
Developmental Cell

Article
Coordinated Lumen Contraction and Expansion
during Vulval Tube Morphogenesis
in Caenorhabditis elegans
Sarfarazhussain Farooqui,1,2 Mark W. Pellegrino,1,3 Ivo Rimann,1,4 Matthias K. Morf,1,2 Louisa Müller,1 Erika Fröhli,1
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SUMMARY

Morphogenesis is a developmental phase during
which cell fates are executed. Mechanical forces
shaping individual cells play a key role during tissue
morphogenesis. By investigating morphogenesis of
the Caenorhabditis elegans hermaphrodite vulva,
we show that the force-generating actomyosin
network is differentially regulated by NOTCH and
EGFR/RAS/MAPK signaling to shape the vulval
tube. NOTCH signaling activates expression of the
RHO kinase LET-502 in the secondary cell lineage
through the ETS-family transcription factor LIN-1.
LET-502 induces actomyosin-mediated contraction
of the apical lumen in the secondary toroids, thereby
generating a dorsal pushing force. In contrast, MAPK
signaling in the primary lineage downregulates
LET-502 RHO kinase expression to prevent toroid
contraction and allow the gonadal anchor cell to
expand the dorsal lumen of the primary toroids.
The antagonistic action of the MAPK and NOTCH
pathways thus controls vulval tube morphogenesis
linking cell fate specification to morphogenesis.

INTRODUCTION

Organogenesis requires the differentiation of selected cells fol-

lowed by tissue morphogenesis, which involves cell shape

changes, cell-cell interactions, and coordinated cell movements.

Tubes are the basic building blocks of most epithelial organs.

Tube morphogenesis is therefore an essential process in various

developmental processes such as embryonic development,

tissue vascularization, and the development of most epithelial

organs (Andrew and Ewald, 2010; Rodrı́guez-Fraticelli et al.,

2011). During tissue morphogenesis, mechanical forces gener-

ated between cells are necessary to determine the proper size

and shape of an organ. With a high degree of mechanical

coupling between cells, tissue morphogenesis could be gov-

erned by forces from a few cells pushing or pulling all other cells
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(Gov, 2007). Major challenges are therefore to identify the cells

that exert physical forces and the molecular pathways that

control the generation of forces. In vivo models used to address

these questions include vascular sprouting and branching in

vertebrates, neuroblast migration during lateral line formation

in the Zebrafish embryo, border cell migration in Drosophila

ovaries, and tracheal morphogenesis in the Drosophila embryo

(Rodrı́guez-Fraticelli et al., 2011; Schottenfeld et al., 2010). In

most cases, ‘‘leader cells’’ at the front of an advancing group

of cells generate forces that are transmitted rearward from cell

to cell and thus act to pull along the ‘‘follower cells’’ (Gov,

2007; Omelchenko et al., 2003; Poujade et al., 2007; Vaughan

and Trinkaus, 1966). However, forces that arise predominately

within follower cells and extend over several cell rows to cells

at the leading edge have been observed during the collective

migration of cultured MDCK cells (Xavier Trepat et al., 2009).

Here, we are investigating morphogenesis of the Caenorhab-

ditis elegans hermaphrodite vulva, a tubular organ that connects

the uterus to the outside and permits egg laying. While the

molecular mechanisms that regulate cell fate specification

during vulval induction have been characterized in great detail,

much less is known about the signaling pathways controlling

vulval morphogenesis (Sternberg, 2005). During vulval induction,

the interplay between the EGFR/RAS/MAPK and NOTCH path-

ways determines the two vulval cell fates. The gonadal anchor

cell (AC) induces the primary (1�) cell fate in the adjacent vulval

precursor cell (VPC) P6.p by activating the EGFR/RAS/MAPK

pathway. High levels of MAPK activity in P6.p result in the phos-

phorylation and inactivation of the LIN-1 ETS transcription factor

that represses 1� cell fate specification in the remaining VPCs

(Beitel et al., 1995). P6.p then induces via a lateral DELTA/

NOTCH signal the neighboring VPCs P5.p and P7.p to adopt

the secondary (2�) cell fate (Greenwald, 2005). The three induced

VPCs—P5.p, P6.p, and P7.p—go through three rounds of

cell divisions to generate 22 vulval cells with seven distinct sub-

fates. The seven descendants of each P5.p and P7.p adopt

the VulA, VulB1, VulB2, VulC, and VulD subfates, while the eight

1� descendants of P6.p adopt the VulE and VulF subfates (Fig-

ure 1I) (Sharma-Kishore et al., 1999). During the subsequent

phase of morphogenesis, the vulval cells invaginate and move

dorsal (i.e., from the ventral midline toward the dorsal uterus)

to form the vulval lumen. At the same time, the cells extend
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Figure 1. LIN-12 NOTCH Induces LET-502 Expression in the 2� Vulval Lineage via LIN-1 ETS

(A) Structure of the transcriptional Plet-502::gfp reporter. The locations of the four LBS and EBS sites are indicated.

(B–H’) Time-course analysis of Plet-502::gfp expression from the L2 until the L4 stage with, in (B’) through (D’), the corresponding Nomarski images. (E) Plet-502::gfp

expression and (E’) the corresponding Nomarski image in lin-12(lf), (F and F’) lin-12(gf), (G and G’) lin-1(lf), and (H and H’) lin-12(gf); lin-1(lf)mutants. In all panels,

anterior is to the left and ventral is to the bottom, and the dotted lines represent the uterine-vulval boundary. Scale bar, 5 mm.

(I) Summary of the let-502 expression pattern in the vulval cell lineage. The VulA through VulF subfates are indicated.

(J) Model for the transcriptional regulation of let-502 by LIN-12, LET-23 EGFR, MPK-1 MAPK, and LIN-1. Alleles used: lin-12(n137 gf), lin-12(n137 gf n720lf),

lin-1(n301), and sIs1078.
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circumferentially toward the vulval midline, where they make ho-

motypic contacts with their contralateral partner cells of the

same subfate, thereby forming seven concentric epidermal rings

called vulval toroids (Figure 7K). In a final step, the AC expands

the dorsal lumen of VulF (Estes and Hanna-Rose, 2009) and

fuses with the uterine-seam cell (utse) syncytium.

We have found that NOTCH signaling in the 2� cells positively

regulates via the LIN-1 transcription factor expression of the

Rho-kinase LET-502, which induces a contractile force on the

apical surface of the 2� toroids and thereby generates a dorsal

pushing force. EGFR/RAS/MAPK signaling, on the other hand,

prevents contraction of the 1� toroids by repressing LET-502
Developmen
expression, allowing the AC to expand the 1� toroid lumen and

connect the toroids to the uterus. Thus, the antagonistic NOTCH

and RAS/MAPK signaling pathways coordinate actomyosin-

induced forces to shape the toroids.

RESULTS

LET-502 Is Differentially Expressed in the 1� and 2�

Vulval Cell Lineages
We identified let-502, which encodes a Rho-activated kinase

(Wissmann et al., 1997), as a gene specifically expressed in the

2� vulval lineage in an in silico screen for genes containing at
tal Cell 23, 494–506, September 11, 2012 ª2012 Elsevier Inc. 495
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least three conserved LAG-1 binding sites (LBSs) (Christensen

et al., 1996) in their regulatory regions (dashed arrows in Fig-

ure 1A) (S.F. and A.H., unpublished data). To analyze the expres-

sion pattern of let-502 during vulval development, we examined

the expression of a Plet-502::gfp transcriptional reporter contain-

ing 2.8 kilobase (kb) pairs upstream of the let-502 translational

start site fused to a gfp cassette (a kind gift of the C. elegans

Gene Expression Consortium). Plet-502::gfp was expressed at

equal levels in P3.p–P8.p before vulval induction in early to

mid-L2 larvae (Figure 1B; data not shown). During vulval induc-

tion, Plet-502::gfp was downregulated in the 1� descendants of

P6.p, while expression gradually increased in the P5.p and

P7.p descendants that form the 2� lineage (Figures 1C and 1I).

let-502 expression peaked at the onset of vulval morphogenesis,

when highest expression was observed in the 2� cells (Figures

1D and 1I; Figure S1A available online). Thus, let-502 transcrip-

tion is upregulated in the 2� cells and downregulated in the 1�

cells after the vulval cell fates have been specified.

LET-502 Expression Is Regulated by LIN-12 NOTCH
Signaling via LIN-1 ETS
Since the 2� lineage-specific expression of let-502 is character-

istic of LIN-12 target genes, we tested if LIN-12 controls let-502

transcription. Plet-502::gfp was expressed in the ectopic 2� cells
induced in lin-12(gf) mutants, while vulval let-502 expression

was absent in lin-12(lf) mutants, in which P5.p and P7.p adopt

the 1� or 3� instead of the 2� cell fate (Figures 1E and 1F) (Green-

wald, 2005). To test if LIN-12 directly regulates let-502 transcrip-

tion, we created the Plet-502 DLBS::gfp reporter, in which all four

LBSs had been mutated from RTGGGAA to RAGGGAA. Surpris-

ingly, the Plet-502 DLBS::gfp mutant reporter did not show any

change in the expression pattern (Figure 2A; Figure S1B), sug-

gesting that let-502 is an indirect LIN-12 target. Deletion analysis

of the let-502 regulatory region identified an enhancer element

required for 2�-specific expression in a 300 bp region between

positions �1800 and �1400 containing a cluster of four putative

ETS binding sites (EBS) defined by the motif GGAA/T (Figure 2A)

(Sementchenko and Watson, 2000; Zhang and Greenwald,

2011). The lin-1 gene encodes an ETS family transcription factor

that was originally identified as a repressor of vulval develop-

ment (Beitel et al., 1995). We thus examined let-502 expression

in lin-1(n304lf)mutants, in which all six VPCs adopt an alternating

pattern of 1� and 2� cell fates. Even though P5.p and P7.p

execute a normal 2� cell lineage in lin-1(lf) mutants, no vulval

expression of the Plet-502::gfp reporter was observed in lin-1(lf)

mutants (Figure 1G). To determine the epistatic relationship

between lin-12 and lin-1, we analyzed Plet-502::gfp expression

in lin-12(gf); lin-1(lf) double mutants, in which all VPCs

adopt a 2� cell fate. Similar to lin-1(lf) single mutants, no vulval

Plet-502::gfp expression was detected in lin-12(gf); lin-1(lf) double

mutants (Figure 1H), indicating that LIN-12 regulates let-502

expression indirectly via LIN-1. Since LIN-1 activity is negatively

regulated by MAPK phosphorylation in 1� cells and LIN-12

signaling blocks MAPK activation in 2� cells by inducing inhibi-

tors of the RAS/MAPK pathway such as the MAPK phosphatase

LIP-1 (Berset et al., 2001; Greenwald, 2005), we hypothesized

that the nonphosphorylated form of LIN-1 may act downstream

of LIN-12 as a positive regulator of let-502 transcription in the 2�

cell lineage (Figure 1J).
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The Nonphosphorylated Form of LIN-1 Activates let-502

Transcription in the 2� Vulval Cells
To test the model shown in Figure 1J, we generated the Plet-502

DEBS::gfp reporter, in which the four putative EBS were deleted

(Figure 2A). In two of three transgenic Plet-502DEBS::gfp lines, no

reporter expression was detected in the vulval cells, and a third

line showed weak expression (Figures 2A and S1C). We then

examined whether LIN-1 binds to the let-502 enhancer region

by performing chromatin immunoprecipitation (ChIP) experi-

ments (Mukhopadhyay et al., 2008). Since LIN-1 activity is nega-

tively regulated by MPK-1-mediated phosphorylation at the

C terminus, we generated a nonphosphorylatable version of

LIN-1 by truncating 90 amino acids from the C terminus, analo-

gous to the mutation in the lin-1(e1790) gain-of-function allele

(Jacobs et al., 1998). This constitutively active LIN-1 (LIN-

1DCT) was tagged with hemagglutinin-streptavidin (HA) at the

N terminus and expressed under control of the heat shock

promoter (hs::HA::lin-1DCT). In hs::HA::lin-1DCT animals

analyzed 4 hr after a brief heat shock by ChIP, we detected

strongest binding to region B (positions �1518 to �1660 bp)

that spans the four EBS and weaker binding to regions A and

C (Figures 2A and 2B). In hs::HA::lin-1DCT animals that had

not been heat shocked, binding to region B was still above back-

ground levels, probably because of basal activity of the heat

shock promoter at the standard growth temperature (Figure 2B).

Next, we investigated whether induction of LIN-1DCT after cell

fate specification has occurred was sufficient to induce let-502

expression. In hs::lin-1DCT; Plet-502::gfp animals that had been

heat shocked at thePnp.x stage, let-502 expressionwas upregu-

lated in the 1� and 2� cells at the onset of invagination (Figures 2C
and 2D). However, if LIN-1DCT expression was induced later

during thePn.pxx orPn.pxxx stages, elevated let-502 expression

was only detected in the 2� toroids of L4 larvae, suggesting that,

at later stages, LIN-1 is not sufficient to induce let-502 in the 1�

lineage (Figures 2E and 2F). We also examined lin-31, which

encodes a Forkhead transcription factor that represses the 1�

vulval cell fate in P6.p together with LIN-1 (Tan et al., 1998; Miller

et al., 1993). let-502 continued to be expressed in lin-31(lf)

mutants, both in the descendants of the ectopically induced

distal VPCs and in the P5.p and P7.p descendants (Figure 2G).

Thus, LIN-1doesnot require LIN-31 to induce let-502expression.

Since the MAP kinase MPK-1 inactivates LIN-1 via phosphor-

ylation, we hyperactivated MPK-1 using a heat-shock-inducible

mpk-1 transgene (hs::mpk-1) to temporally control LIN-1 activity

(Lackner and Kim, 1998). Consistent with the model shown in

Figure 1J, an increase in MPK-1 activity at the Pn.px-to-Pnp.xx

stage resulted in the loss of let-502 expression at the late L4

(Pn.pxxx) stage (Figure 2I).

Taken together, the binding of LIN-1DCT to EBS sites that

are required for vulval let-502 expression and the changes in

let-502 reporter expression after activation or inactivation of

LIN-1 indicate that the LIN-1 positively regulates let-502 tran-

scription in the 2� cell lineage.

LET-502 Is Required for Toroid Contraction during
Vulval Morphogenesis
To investigate the role of LET-502 during vulval morphogenesis,

we examined the apical cell junctions of the toroids using a

DLG-1::RFP reporter (Diogon et al., 2007). In addition, we
evier Inc.



Figure 2. Nonphosphorylated LIN-1 Induces let-502 Transcription in the 2� Vulval Cells
(A) Structure of reporter constructs used to assay let-502 promoter activity. Three independent lines were analyzed for each construct. Arrows indicate the

positions of the putative ETS binding sites (EBS) and arrowheads indicate the LAG-2 binding sites (LBS). Gray arrowheads in the DLBS construct indicate the

point mutations changing the LBS from RTGGGAA to RAGGGAA. Grey arrows in the DEBS construct indicate the deletions of the EBS and the deleted

nucleotides are shaded in gray. The double-headed arrows indicate regions A, B, and C used as probes for ChIP.

(B) Binding of LIN-1DCT to the let-502 50 regulatory region detected by ChIP followed by Q-PCR. A, B, and C refer to the probe regions shown in (A) and 30 to
a probe at the 30 end of the gene. Error bars indicate the SDs of three experiments. **p % 0.01, ***p % 0.001, two-tailed t tests.

(C–I’) Plet-502::gfp expression and the (C’) corresponding Nomarski image in a hs::lin-1DCT larva at the onset of invagination (late Pn.pxx to early Pn.pxxx stage)

without heat shock, and in (D) and (D’), the same stage after heat shock at the Pn.px stage. (E), (E’), (F), and (F’) showPlet-502::gfp expression in a hs::lin-1DCT larva

at the late L4 (Pn.pxxx) stage without and after heat shock at the late Pn.pxx stage, respectively. (G) and (G’) show Plet-502::gfp expression in a lin-31(lf) L4 larva.

Note that expression was detected in the P.5 and P7.p descendant (arrows) as well as in the ectopically induced P3.p and P4.p descendants (underlined). (H) and

(H’) showPlet-502::gfp expression in a hs::mpk-1 larva without and, in (I) and (I’) after heat shock at the Pn.pxx stage. In all panels, anterior is to the left and ventral is

to the bottom, and the dotted lines represent the uterine-vulval boundary. Scale bars, 5 mm. Alleles used in (A): zhEx393, 398, 399, 401-405, (B): zhEx394,

(C through I): lin-31(n301), gaIs36, zhEx395, sIs10781.

See also Figure S1.
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visualized filamentous actin (F-actin) microfilaments (MFs)

using a reporter, in which the actin-binding domain of Abp140

(first 17 amino acids) had been fused to GFP and expressed

under control of the pan-epithelial dlg-1 promoter (Pdlg-1::Life-

Act::gfp) (Pohl and Bao, 2010).

In the 2� VulA, VulB1, and VulB2 toroids of wild-type L4 larvae,

actinMFswere arranged in circumferential rings, which localized

in proximity to DLG-1::RFP outlining the apical junctions on the

luminal side of the toroids (Figures 3A and 3C). In contrast, the

MFs in the 1� VulE and VulF toroids formed a pyramid-shaped
Developmen
meshwork oriented along the dorsoventral (D/V) axis, thereby

connecting VulE and VulF on the dorsal side to the ventral uterus

and on the ventral side to the 2� toroids. Weak LifeAct::GFP

staining was also visible in the cell bodies of VulB1 and VulB2

(asterisks in Figure 3A).

We next examined the toroids in let-502(ok1283) null mutants,

which carry a 1,435 bp deletion removing the Rho binding and

pleckstrin-homology (PH) domains and causing a frameshift in

the remaining exons, which results in a zygotic adult sterile

phenotype as reported for other let-502(lf) alleles (Figure S3A)
tal Cell 23, 494–506, September 11, 2012 ª2012 Elsevier Inc. 497



Figure 3. LET-502 Is Required for Toroid Contraction during Vulval

Morphogenesis

(A–D’’) 3D reconstructions of LifeAct::GFP expression to visualize polymerized

actin, (A’) DLG-1::RFP to visualize the apical junctions and (A’’) the merged

images in the toroids of a wild-type L4 and (B through B’’) a let-502(lf) L4 larva.

(C) through (D’’) show ventrolateral projections of the same animals. The

dashed lines in all panels indicate the uterine-vulval boundary. The double

arrows in (A) and (B) indicate the height of 1� toroids, and in (A’) and (B’) the 2�

toroid height between the dotted lines. The dashed bracket indicates the VulA

lumen diameter. The dashed boxes in (A) and (D) indicate the regions magni-

fied in the insets showing midsagittal sections. The asterisks in (A), (B), (C), and

(D) indicate LifeAct staining in the cell bodies. The arrowheads in (C) through

(D’’) indicate the vulval lumen.

(E) Average VulA lumen diameter in wild-type, let-502(lf), and let-502(lf)

mutants rescued with a 12.8-kb let-502 genomic fragment. For details on the

measurement points used to quantify each parameter, see Figure S5.

(G) Average 1� and 2� toroid heights in wild-type and let-502(lf) mutants. The

numbers in brackets indicate the number of animals analyzed, and the error

bars indicate SDs. **p% 0.01, ***p% 0.001, two-tailed t tests. Scale bar, 5 mm.

Alleles used: let-502(ok1283), mcIs46, and zhIs396.

See also Figure S2.
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(Wissmann et al., 1999). In let-502(ok1283) larvae, we did not

observe an obvious change in cell fate marker expression (Fig-

ure S2) or the number of vulval toroids, although the overall

shape of the toroids appeared to be distorted (Figures 3B and

3D). The average diameter of the 2� VulA toroid lumen diameter

was increased about 2-fold, while the combined height of the 2�

toroids was decreased (Figures 3E and S3A). The 1� VulE and

VulF toroids, on the other hand, were stretched along the D/V

axis, and their combined height was increased (Figures 3B and

3G). Moreover, actin MFs in the 2� VulA, VulB1, and VulB2

toroids of let-502(ok1283)mutants appeared to be slightly disor-

ganized, even though they still formed circumferential rings (Fig-

ure 3D). A 12.8 kb genomic fragment spanning the entire let-502

locus and including the downstream gene C10H11.8, which may

be in an operon together with let-502, rescued the toroid

morphogenesis defects of let-502(ok1283) mutants (Figure 3F;

Figure S3A). Finally, a translational LET-502::GFP reporter

showed expression near the apical lumen of the 2� toroids and

weak or undetectable expression in 1� toroids (Figure S3B).

Taken together, the increased diameter and decreased height

of the 2� toroids in let-502 mutants together with the circumfer-

ential localization of actin MFs near the apical junctions of the

2� toroids suggested that actomyosin-mediated contraction on

the luminal side of the 2� toroids is essential to shape the vulval

toroids.

LET-502 Regulates 1� and 2� Toroid Diameters
by Inducing Actomyosin Contraction
We visualized myosin MFs either by staining L4 larvae with anti-

bodies against non-muscle myosins NMY-1 and NMY-2 (Piekny

et al., 2003) or by observing expression of a myosin light chain

MLC-4 reporter containing 2.83 kbp of 50 regulatory sequences

(Figure 4A; Figures S3D and S3E). Here, we observed localiza-

tion of an MLC-4R17A18::GFP nonphosphorylatable mutant,

although the same localization was observed with the constitu-

tively active MLC-4D17D18 mutant (Gally et al., 2009; data not

shown). MLC-4 and the nonmuscle myosins were localized

similar to actin MFs near the apical junctions. However, while

NMY-1 and NMY-2 were equally expressed in all toroids,

MLC-4(RA)::GFP was only detected in the VulA, VulB1, and

VulB2 toroids (Figure 4A). During eversion in the final phase of

vulval morphogenesis, MLC-4::GFP was detected in all toroids

(data not shown). Thus, the VulA, VulB1, and VulB2 toroids

contain actin-myosin bundles organized in circumferential rings,

while the VulC, VulD, VulE, and VulF toroids contain lower

amounts of MLC-4 and no circumferential actin MFs.

Since LET-502 Rho Kinase phosphorylates MLC-4 to induce

actomyosin contraction (Diogon et al., 2007), we examined

whether expression of the constitutively active MLC-4DD

mutant rescued the enlarged diameter of the 2� toroids in let-

502(ok1283) mutants. Since let-502(ok1283); mcEx402[Pmlc-4::

mlc-4DD::gfp] animals were inviable for unknown reasons, we

used RNAi to knock down let-502 function. While let-502 RNAi

caused approximately a 40% increase in 2� toroid diameter in

nontransgenic controls, no significant increase in lumen diam-

eter was observed in the transgenic [Pmlc-4::mlc-4DD::gfp]

siblings treated with let-502RNAi on the same plates (Figure 4D).

Thus, LET-502 induces actomyosin-mediated contraction of the

2� toroids via MLC-4.
evier Inc.



Figure 4. Localization of MLC-4 and Ectopic Expression in 1�

Toroids

(A) Confocal midsagittal section of MLC-4RA::GFP (A’) DLG-1::RFP and (A’’)

the merged images in the toroids of an L4 larva. The arrows point at

MLC-4RA::GFP localized near the apical junctions of the VulA, VulB1, and

VulB2 toroids.

(B–B’’) Nomarski image of a Pvab-23::mlc-4RA::gfp L4 larva showing normal

expansion of the dorsal lumen outlined with a dashed line. (B’) DLG-1::RFP

and (B’’) themergedMLC-4::GFP and DLG-1::RFP images of the same animal.

The insets show an upper plane with 1� VulE and VulF toroids expressing

MLC-4RA::GFP labeled with asterisks.

(C–C’’) Nomarski image of a Pvab-23::mlc-4DD::gfp L4 larva showing incom-

plete expansion of the dorsal lumen. (C’) DLG-1::RFP and (C’’) the merged

images of the same animal are shown. Scale bars, 10 mm.

(D) Average VulA lumen diameter in wild-type and mlc-4::DD::gfp L4 larvae

treated with let-502 RNAi or empty vector control. mlc-4::DD::gfp transgenic

animals were compared to nontransgenic siblings on the same RNAi plates.

(E) Average dorsal lumen diameter in Pmlc-4::mlc-4RA::gfp, Pvab-23::mlc-

4RA::gfp, and Pvab-23::mlc-4DD::gfp L4 larvae measured at the VulE/VulF

junctions as described in Figure S5. The numbers in brackets indicate the

number of animals analyzed, and the error bars indicate the SDs. p-values

obtained in two-tailed t tests are indicated as **p% 0.01, ***p% 0.001. Alleles

used: mcIs46, zhEx437, zhEx438, zhEx439, and mcEx402.

See also Figures S3 and S4.
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During the mid-L4 stage, the AC invades and expands the

dorsal lumen formed by the 1� toroids (Estes and Hanna-Rose,

2009). We therefore examined the role of actomyosin MFs in

dorsal toroid lumen expansion by expressing constitutively

active MLC-4DD in the 1� VulF and VulE toroids under control

the vab-23 promoter (Pvab-23::mlc-4DD::gfp), and as negative

control the nonphosphorylatable MLC-4RA mutant (Pvab-23::

mlc-4RA::gfp; Figures 4B and 4C) (Pellegrino et al., 2011). The

diameter of the dorsal toroid lumen in Pvab-23::mlc-4DD::gfp

animals was significantly reduced compared to Pvab-23::mlc-

4RA::gfp or Pmlc-4::mlc-4RA::gfp controls (Figure 4E). A similar

phenotype was observed after RNAi knockdown of the mel-11

phosphatase, which inhibits actomyosin contraction by dephos-

phorylating MLC-4 (Figures S3F and S4) (Wissmann et al., 1999).

We conclude that ectopic actomyosin contraction in the 1�

toroids prevents proper expansion of the dorsal toroid lumen.

Hence, RAS/MAPK signaling represses let-502 expression in

the 1� toroids to permit dorsal lumen expansion by the AC.

LIN-1 Regulates Multiple Aspects of Vulval
Morphogenesis
Since LIN-1 directly activates let-502 transcription in the 2� vulval
cells, we examined if loss of lin-1 function may cause similar

vulval morphogenesis defects as let-502(lf), in addition to the

ectopic vulval induction caused by loss of the inhibitory LIN-1

function during fate specification. We first examined vulval toroid

formation in lin-1(n304lf) mutants at the L4 stage by staining the

apical junction marker AJM-1. Although P5.p, P6.p, and P7.p

adopt a normal 2�-1�-2� pattern of cell fates based on cell lineage

analysis (Beitel et al., 1995), their descendants failed to form ring-

like structures characteristic of vulval toroids (Figure 5B).

Instead, the vulval cells retained a square shape and failed to

extend the circumferential processes containing actin bundles

that were observed in the wild-type (Figure 5F). In contrast, in

animals carrying a gain-of-function mutation in let-60 ras, P5.p,

P6.p, and P7.p formed toroids with a similar morphology as in

the wild-type (Figure 5C) (Sharma-Kishore et al., 1999), indi-

cating that hyperactivation of the RAS pathway per se does

not disrupt vulval morphogenesis.

To further investigate the role of LIN-1 during vulval morpho-

genesis, we inactivated LIN-1 after vulval fate specification by

providing a pulse of MPK-1 activity in all vulval cells. When

hs::mpk-1 animals were heat shocked at the Pnp.xx-Pnp.xxx

stage (Figure 5A), we observed not only a loss of let-502 expres-

sion as shown in Figure 2I but also an abnormal toroid formation

(Figure 5E). Except for the VulF cells, no toroid-like structures

were formed by the P5.p, P6.p, and P7.p descendants at the

L4 stage, similar to lin-1(n304) mutants. Moreover, the diameter

of the vulval lumen was increased to a similar extent as in let-

502(ok1283) mutants (Figure 5G).

Thus, inactivation of LIN-1 after vulval induction almost

completely disrupts vulval toroid formation, suggesting that

LIN-1 regulates vulval morphogenesis by controlling additional

target genes besides let-502.

Contraction of the 2� Toroids and Expansion of the 1�

Toroids by the AC Shape the Vulval Tube
The increased lumen diameter and reduced height of the 2�

toroids in let-502 mutants suggested that the contraction of
tal Cell 23, 494–506, September 11, 2012 ª2012 Elsevier Inc. 499



Figure 5. LIN-1 RegulatesMultiple Aspects of VulvalMorphogenesis

(A) Lineage diagram showing the timing ofmpk-1 induction by heat shock and

observation by 3D microscopy.

(B and C) Vulval toroid junctions visualized by MH27 antibody staining in (B)

a lin-1(lf) and (C) a let-60(gf) mutant L4 larva.

(D–E’) Vulval toroid junctions at the L4 stage visualized by DLG-1::RFP

expression (D) without and (E) after heat shock induction of MPK-1 at the

Pn.pxx stage. (D’) and (E’) show midsagittal sections of the animals shown in

(D) and (E), respectively.

(F) Polymerized actin visualized with LifeAct::GFP expression in a lin-1(lf) L4

larva. Note the absence of circumferential actin rings formed in 2� cells as

shown for the wild-type in Figure 3A. The dashed lines indicate the vulval-

uterine boundary and the dashed brackets the diameters of the multiple

invaginations. Scale bars, 5 mm.

(G) Average VulA diameter without and after heat-shock induction of

MPK-1 measured as described in Figure S5. The numbers in brackets indicate

the number of animals analyzed, and the error bars indicate the SDs.
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the 2� toroids might generate a dorsal (i.e., from ventral toward

dorsal) pushing force during vulval invagination. To test this

hypothesis, we performed cell ablation experiments removing

the 2� descendants of P5.p and P7.p at the Pn.pxx stage before

the onset of vulval invagination. Ablation of the 2� vulval cells

alone did not block invagination of the remaining 1� cells but

rather caused an increase in the height of the 1� toroids (Figures
6B and 6E; n = 11). The residual invagination and increased

height of the 1� toroids in the absence of 2� cells suggested

the existence of tension created by the attachment of the dorsal

toroids to the uterus. We therefore ablated the AC before

the onset of invagination at the Pn.pxx stage. AC ablation pre-

vented dorsal lumen expansion and caused an increase of the

1� and a simultaneous decrease of the 2� toroid height despite

the normal contraction of the 2� toroids (Figures 6C and 6E;

n = 10). Interestingly, AC ablation increased the height of the

1� VulF but not the VulE toroid, while ablation of the 2� cells

increased the height of both the VulF and VulE toroids (Figure 6F).

Finally, simultaneous ablation of the AC and the 2� cells resulted
in the formation of a very small vulval lumen without a connection

between the uterus and the cuticle (Figure 6D; n = 10). The height

of the remaining 1� toroids could not be reliably quantified due

to their small size and severely distorted morphology. Taken

together, the ventral contraction of the 2� toroids by the actomy-

osinMFs and the lateral expansion of the 1� toroids by the AC are

both required to shape the vulval tube and form a normal

invagination.

Quantitative Analysis of Shape Changes during Toroid
Morphogenesis
To quantify the dynamic shape changes of the toroids, we

followed vulval morphogenesis in wild-type L4 larvae express-

ing the apical junction marker AJM-1::GFP (Köppen et al.,

2001) by time-lapse (four-dimensional; 4D) microscopy and

measured the changes in toroid diameter and height over

time. As the diameter of the ventral-most VulA toroid lumen

decreased to its final size of less than 15 mm, the height of the

2� toroids increased, while 1� toroid height remained more or

less constant (Figures 7A, 7F, and 7G; Movie S1). After the 2�

toroids had fully contracted in mid-L4 larvae, we observed

how the invading AC expanded the diameter of the dorsal toroid

lumen (Figures 7B and 7H; Movie S1). The height of the 2�

toroids further increased during this final phase of dorsal toroid

lumen expansion (Figure 7I). In AC-ablated animals, on the other

hand, the dorsal toroid lumen did not expand and the 1� toroid

lumen remained small (Figure 6C). We also observed the vulval

cell bodies during ventral lumen contraction and dorsal lumen

expansion using a CED-10::GFP reporter, which labels the

plasma membranes (Lundquist et al., 2001). Despite the

changes in lumen size, the positions of the vulval cell bodies

during ventral toroid contraction and dorsal expansion re-

mained constant relative to the uterine cells (Movie S2; data

not shown), indicating that vulval invagination is driven predom-

inantly by changes in toroid shape rather than by active cell

migration.
**p % 0.01, ***p % 0.001, two-tailed t tests. Alleles used: lin-1(n301), mcIs46,

gaIs36, and zhIs96.
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Figure 6. 2� Toroid Contraction and 1� Toroid Expansion Shape the Vulval Tube

(A–D’’’) (A–A’’’) Nomarski image, DLG-1::RFP-labeled junctions, polymerized actin visualized with LifeAct::GFP, and merged images in a wild-type L4 larva at the

Pn.pxxx stage without ablation, (B–B’’’) after ablation of the 2� P5.p and P7.p descendants at the Pn.pxx stage, (C–C’’’) after ablation of the AC at the Pn.pxx

stage, and (D–D’’’) after simultaneous ablation of the AC and the 2� P5.p and P7.p descendants. Double-headed arrows and the dotted lines indicate the height of

the 1� and 2� toroids. Dashed curved lines indicate the junction between VulD and VulE or, in (B) and (D), the ventral epidermis and VulE. Scale bar, 5 mm.

(E and F) (E) Average height of the 1� and 2� toroids and (F) VulF and VulE after the different ablations measured as described in Figure S5. The numbers in

brackets indicate the number of animals analyzed, and the error bars indicate the SDs. The p values obtained in two-tailed t tests comparing 2� toroid heights in (E)

and 1� toroid heights in (F) are indicated as **p % 0.01 and ***p % 0.001. Alleles used: mcIs46 and zhIs396.
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Based on the dynamic changes in toroid height and diameter,

we conclude that ventral 2� toroid contraction followed by lateral

expansion of the 1� toroids are both required to achieve the

proper height of the vulval toroids (Figure 7K).

The Ventral Toroids and the AC/Utse Syncytium Create
Tension in the Toroids
Finally, we investigated the tensions as an estimate for the forces

generated during toroid morphogenesis by measuring toroid

recoil velocities in laser-cutting experiments. First, we tested

whether the vulval lumen in L4 larvae represents a closed

compartment, to which pressure is being applied during
Developmen
morphogenesis. For this purpose, we punctured the ventral

epidermis separating the vulval lumen from the outside. This

intervention caused a rapid efflux of fluids and a ventral recoil

of the toroids (Figure 7C; Movie S3). Themorphology of the vulva

after this induced collapse of the lumen was remarkably similar

to the vulva in young adult animals after vulval eversion had

occurred. As an estimate for the forces involved, we measured

the peak recoil velocity of the VulD toroids (Figures 7C and 7J).

Next, we cut the ventral VulA, VulB1, and VulB2 toroids, which

caused an instant ventral recoil of the remaining toroids, indi-

cating that ventral toroid contraction provides support for the

remaining dorsal toroids (Figure 7D; Movie S4). In the presence
tal Cell 23, 494–506, September 11, 2012 ª2012 Elsevier Inc. 501



Figure 7. Quantitative Analysis of Vulval

Toroid Morphogenesis

(A) Time-lapse recording of 2� toroid contraction in

an early L4 larva using the AJM-1::GFP marker in

green (Movie S1).

(B) Time-lapse recording of 1� toroid expansion in

an L4 larva after the 2� toroids had contracted

(Movie S1). The ventral plasma membrane of the

AC is labeled in red using a PLCvPH::mCherry

marker (Ziel et al., 2009).

(C) Puncturing of the vulval lumen in L4 larvae

results in a rapid lumen collapse and vulval ever-

sion (Movie S3). The arrow in the first frame indi-

cates the site in the ventral epidermis where the

lumen was laser punctured. The animals were

mounted in a suspension of 100 nm latex beads to

visualize the efflux of fluids.

(D and E) Cutting of the VulA, VulB1, and VulB2

toroids in the (D) presence and (E) absence of the

AC (Movie S4). The dashed box in the first frames

outline the regions where the toroids were cut and

the asterisk in (E) labels the AC corpse. The yellow

dashed lines indicate the axes of VulD movement

used to generate the kymograph shown in the

rightmost panels and measure the peak recoil

velocities. Scale bars, 5 mm.

(F and G) Quantification of the reduction in VulA (F)

lumen diameter and (G) toroid height during 2�

toroid contraction in the animal shown in (A).

(H and I) Quantification of the increase in VulF

lumen diameter (H) and toroid height (I) during

dorsal toroid lumen expansion in the animal shown

in (B). Measurements on the recordings shown in

(A) and (B) were performed on one out of three to

five movies obtained for each stage as described

in Figure S5.

(J) Box plot of the peak velocities measured in

the lumen puncturing and toroid cutting experi-

ments. The numbers in brackets indicates the

number of animals analyzed, and the error bars

indicate the SDs. **p % 0.01, ***p % 0.001, two-

tailed t tests.

(K) Toroid contraction and expansion during

vulval morphogenesis. Cell bodies of 1� VulF and

VulE toroids are shown in light red, cell bodies of

2� VulD and VulC toroids in light green, and of

VulB2, VulB1, and VulA in dark green. Green lines

indicate actomyosin MFs and black and gray lines

the apical cell junctions. LET-502-mediated

apical contraction of VulA, VulB, and VulB2

toroids result in a dorsal pushing force (red

arrows), while invasion of the AC (dark blue) into

the 1� toroids laterally expands the dorsal toroid

lumen (blue arrows). Finally, the AC fuses with

the utse (light blue) allowing the attachment of the

toroids to the utse. Alleles used: aff-1(ty4), swIs79,

and qyIs23.
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of the AC, we measured a similar recoil velocity as in the lumen-

puncturing experiments (Figures 7D and 7J). However, if the AC

was ablated at the early Pn.pxxx stage at the onset of dorsal

toroid expansion, after the p cells had been specified, the recoil

velocity after toroid cutting was increased by around 50%

(Figures 7E and 7J; Movie S4). To further dissect the role of the

AC in toroid morphogenesis, we measured recoil velocities in
502 Developmental Cell 23, 494–506, September 11, 2012 ª2012 Els
aff-1(ty4) mutants, in which the AC normally expands the dorsal

lumen but does not fuse with the overlying utse syncytium

formed by eightp cells (Sapir et al., 2007). Dorsal lumen diameter

in aff-1(ty4) was 5.1 ± 1.0 mm and 5.0 ± 0.69 mm in the wild-type;

n = 20 each. We observed a similar increase in recoil velocity in

aff-1(ty4)mutants as in AC-ablated wild-type animals (Figure 7J;

Movie S4).
evier Inc.
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We conclude that actomyosin-driven contraction of the 2�

toroids first generates a dorsal pushing force. Then, dorsal toroid

expansion followed by fusion of the AC to the utse allows

the formation of a continuous connection between the dorsal

toroids, the uterine uv1 cells, and the utse/AC syncytium, which

anchors the toroids to the lateral seam cells and thereby

generates a tension in the dorsal toroids (Figure 7K) (Lints and

Hall, 2009).

DISCUSSION

LIN-1 Links Cell Fate Specification with Morphogenesis
Our data point at a direct link between the cell fate specification

pathways determining the 1� and 2� vulval fates and the

force-generating actomyosin network during vulval morpho-

genesis. Rho kinase let-502 transcription is directly induced

by the ETS-family transcription factor LIN-1 (Figure 1J). High

levels of NOTCH signaling in the 2� vulval cells prevent activa-

tion of the MAPK and thus keep LIN-1 in its active, unphos-

phorylated state, while high levels of MAPK signaling in

the 1� cells result in the phosphorylation and inactivation of

LIN-1. In this manner, a differential expression of RHO kinase

LET-502 is established during the subsequent phase of vulval

morphogenesis, such that high levels of LET-502 are main-

tained in the 2� cells, whereas LET-502 expression gradually

fades in the 1� cells. In contrast to LET-502, the RHO-1 GTPase

and the RHO guanine exchange factor ECT-2 (S. Canevascini

and A.H., unpublished data), as well as the MEL-11 phos-

phatase, are uniformly expressed in 1� and 2� vulval toroids,

suggesting that LET-502 is a limiting factor necessary to over-

come the inhibitory activity of MEL-11 and induce actomyosin

contraction. Our results also indicate that continuous RAS/

MAPK and NOTCH signaling are required to maintain the differ-

ential LET-502 expression, as activation or inactivation of LIN-1

after vulval fate specification altered LET-502 expression levels

and perturbed vulval morphogenesis. Hence, expression of

both the EGFR ligand by the AC and the NOTCH ligands by

the 1� vulval cells are maintained until the final stage of vulval

development.

It has recently been reported that RAS and NOTCH

signaling regulate different steps in the development of the

C. elegans excretory system (Abdus-Saboor et al., 2011). Also

in this organ, RAS and NOTCH signaling control not only

the specification of the different cell fates but also the morpho-

genesis of the excretory tube. However, the target genes

regulated by LIN-1 during excretory tube morphogenesis are

not known.

Interestingly, LIN-1 appears to control multiple aspects of

vulval morphogenesis besides regulating LET-502 expression

and independent of its earlier inhibitory role during VPC fate

specification. Even though the VPCs in lin-1(lf) mutants adopt

an alternating pattern of 1� and 2� cell fates (Beitel et al., 1995),

vulval toroids are largely absent and actin MFs do not organize

in circumferential bundles in the 2� toroids. Therefore, LIN-1

appears to be necessary for the formation of circumferential

cell extensions and homotypic cell contacts during vulval toroid

formation. The opposing effects of the NOTCH and RAS/MAPK

signaling pathways on LIN-1 activity thus orchestrate the cell

shape changes during vulval tube formation.
Developmen
Contraction of the 2� Toroids Generates a Dorsal
Pushing Force
The 2� vulval toroids differ from the 1� toroids not only by higher

LET-502 expression levels but also by a different orientation

of the actomyosin network (Figure 7K). While actin MFs are

organized in circumferential bundles near the apical surface of

the 2� VulA, VulB1, and VulB2 toroids, actin MFs in the 1� VulE

and VulF toroids are aligned along the dorsoventral axis. More-

over, the regulatory myosin light chain MLC-4 was detected

exclusively near the apical junctions of the 2� VulA, VulB1, and

VulB2 toroids. Thus, only the three ventral-most toroids are

capable of contracting in response to LET-502 activation, while

the MLC phosphatase MEL-11 prevents contraction of the

remaining toroids. It is not known how the different orientation

of the actin fibers in 1� and 2� toroids is established. However,

loss of let-502 function did not change the overall orientation

or organization of actin MFs.

The generation of a dorsal pushing force by 2� toroid contrac-

tion requires that the vulval lumen represents a closed compart-

ment to which pressure can be applied. Indeed, when the vulval

lumen was punctured in L4 larvae, this resulted in an almost

instantaneous collapse of the vulval lumen and vulval eversion,

indicating that the luminal space does represent a closed com-

partment that is under pressure. Mutations in the sqv genes,

which encode proteins required for the biosynthesis or secretion

of glycoproteins, cause a drastic reduction in the size of the

vulval lumen (Herman et al., 1999; Herman and Horvitz, 1999;

Hwang et al., 2003). It was proposed that hygroscopic proteogly-

cans secreted into the vulval lumen cause fluids to gradually

increase the volume of the lumen and build up osmotic pressure.

Therefore, a reduction in the radius of the lumen on the ventral

side will cause an elongation of the lumen dorsally and thereby

generate a dorsal pushing force (Figure 7K).

Lateral Expansion of the 1� Toroids by the AC
and Attachment to the Seam
Estes and Hanna-Rose (2009) have reported that invasion of

the AC into the vulval tissue is necessary for dorsal lumen

morphogenesis. We found that after the contraction of the

ventral 2� toroids has been completed, the lateral expansion of

the dorsal 1� toroid lumen by the invading AC is accompanied

by a further increase in 2� toroid height. Accordingly, early

ablation of the AC before vulval invagination (at the Pn.pxx stage)

resulted not only in a reduced diameter and increased length of

the 1� toroids but also a decrease in 2� toroid height. On the other

hand, the diameter of the 2� toroids did not increase after AC

ablation as long as the LET-502 induced actomyosin contraction

was normal. Thus, AC ablation probably increases the pressure

on the ventral toroids, which is counteracted by the actomyosin

force. This results in the flattening of the 2� toroid and the

stretching of the 1� toroid, as in the absence of the AC the 1�

toroids remain attached to the basement membranes between

uterus and vulva. The AC may increase the diameter of the 1�

lumen by inducing lateral sliding of the basement membranes

between the uterine and vulval cells (Ihara et al., 2011); it may

mechanically stretch the VulF toroid or induce remodeling of

the cytoskeleton in VulF through direct cell-cell interaction. In

either case, continuous RAS/MAPK signaling must repress

let-502 transcription in the 1� VulE and VulF toroids to inhibit
tal Cell 23, 494–506, September 11, 2012 ª2012 Elsevier Inc. 503
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actomyosin contraction and permit the AC to expand the

dorsal lumen.

The increased toroid recoil velocity in the absence of the

AC or, more specifically, in the absence of fusion between the

AC and utse, points at a second function of the AC that is inde-

pendent of its first role during dorsal lumen expansion, as the

dorsal lumen was expanded in aff-1(lf) mutants. The removal of

the AC through fusion may make room necessary for the attach-

ment of the overlying utse to the dorsal toroids and the uv1 cells

(Sapir et al., 2007; Lints and Hall, 2009). In this manner, AC fusion

allows the establishment of a continuous connection between

the vulva and the uterus to anchor the vulval toroids via the

utse syncytium to the lateral epidermis, which creates a lateral

tension in the dorsal toroids (Figure 7K).

Regulation of Cell Shape Changes by NOTCH and RAS
Signaling
Tissue morphogenesis depends on collective cell movements

and the transmission of mechanical forces between different

cell types. In many examples of collective cell migration, specific

leader cells have been identified that generate in response to

extracellular signals a mechanical force, which is transmitted

to follower cells through cell-cell interactions (Caussinus et al.,

2008). For example, RAS and NOTCH signaling are interlinked

in a similar fashion during Drosophila tracheal tube morphogen-

esis to regulate the ETS transcription factors Pnt and Yan and

differentiate between leader and follower cells (Schottenfeld

et al., 2010). However, in contrast to the Drosophila trachea,

there exists no clear distinction between leaders and followers

during C. elegans vulval morphogenesis since not only the

AC/utse/seam cell connection but also the 2� cells contribute

forces to shape the vulval tube. Finally, we show that the RAS

and NOTCH signaling pathways first used to specify the vulval

cell fates are again used during vulval morphogenesis to differ-

entially regulate actomyosin activity. Vulval fate specification

and morphogenesis are therefore tightly coupled processes.

EXPERIMENTAL PROCEDURES

General Methods and Strains

C. elegans strains were maintained at 20�C on standard nematode

growth media as described previously (Brenner, 1974). The wild-type strain

of C. elegans used was Bristol N2. Strains used were as follows: LGI:

dpy-5(e907), let-502(ok1283)/hT2[bli-4(e937) let(q782) qIs48] (I;III), LGII:

aff-1(ty4), unc-4(e120), LGIII: dpy-19(e1259), lin-12(n137)/unc-32(e189) lin-

12(n137n720), lin-1(n304), lin-31(n301), LGIV: let-60(n1046). Extrachromo-

somal and integrated arrays: gaIs36[hs::mpk-1(+), Dmek-2(wt)] (Lackner and

Kim, 1998), swIs79[ajm-1::gfp,Pscm-1::gfp, unc-119(+)], mcIs46[dlg-1::rfp,

unc-119(+)] (Diogon et al., 2007), sIs10781[rcesC10H11.9::gfp, pCeh361],

qyIs23[Pcdh-3::PLCvPH::mCherry; unc-119(+)] (Ziel et al., 2009), zhEx401

[Plet-502::nls::gfp::lacz::unc-54 30utr, Plin-48::gfp], zhEx402[Plet-502 LBS D1-4::

nls::gfp::lacz::unc-54 30utr, Plin-48::gfp], zhEx399[-1.1Plet-502::nls::gfp::lacz::

unc-54 30utr, Plin-48::gfp], zhEx403[-2.8Plet-502 D1.1-1.4 kb::nls::gfp::lacz::unc-

54 30utr, Plin-48::gfp], zhEx404[-2.8Plet-502 D1.1-1.8 kb::nls::gfp::lacz::unc-54

30utr, Plin-48::gfp], zhEx405[-2.8Plet-502 D1.1-2.2 kb::nls::gfp::lacz::unc-54 30utr,
Plin-48::gfp], zhEx393[-2.8Plet-502 DEBS::nls::gfp::lacz::unc-54 30utr, Plin-48::

gfp], zhEx395[hs::lin-1DCT, Plin-48::gfp], zhEx394[hs::3xHA::strep::lin-1DCT,

Plin-48::gfp], zhIs396[Pdlg-1::lifeact::gfp::unc-54 30utr, Plin-48::gfp], mcEx402

[Pmlc-4::gfp::mlc-4DD + Ppie-1::gfp::mlc-4(wt), rol-6(gf)] (Gally et al., 2009),

zhEx398[let-502 genomic, C10H11.8::gfp, Plin-48::gfp], zhEx436[let-502::gfp],

sbEx133[Pmel-11::gfp, rol-6(su1006)] (Wissmann et al., 1999), zhEx439[Pmlc-4::

mlc-4RA::gfp], zhEx437[Pvab-23::mlc-4RA::gfp], zhEx438[Pvab-23::mlc-4DD::gfp].
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All constructs were microinjected into the gonad arms of adult worms at

concentrations between 2 and 50 ng/ml along with the coinjection marker

Plin-48::gfp at 50 ng/ml and pBluescript added to a final concentration of 150

to 200 ng/ml to generate stable transgenic lines (Mello et al., 1991). Sequences

of primers used and details on the construction of plasmids can be found in the

Supplemental Experimental Procedures.

RNA Interference

RNA interference (RNAi) was performed using the feeding method as

described (Kamath et al., 2001). P0 worms were synchronized at the L1 stage,

transferred to nematode growth media plates containing 3 mM IPTG and

50 ng/ml ampicillin seeded with the desired RNAi bacteria, and allowed to

grow for 3–5 days at 20�C, after which the surviving F1 progeny was analyzed.

Microscopy and Laser Cutting

Immunostaining was performed as described previously (Miller and Shakes,

1995). In brief, worms were permeabilized using the freeze-crack method

and immediately fixed in methanol at �20�C. Samples were blocked with

3% bovine serum albumin, first incubated with primary antibody (1:25 MH27

and 1:1,000 anti NMY-1 or NMY-2) for 2 hr at room temperature, then incu-

bated with secondary antibody (1:100 anti-mouse TRITC and anti-rabbit

CY-5), and washed and mounted in Mowiol. Fluorescent images were ob-

tained using a Leica DMRA wide-field microscope, equipped with a cooled

CCD camera (Hamamatsu ORCA-ER). Images were analyzed using Openlab

3.0 software package (Improvision). For three-dimensional (3D) reconstruc-

tions, GFP and RFP images of larvae animals were recorded with an Olympus

FV1000 confocal microscope with a stack size of 0.3 to 0.5 mm. For 4D record-

ings of vulval toroid morphogenesis, animals were mounted on 4% agarose

pads containing 2.5 mM tetramisole and immobilized with 100 nm latex beads

(Polysciences Inc.). Images were recorded on an Olympus BX61 DSU spinning

disc microscope at 10-min time intervals taking 30 to 40 z-stacks of 0.4 mmper

time point. Laser ablation and cutting experiments were performed with a

micropoint dye laser (Photonics Instruments) attenuated to around 70%

maximal intensity at a pulse rate of 10 Hz aimed at the nucleoli for cell ablations

or at the cell extensions to cut the toroids.

Image Analysis

3D reconstructions were made using Imaris software (7.1), and 4D movies

were analyzed using Image J. Measurements of toroid height and diameters

were conducted on midsagittal sections through the toroids of late L4 larvae,

after the VulF lumen had expanded and the AC had fused with the utse. For

each parameter, the distances shown in Figure S5 were measured, and the

averages and SDs were calculated. Measurements of peak velocities of the

VulD recoil were donewith Image J using the ‘‘kymograph’’ and ‘‘read velocity’’

macros written by J. Rietdorf and A. Seitz (EMBL Heidelberg).

ChIP Analysis

For ChIP analysis, chromatin was prepared from hs::HA::lin-1DCT animals and

precipitated with anti-HA antibodies (Roche) as described (Mukhopadhyay

et al., 2008). As negative control, a mock precipitation using immunoglobulin

G as primary antibody was performed in parallel. In each experiment, samples

were processed in triplicates. Binding was quantified by Q-PCR with the

probes shown in Figure 2A. The primers used for probes are shown in Supple-

mental Experimental Procedures. For each sample, the signal was normalized

to the input DNA (Dct) and the percentage of bound DNA relative to 5% of the

input signal was plotted.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, four movies, and Supple-

mental Experimental Procedures and can be found with this article online at
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