts is
obtained by means of the so-called process semantics. As for the similar notion
on Petri nets \([15]\), a graph process represents a description for a derivation that
abstracts from the ordering of causally unrelated steps (as it is the case for shift equivalence),
and that offers at the same time a concrete representative for a
class of equivalent derivations. The definition below slightly generalises \([1]\).
and let \(\pi \) be the one-sorted signature containing just four constants, namely \(p, m, b, c, d \). They are readably, graph morphisms are simply depicted as thick arrows.

Let \(\rho \) be a derivation \(d_{G_0} \xrightarrow{p_1/m_1} \ldots \xrightarrow{p_n/m_n} d_{G_n} \) of length \(n \) (upper part of Figure 11). The (graph) process \(\Pi(\rho) \) associated to the derivation \(\rho \) is the \(n + 1 \)-tuple \((t_{G_0}, (p_1, \pi_1), \ldots, (p_n, \pi_n)) \): Each \(\pi_i \) is a triple \((t_{L_i}, t_{K_i}, t_{R_i}) \), and the graph morphisms \(t_{x_i} : d_{x_i} \rightarrow d_p \), for \(x_i \in \{L_i, K_i, R_i\} \) and \(i = 1, \ldots, n \), are those uniquely induced by the colimit construction shown in Figure 11.

Let \(\rho, \rho' \) be two derivations of length \(n \), both originating from graph \(d_{G_0} \). They are process equivalent if the associated graph processes are isomorphic, i.e., if there exists a graph isomorphism \(\gamma_p : d_\rho \rightarrow d_{\rho'} \) and a bijective function \(\gamma_p : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \), such that productions \(p_i \) and \(p'_{\gamma_p(i)} \) coincide for all \(i = 1, \ldots, n \), and all the involved diagrams commute.\(^4\)

A graph process associated to a derivation \(\rho \) thus includes, by means of the colimit construction and of the morphisms \(t_{x_i} \), the action of each single production \(p_i \) on the graph \(d_\rho \). From the image of each \(d_{x_i} \) is then possible to recover a suitable partial order among the direct derivations in \(\rho \), which faithfully mirrors the causal relationship among them. For example, let \((\Sigma_{ex}, S_{ex})\) be the one-sorted signature containing just four constants, namely \(\{a, b, c, d\} \); and let \(G_{ex} \) be the srs containing two rules, roughly rewriting \(a \) into \(c \) and \(b \) into \(d \). The derivation \(\rho_{ex} \) is represented in Figure 12, where, for the sake of readability, graph morphisms are simply depicted as thick arrows.

The process \(\Pi(\rho_{ex}) \) can be described as in Figure 13, extending the graph \(d_{\rho_{ex}} \) with two shaded boxes: They are labelled \(p_a \) and \(p_b \), in order to make explicit the mappings \(t_{x_i} \) (hence, the action of the rules on the initial graph).

\(^4\) Explicitly, \(\gamma_p \circ t_{G_0} = t'_{G_0} \), and \(\gamma_p \circ t_{x_i} = t'_{x_{\gamma_p(i)}} \) for \(x_i \in \{L_i, K_i, R_i\} \) and \(i = 1, \ldots, n \).
Thus, (the application of) the production p_a consumes the a edge (it is in the image of t_{La}, but not in the image of t_{Ka}), and this is denoted by the dotted arrow from a into p_a; it then reads the only node (which is indeed in the image of t_{Ka}), denoted by the dotted arrow with no head; and finally, it creates the c edge, denoted by the dotted arrow into c. Similarly, (the application of) the production p_b consumes the b edge, reads the node and creates the d edge.

We feel confident that our example underlines the connection between the process semantics for graphs, and the standard process semantics for Petri nets. This compact representation is further argued upon on Section 5.3.

5.2 A graph rewriting system for ambients

We finally introduce in this section the graph rewriting system \mathcal{R}_m. We first discuss informally its set of productions, then stating more precisely how its rewrites simulate the operational behaviour of processes.
The rule $p_{\text{open}} : (d_{Lo} \xrightarrow{t_o} d_{Ko} \xrightarrow{r_o} d_{Ro})$ for synchronising an open edge with a relevant ambient occurrence is presented in Figure 14: the graph on the left-hand side (center, right-hand side) is d_{Lo} (d_{Ko} and d_{Ro}, respectively); the action of the rule (that is, the span of graph morphisms) is intuitively described by the node identifiers. Both amb and open edges disappear after reduction, and all the connected nodes are coalesced. Notice that the reduction cannot happen unless both the node shared in the synchronisation and the node under the amb prefix are activated, i.e., are linked to an edge labelled by the go mark. After reduction, also the node under the open prefix becomes activated. The occurrence of the nodes in the interface graph allows for applying the rule in every possible context. Similarly, the occurrence of the go operators allows for the simultaneous execution of other derivations using these “tags”, since the “read” politics for edges in the interface implies that e.g. more than one pair of distinct resources may synchronise at the top level.

Let us consider now the rules p_{out} and p_{in}, for simulating the out and in reductions of the calculus, presented in Figure 15 and Figure 16. As for the p_{open} rule, the action of the two productions is described by the node identifiers. It is relevant that the ambients linked with identifier n are first consumed and then re-created by the rules, as they do not belong to the interface graphs. On the contrary, the ambients linked with identifier m are just read, and this implies that e.g. more than one reduction may act simultaneously on that ambient: This fact will be further confirmed when discussing the process semantics for the cts \mathcal{R}_m in Section 5.3.

Finally, let p_{broad} be the rule in Figure 17. It has no correspondence in the reduction semantics, and its purpose is broadcasting the activation mark to a tree of ambients, whenever its root becomes activated. An occurrence of the go operator, denoting an activating point for the process reduction, permeates into the external ambient, reaching the internal node labelled by identifier 1. Of course, the propagation cannot proceed when a capability prefix is reached.

Let the expression $d_G \Rightarrow^* d_H$ denote that d_H is obtained by a finite number of applications of the broadcasting rule p_{broad} to d_G. We can finally state the main theorems of the paper, concerning the soundness and completeness of our encoding with respect to the reduction semantics.

Theorem 5.3 (encoding preserves reductions) Let P, Q be processes, and let Γ be a set of names such that $\text{fn}(P) \subseteq \Gamma$. If the reduction $P \xrightarrow{f} Q$ is entailed, then \mathcal{R}_m entails a derivation $\{\|P\|_\Gamma\} \Rightarrow^*_b d_G \Rightarrow d_H$, such that $\{\|Q\|_\Gamma\} \Rightarrow^*_b d_H$.
by applying twice the movement on nested, yet causally unrelated occurrences of an ambient. This is a simple process, namely,

\[\text{ambient} \rightarrow \text{open} \]

The resulting graph is depicted on the right-hand side of Figure 18.

Intuitively, process reduction is simulated by first applying a sequence of reductions originating from broadcasting rules, thus enabling (by the propagation of the go operator) those events whose activating point is nested inside one or more ambients, and then simulating the actual reduction step. The mapping \(\{P\}_R \) introduced in the statement of the theorem denotes the graph (that is, a representative of the equivalence class of isomorphic graphs) underlying the term graph \(\{P\}_R \).

Theorem 5.4 (encoding does not add reductions) Let \(P \) be a process, and let \(\Gamma \) be a set of names such that \(\text{fn}(P) \subseteq \Gamma \). If \(\mathcal{R}_m \) entails a derivation \(\{P\}_R \rightarrow^*_H d_G \rightarrow^*_H d_H \), then there exists a process \(Q \) such that \(P \rightarrow^*_f Q \) is entailed and \(\{Q\}_R \rightarrow^*_H d_H \).

5.3 On causal dependency and simultaneous execution

We argued in the Introduction that the concurrent semantics of gts’s may shed some light in the understanding of process behaviour for mobile ambients.

It is in fact an obvious consideration that by our encoding we can equip mobile ambients with a concurrent semantics, simply considering for each process \(P \) of the calculus the classes of process equivalent derivations associated to the graph \(\{P\}_\text{fn}(P) \). This is intuitively confirmed by the analysis of a rather simple process, namely, \(S = m[n[P] | \text{open} n.Q] | \text{open} m.R \). The process \(S \) may obviously perform two reductions, opening either the ambient \(m \), or the ambient \(n \): These reductions should be considered as independent, since they act on nested, yet causally unrelated occurrences of an ambient. This independence becomes explicit in the graph \(d_S \), obtained by applying twice the broadcasting rule to \(\{S\}_{\{m,n\}} \), and depicted on the left-hand-side of Figure 18 (forgetting for the sake of clarity the subscripts and the dashed arrows leaving from the graphs underlying \(\{P\}_{\{m,n\}} \) and \(\{Q\}_{\{m,n\}} \) and directed to either \(m \) or \(n \)). Production \(p_{\text{open}} \) may now be applied twice, reducing either those edges linked with the node \(n \), or those linked with the node \(m \), thus simulating the reductions originating from \(S \). These rewrites may be executed in any order, resulting in two different derivations, which are nevertheless process equivalent. The resulting graph is depicted on the right-hand side of Figure 18.

Let us consider now a more complex example, and let \(T \) be the process \(m[n[\text{out} m.P] | R | o[\text{out} m.Q]] \), which can be reduced into \(n[P] | m[R] | o[Q] \) by applying twice the \(\text{out} \) reduction on ambient \(m \), and depicted in Figure 19.
GADUCCI AND MONTANARI

The two rules may be applied simultaneously, since the occurrence of the amb operator, linked to the node with identifier m, is shared. The process resulting from the colimit construction of Figure 11, if represented as in Figure 13, contains two events: The first one consumes the out edge linked with nodes 1, 2 and m, and the amb edge linked with nodes 2, 3 and n; reads the amb edge linked with nodes 3, 4 and m (and all the related nodes); and creates the amb edge linked with nodes 1 = 2, 4 and n. Symmetrically, the other consumes the out edge linked with nodes 5, 6 and m, and the amb edge linked with nodes 6, 3 and o; reads the amb edge linked with nodes 3, 4 and m (and all the related nodes); and creates the amb edge linked with nodes 5 = 6, 4 and o.

Let \(U \) be the process \(m[n[\text{out } m.P] | \text{open } n.R] \). This is listed by Levi and Sangiorgi [22] as an example of grave interference, representing a situation in the calculus that should be deprecated, and actually “should be regarded as a programming error”. The execution of the internal out reduction on the ambient m destroys the possibility to perform the execution of the external open reduction on the ambient n, and vice versa. This is confirmed by the analysis of the graph in the middle of Figure 20, obtained by applying twice the broadcasting rule to \(\{U\}_\Gamma \). The two derivations originating from that graph, and simulating the execution of the two reductions, are represented on the right-hand-side (the internal out) and on the left-hand-side (the external open). These derivations can not be extended with additional steps, in order to become process equivalent. This situation is usually described by saying that the two derivations denote a symmetric conflict of events.

More interestingly, let us consider an apparently similar instance of grave interference, represented by the process \(V = m[n[\text{out } m.P] | Q] | \text{open } m.R. \)
The external open reduction on ambient \(m \) destroys the possibility to perform the internal out reduction on the same ambient, but the vice versa does not hold. After the execution of the internal out reduction, an external open may be performed, and the two applications of \(p_{\text{open}} \) represent the same event. Since the occurrence of the amb operator is only read by \(p_{\text{out}} \) of Figure 15, the same operator is available after the rewriting step. We are thus facing an asymmetric conflict, lifting the notion from a recent extension of the event structures formalism [2]. The graph \(\{V\}_{\{m,n\}} \) is represented on the left-hand side of Figure 21; the graphs obtained by first the application of \(p_{\text{out}} \), and then of \(p_{\text{open}} \), are represented on the center and on the right-hand side of the figure.

6 Conclusions and Further Works

We presented an encoding for finite, communication-free processes of the mobile ambients calculus into term graphs, proving its soundness and completeness with respect to the original, interleaving operational semantics.

With respect to most of the other approaches for the graphical implementation of calculi with name mobility (see e.g. Milner’s \(\pi \)-nets [23], Parrow’s interaction diagrams [26], Gardner’s process frameworks [14], Hasegawa’s sharing graphs [16], Montanari and Pistore’s presentation of \(\pi \)-calculus by dpo rules [25] or König spider calculus [21]; an exception are Yoshida’s concurrent combinators [27]), we considered unstructured (that is, non hierarchical) graphs, thus avoiding any “encapsulation” of processes. The implication is twofold. First of all, it allows the reuse of standard graph rewriting theory and tools for simulating the reduction semantics, such as e.g. the dpo formalism and the hops programming system [20]. More importantly, it allows for the simultaneous execution of independent reductions, which are nested inside ambients, and possibly share some resource. While this feature is less relevant for e.g. the \(\pi \)-calculus, where each process can be considered just a soup of disjoint sequential agents (much in the spirit of Berry’s and Boudol’s cham approach [4]), it is relevant in the present context, where ambients are nested, and yet can be “permeated” by a reduction. A first, rough analysis is performed in Section 5.3, and we plan to extend our preliminary considerations to a non-deterministic concurrent semantics for mobile ambients, much in the spirit of the event structure semantics developed in [1].
Our encoding can be extended to recover the communication primitives, as long as we restrict communication to name passing: The graphs for encoding input and asynchronous output actions are depicted in Figure 22. In fact, we feel confident that any calculus with name mobility may find a presentation within our formalism, along the line of the encoding for mobile ambients. The calculus should of course contain a parallel operator which is associative, commutative and with an identity; moreover, its operational semantics should be reduction-like (i.e., expressed by unlabelled transitions), and the rules should never substitute a free name for another, so that name substitution can be handled by node coalescing (with a mechanism reminiscent of name fusion).

It should be noted that any monoidal category with a suitable enrichment (namely, where each object \(a \) is equipped with two monoidal transformations \(a \times a \to a \) and \(1 \to a \), making it a monoid) could be used as a sound model for the encoding. The relevant thing is that, among this class of models, (a suitable sub-category of) the category \(\text{RG}_{\Sigma,S} \) of graphs as objects, and ranked graphs as morphisms, is the initial one \([5,7]\), so that Proposition 4.3 is just a corollary of this general result. Our work is thus tightly linked with ongoing research on the graphical presentations for categorical formalisms, as e.g. on premonoidal \([17]\) and traced monoidal \([19]\) categories. More importantly, also graph processes may be equipped with an algebraic structure \([8,12]\), thus providing a formalism for denoting also reductions in mobile ambients.

As for the finiteness conditions, it is a different matter. In fact, it is a difficult task to recover the behaviour of processes including a replication operator, since replication is a global operation, involving the duplication of necessarily unspecified sub-processes, and it is hence hard to model via graph rewriting, which is an eminently local process. Nevertheless, our framework allows for the modeling of recursive processes, that is, defined using constant invocation, so that a process is a family of judgments of the kind \(A = P \). Thus, each process is compiled into a different graph transformation system, adding to the four basic rewriting rules a new production \(p_A \) for each constant \(A \), intuitively simulating the unfolding step \(\{ A \}_{\Gamma} \Rightarrow \{ P \}_{\Gamma} \), for a suitable \(\Gamma \).

References

