o TOPOLOGY
ﬁ#@ AND ITS
' APPLICATIONS

ELSEVIER Topology and its Applications 116 (2001) 199-226
www.elsevier.com/locate/topol

The first-order spectral flow of the odd signature operator
on a manifold with boundary

P. Kirk2*, E. KlasseR

a Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
b Department of Mathematics, Florida State University, Tallahassee, FL, USA

Received 28 June 1999; received in revised form 22 May 2000

Abstract

In this paper we study spectral flow for paths of signature operators associated to analytic paths of
flat connections on an odd-dimensional manifold with boundary. We provide a topological method
for computing the “first order” spectral flow using cup products2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

1.1. This paper has as its goal the computation of spectral flow for paths of signature
operators corresponding to analytic paths of flat connections on an odd-dimensional
manifold with boundary.

Our approach to this problem is to apply the results of analytic perturbation theory.
This theory asserts that an analytic path of self-adjoint operators (appropriately defined)
has analytically varying eigenvectors and eigenvalues [14]. Thus one can study how the
spectrum changes along an analytic path by studying the derivatives of the eigenvalues at
a point. In particular, one can study the spectral flow near a particular parameter value by
calculating the lowest order non-vanishing derivative of each eigenvalue passing through
zero at that parameter value.

Flat connections on a principél-bundle are parameterized by the variety of represen-
tations of the fundamental grouf(X) = Hom(w1 X, G). In fact this parameterization can
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be taken to be analytic [11], so that analytic paths of representations give rise to analytic
paths of flat connections. An analytic path of flat connections can be coupled with a geo-
metric differential operator to define a path of differential operators. On a closed manifold
the corresponding path of operators is analytic, and so analytic perturbation theory applies.
For a manifold with boundary, the results of [17] show that imposing Atiyah—Patodi—Singer
(APS) boundary conditions [2] yields an analytic path of self-adjoint operators in the sense
of [14] and so analytic perturbation theory applies in this case as well.

In this way the odd signature operator (which is half the tangential operator of the
signature operator) can be coupled to an analytic path of flat connections, providing a
topologically interesting path of self-adjoint operators, which we will denot®hyFor
each of these flat connections, the Hodge theorem identifies the kernel of the corresponding
twisted signature operator with the cohomologyofwith local coefficients corresponding
to the connection). Thus the Hodge theorem allows one to detect when an eigenvalue
crosses zerd\() = 0) by examining when the cohomology jumps up in dimension. In this
paper we show that first-order information about the spectrum, i.e., the derix&tiye
can be computed from the cup product structure of these cohomology spaces (in the case
in which A(zg) = 0).

Thus, the main results (Theorems 5.1 and 5.2) can be thought of as first order
generalizations of the Hodge theorem for analytic paths of representations. In the case in
which X is closed, it has been shown (see [16] and [9]) that the lowest order nonvanishing
derivative of A(t) can always be expressed in terms of higher Massey products in the
cohomology ofX. Though there are strong indications that such a theorem should be true
for manifolds with boundary, we have not as yet been able to prove it (see [18] for more
on this subject).

1.2. We now outline the contents of this paper. In Section 2 we define a sequence of
matrices associated to an analytic path of self-adjoint operators whose signatures determine
the spectral flow. We then describe how an analytic patly Gf) representations of the
fundamental group of an odd-dimensional manifold with boundéamgives rise to a path

of twisted odd signature operators, and by imposing APS boundary conditions an analytic
path of self-adjoint operators. We also introduce related cohomology groups and cup
products.

The technique of stretching the collar is introduced in Section 3. Fourier expansions
along the collar of the boundary &f are used to relate the kernel of the odd signature
operator with suitable APS boundary conditions to cohomology.

In Section 4 we introduce two Hermitian formg andB, on cohomology. We prove that
these forms have the same signatures, and relate their kernels to a “derived” cohomology.
One of these formsB, can be defined entirely from the homotopy type of the manifold,
while the other,B, depends on the diffeomorphism type and, indeed, on the Riemannian
metric.

Finally, Section 5 contains the main theorems which state that the signatures of these
forms tell us how many of those eigenvalues passing through zero have first derivatives
which are positive, negative, or zero.
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We emphasize two important assumptions in Theorem 5.2.
(&) The dimension of the kernel of the tangential operﬁ,ois independent of.
(b) The LagrangiarC, (part of the global boundary conditions necessary in order to
make D, self-adjoint) will be chosen so thd) is transverse to the limiting values
of extended.? solutions toDg¢ = 0.
Though Theorem 5.2 is quite useful as stated, eliminating the first of these assumptions
would be a significant improvement and an interesting research project. The second is
mostly for convenience; see the paragraph immediately preceding Theorem 5.2.

1.3. The results in this paper extend those in an earlier p&memputing Spectral Flow

Via Cup Products by the same authors [15]. In that paper, we proved the main theorems
(5.1 and 5.2) for the case in whicti is a 3-manifold with torus boundary, and we made

a technical assumption on the arc of flat connections, thatfinbevhen restricted to the
boundary. Moreover, in that paper we only defined the f@mmot the formB; hence it

was not clear that the signature Bfwas an invariant of homotopy type. In the current
paper, all of these technical problems are solved.

The results in this paper are also related to those in a recent article by Farber and
Levine [8]. In the case of a closed odd-dimensional manifold, those authors define a
sequence of forms oi!(X; V). Their forms are defined using a linking pairing on the
cohomology ofX with coefficients in a module over the ring of formal power series
defined using an analytic path of flat connections. The first of their forms coincides with
our reduced first order form. Farber and Levine then show that the sum of the signatures
of their forms give the local contribution to the spectral flow along the analytic arc of flat
connections. The main information in our paper which is not in Farber and Levine is that
we consider the case of a manifold with boundary, for which boundary conditions and
stretching arguments are required. In addition we write the first order form explicitly in
terms of cup products.

If some of the eigenvalues passing through @ at0 have vanishing first derivatives
then in order to compute their contribution to spectral flow one needs to calculate their first
nonvanishing higher-order derivatives. There is a sequence of forms whose domains are
subquotients o/ ®(X; V) and whose signatures give the contributions of these higher-
order derivatives to spectral flow. These forms were first defined by Farber and Levine [8]
for closed manifolds as indicated in the previous paragraph. In subsequent work [16,18]
we give an alternative definition of these forms (and of their domains) in terms of higher
Massey products. Once again, for manifolds with boundary, we have not yet been able to
prove a definitive theorem of this type.

1.4. Computing the spectral flow for the odd signature operator coupled to a path of flat
connections has many important applications. Typically one is interested in computing
the spectral flow of the odd signature operator coupled to a path of (possibly non-
flat) connections starting and ending at flat connections ctoged manifold. Sample
applications include computing the grading of Floer’s Instanton homology for a homology
3-sphere [10], computing the Atiyah—Patodi—Singglinvariant [2], computing Casson’s
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invariant andSU (rn)-generalizations [1,25,3] and computing invariants of 3-manifolds
coming from the perturbative expansion of Witten’s Chern—Simons path integral [26].

The main obstacle to carrying out such computations is the fact that non-flat connections
do not reflect the topology of the manifold; for example, spectral invariants of non-flat
connections depend on the Riemannian metric. The crucial observation which motivates
the present work is the following. A pair of flat connectiohsg A1 on a closed manifolds
may not lie on a path component of flat connections. Howevay, i§ decomposed along
a separating hypersurface, say= X | J, Y, it may very well happen that the restrictions
of Ag andA; to X (respectivelyy) lie on a path oflat connections orX (respectivelyy).

More generally one may inductively decompageby cutting it along a sequence of
separating hypersurfaces until one reaches a stage where the restrictibfhsiod A,
lie on the same path component of the space of flat connections on each piece in the
decomposition. Note that the space of flat connections modulo gauge transformations on
any manifoldX is homeomorphic to the space of conjugacy classes of representations of
m1(X). In particular it is a purely topological question to decide if two flat connections lie
on the same path component of the space of flat connections.

Thus to compute spectral flow on the closed manifdldne can use the following steps.

(1) Decomposé into pieces so that the restrictions of the connectidpsndA; to

each piece lie on the same path component of the space of flat connections.

(2) Compute the spectral flow of the odd signature operator along the paths of flat

connections on each piece in the decomposition.

(3) Assemble the results using a “splitting formula” for spectral flow which relates the

spectral flow on the pieces to the spectral flow on the closed manifold.
The second step of this program is the subject of the current article. As mentioned above,
the first step is a purely topological problem. The third step involves using a splitting
theorem. There are many articles in the literature which address this issue, starting with
Taubes’s article on the Casson invariant [25], and including [27,5,6,22,7].

Applications of this approach include the computations of spectral flow to compute
Witten’s 3-manifold invariants in [15]. In that article the relevant cup products which
control the spectral flow were computed explicitly using group cohomology techniques.
Another application in the literature is the computationSf(3) Casson invariants [4].

A particularly useful application of our technique is the computation of spectral flow along
a path of flat connections with abelian holonomy on the complement of a kisdt ifihe
relationship to cup products in this situation gives a formula for the spectral flow in terms of
the Seifert matrix for the knot complement. This relationship was noticed using an indirect
method in the article [19], and was exploited in the beautiful article of Herald [13] in which
he identifies the “twisted” Casson invariant for knots with the Levine—Tristam signatures.

A long term potential application of the methods of the current paper is to gain
a complete understanding of the topological meaning of the Atiyah—Patodi—-Sigger
invariant by combining the cohomological approach to computing spectral flow with cut-
and-paste methods. The papers cited above contain partial results in this direction, mostly
in dimension 3. We hope to eventually obtain general and comprehensive results.
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2. Firgt order deformations of the odd signature operator

2.1. We recall the notion of an analytic path of closed operators (see [14,17]). A path
D,: H — H of bounded operators on a Hilbert spdées called analytic if it has a power
series expansion which converges with respect to the norm topolog@y. i a path of
closed, unbounded operators, thBp is called analytic if there exists an analytic path
Q,: K — H of bounded operators from some Hilbert spacéo H satisfying

(1) the image oD, is the domain ofD,,

(2) the compositd, o Q, is an analytic path of bounded operators.

We can now define the signatures which arise as successive approximations to the
spectral flow for any analytic path of self-adjoint operators. Supposelthat? — L2,
t € (—e, ) is an analytic path of closed, self-adjoint Fredholm operators. Suppose that the
kernel of D, jumps up in dimension when= 0. Analytic perturbation theory shows that
one can find pathe; (¢), fori =1, ..., m, of vectors and paths; (+) of real numbers so
that

(1) Dygi(t) = ri(t)g: (¢) for all ¢,

(2) {¢:i (1)} is an orthonormal set for ai|

(3) {¢:(0)} span the kernel 0Dy,

(4) ¢i(t) = 52 ¢ijt/ for someg;; € L2, the sum converges ih?,

(5) ri() =354 Aijt/ for somen;;.

Our convention is to define the spectral flowf for € [a, b] by

S5 (Dy; t €la, b])
=#{i | Ai(a) <0and;(b) > 0} — #{i | Ai(a) >0 and; (b) < 0}.

We define the spectral flow db, throught = 0 to beSF(Dy; ¢t € [—¢, €]) wheree > 0
is chosen small enough that the dimension of the kerndbofs constant on the two
subinterval§—e¢, 0) and (0, ¢].

The spectral flow through= 0 can be computed once one knows the sign of the first
non-vanishing derivative of; (r) at+ = 0 for those eigenvalues satisfying(0) = 0. We
make this assertion precise as follows:

LetS, ={ieZ]| %h:o =0forallk < r}. Let M, be the diagonal matrix with entries:

drk
{dr)»i }
dr |i—o)ies,

The following easy result is the basic principle on which our approach rests:

Theorem 2.1. The signatures of the matrices M», ;1 determine the spectral flow of the
family D, through ¢ = 0.

Proof. Notice that the eigenvalues are varying analytically. Hence eithey = 0 for all
t,orelser; (1) = A; 1" +0(t"), so that ifr is oddA,; () contributes sig(h; ) to the spectral
flow, and O ifr is even. O
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A similar analysis applies when studying paths of the fddm € [0, ¢). In this case,
we define the spectral flow db, throughs = 0 as the difference

#{i | »;(0) =0 anda; (r) > O for smallr > 0}
—#{i | 2;(0) =0 andx; (1) < 0 for smallz > 0}

with the 4; () as above. Theorem 2.1 easily generalizes to this case, however notice that
the signatures ddll the M, are needed to determine the spectral flow, not just thoserwith
odd.

In this paper our goal is to compute the eigenvalues of the madiiXor the case in
which D; is the path of signature operators associated to a path of flat connections on an
odd-dimensional manifold with boundary. I.e., we wish to compute the first derivatives of
those eigenvalues passing through O at time0.

2.2.Let XZ~1 pe an oriented, compact odd-dimensional manifold with possibly non-empty
boundary. Assume tha&X has been given a Riemannian metric which is isometric to a
product[0, 1] x X on a collar of the boundary.

Throughout this paper we will lef denote either the parameter intervale, ¢) or,
occasionally,[0, ¢). Define ananalytic path of representations to be a patha:J —
Hom(r1 X, U (k)) so that for eachx € m1X, the patht — «a,(x) e U(k) C C¥ is real-
analytic. This is the same as saying thais an analytic path in the real-algebraic variety
Hom(m1 X, U (k)).

We next define the relevant cohomology groups and cup productsV Lies¢ some
Hermitian vector space and let U (k) — U(V) be a unitary representation. Then the
compositer; X Xy (k) LU (V) defines a system of local coefficients &hwhose
cohomology we denote bif *(X; V;). By restricting the coefficients to the boundary we
obtain a local coefficient system anhgiving cohomologyH *(Y; V;). Similarly we have a
relative conomology groufl *(X, Y; V;). DefineH*(X; V;) to be the image of the relative
cohomology in the absolute:

H*(X; Vi) =Im(H*(X,Y; V) > H*(X; V})).

Cup products on cohomology with local coefficients are constructed from equivariant
bilinear forms on the coefficients. In what follows, we will use two different bilinear
forms to define two types of cup productsdat product arising from the positive definite
Hermitian inner product of, and a second type of cup product induced by the action of
the Lie algebrac(k) on V.

To be precise, leK : V x V — C be the Hermitian inner product an. We will refer to
any cup product defined using the inner prodkiabn the coefficients asdot product. For
example K induces dot products

HP(X; Vi) x HI(X,Y; V,;) - H' T4 (X, Y; C)
and

HP(Y;V,) x HI(Y; V,) > HPT4(Y; C).
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We will denote these pairings by, t) — ¢ - T and refer to them as dot products. The
range of these products is the ordinary (untwisteéejohomology.
Whenp andgq are complementary dimensions we will also call the composites

HP(X: V) x H&1P(X, Y, V) —> HZ XX, Y:C)=C
and
HP(Y; V) x HZ=2=P(y;V,) > H? 2(y;C)=C

dot products, where the isomorphisms are given by capping with the fundamental class.
Poincaré duality implies that the first of these induces a non-degenerate pairing

HP(X; V) x HE 1P (x; vi) > HZY(X,Y;C)=C;

we use the “dot product” notation for this pairing also.

The other cup product we will need is obtained from the bilinear form coming from the
action ofu(k), the Lie algebra ot/ (k), on V. Composing the representatiop: 71X —
U (k) with the adjoint representaticad: U (k) — GL(u(k)), one obtains another system
of local coefficients oveX, with fiber the Lie algebra (k). It is traditional to denote the
corresponding cohomology groups By (X; ada;) andH*(Y; ad o).

The differential ofr, dr:u(k) — EndV), givesV the structure of a module overk),
i.e., a bilinear form

re u(k) x V—->1V.

This givesH*(X; V;) the structure of a module ovei*(X; ada;); To distinguish this
product from the dot product defined above we will denote it by

H*(X;aday) x H*(X; V;) 3 (¢, 1) > r(9)(v) € H(X; V).
Since the action of, is skew-Hermitian the two products are related by the formula:

r(@)(x) -y = (=DM () ().

2.3.Let A be aflat connection on a principal bundieover X with holonomyeg. (Assume,

as before, thatr: J — Hom(r1 X, U (k)) is an analytic path of representations.) We fix

forever an identification of the restriction &f to the collar withn*(ﬁ), whereP denotes

the restriction ofP to the boundary ofX andx :[0,1] x 3X — {1} x X denotes the

projection. We assume thdtis in cylindrical form on the collar, that isA is the product

of a flat connectiom on the boundary with the trivial connection in the normal direction.

Any flat connection with holonomyg is gauge equivalent to such a connection.
Corollary 4.3 of [11] shows that (perhaps after shortening the intefvahe can find a

sequence; € .Q)l((ad P), i =1,2,..., of smooth 1-forms with values in the Lie algebra

bundlead P = P x4q u(k) in cylindrical form so that

o0
A=A+ atl
i=1
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is a path of flat connections with holonomies given by the p&tiThe sum converges in
the C* norm for allk.

For eactly, the connectiom, defines a covariant derivativg,, :.Q§(F) — .Q§+1(F)
for any bundleF associated ta. Since A, is flat, d5 =0 and so(2} (F).da,) forms
a complex for each. In particular, for the bundled P the cohomology of the complex
(2% (ad P),dy,) is isomorphic toH*(X; ada,) by the DeRham theorem. (In fact these
are isomorphic as graded Lie algebras.) Similarly, the representatiGian) — U (V)
defines a bundleE = P Xy V and the cohomology of$2% (E), dy4,) is isomorphic to
H*(X; V;). Denote byE the restriction ofE to the boundaryy. Restnctlng the flat
connectionA, to the boundaryY one obtains a flat connectloA, on E and hence
complexes(£2;y (ad P),dA,) and (QY(E),dAt) with the appropriate cohomology. Since
Y is closed, these last 2 complexes are elliptic and Hodge theory applies, so that we
can identify the cohomology with the kernel d/gt + d} . This is not true forX until
appropriate boundary conditions are imposed. '

The formula for the curvature of; is

F(A,) = F(A) +da (Za,-t") + %[Zaiti, Zaiti].

SinceA; is flat, F(4,) = 0, and expanding the right side each coefficient o zero. In
particular:

(1) daa1 =0, so thatz; defines a 1-dimensional cohomology clas$fif(X; adag),

(2) [a1,a1] = —2d a2 , and sdaz1, a1] is zero in cohomology.
Notice that[—, —] is the cup product o7 *(X; ad o) induced by the Lie bracket on the
coefficients; this is a basic example of the second type of cup product which we defined in
Section 2.2 (corresponding 10 = u(k)).

Remark. Comparing higher coefficients ofgives the sequence of expressions:
n—1
—2dpa, = Z[ak, an—l. (2.1)
k=1
This says that the “homogeneous Massey powersiiofias, ..., a1} all vanish. For a
definition of Massey products in a differential graded-commutative Lie algebra see [24];
see also [16] for applications of these Massey products to the closed manifold case.

We will let a1 denote both the form and its cohomology classHh(X; adag). The
image ofa; in the group cohomology? (r1(X), ad o) is just the Zariski tangent vector
to the pathy, of representations at= 0.

2.4. One can couple an operator to the path giving an analytic path of operators.
The operator which we will work with in what follows is the Atiyah—Patodi—Singer odd
signature operator oK defined in [2]. Thus

Di: (P ¥ (E)— P e E)
p p
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is defined by
Diw =il (~1)P " L(sedy, —dp, %)

forw e .Q)z(p(E), wherex: Q8(E) — fo‘l_p(E) denotes the Hodge operator. Then
D, is formally self-adjoint for each, and is half the tangential operator to the signature
operator on a2Zmanifold.

Notice thatD, has a power series expansion. In fadt= Do+ Y 7oq C;t* where

Ciw=i'(=1)P (xr(a;) — r(a)*)o. (2.2)

Since the seried ; a;t' converges irc* for anyk, so does) ; C;t'. In the next section,
we will apply the results of [17] to construct an analytic path of self-adjoint operators
D,(L + P;) on X using APS boundary conditions.

2.5. The tangential operator of the odd signature operator is just the DeRham operator
+(d — d*). The next technical lemma is needed to set conventions and signs. We omit the
routine proof.

Lemma 2.2. Let u denote the collar coordinate in the collar 1 x Y. Identify A” T*X ®
Ely with A’ T*Y @ E® NP1 T*Y ® E by sending » = w1 + w2 du to the pair (w1, w2).
Thisgivesan isomorphismof bundles (B, A% T*X @ E)|y with @D, N\ T*Y @ E. Then
onthecylinder I x Y, D, takesthe form

~ a
Dt =U<Dt + —>
ou

where o : A\*T*Y @ E — N\*T*Y ® E is the bundle isomorphism defined for ¢ €
N T*Y @ E by
il(—D)P &g itk =2p;

0= { il—D)Page  ifk=2p—1.

% is the Hodge star operator on @, 2}/ (E), and D, : @, 2} (E) — @, 2} (E) isthe
(self-adjoint) twisted DeRham operator given by the formula

Diie= (=" H(dy, —d7; ).

Note thatr? = —1, ando +¢* = 0. Using theL.2 inner product one obtains a symplectic
structure on2y (E) by the formula

{¢1 T} = <0¢1 T)Lz'
This symplectic inner product is independent of the Riemannian metric (because the
appearing in the definition ef cancels with the in the definition of the.? inner product).
The kernel ofﬁ, is the set ofEAl—harmonic forms, which we denote l3y,. By the
DeRham and Hodge theorei = H”(Y; V;). Moreovers preserves harmonic forms,
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and the induced symplectic structure & (Y; V;) coincides (up toti) with the dot
product

CHP(Y: V) x HE727P(Y; V,) > C

defined above.
We restate the important assumption made in the introduction.

Assumption. The kernel ofD; is independent of.

Since the connectior, is flat, this assumption is equivalent to assuming that the
dimension ofH*(Y; V;) = 'H, is independent of. With this assumption, the kernels of
the operator®D; form a finite dimensional symplectic vector subburiie- Q;(f) x J
over the intervall whose fiber over is H,. As a topological object, one can think of this
as a symplectic bundle with fibe*(Y; V;). Notice however that{ has more structure
coming from the Riemannian metric dft the involutiono induces a complex structure
onH, andH has a Hermitian metric induced by restricting ftreinner productor:f?;;(f).

We turn the pathD; into a path of self-adjoint operators by imposing Atiyah—Patodi—
Singer boundary conditions. To do this, first fix an analytic path of LagrandlaasH; .
What this means is thaf, is spanned by paths of vectargt), i =1,...,dim(H,)/2,
which have an expansiop;(t) = Zj a; jOY; @) with ¢;(1), j=1...,dim(H,),
analytic paths ofD,-harmonic forms (which exist by analytic perturbation theory since
Y is closed) and; ;(¢) are analytic functions.

Then useL; to define the path of self-adjoint operators

D, (L + P+):L2<@A2PT*X® E; L & P+(t)> — L2<@/\2PT*X ® E>
p p

where L2, A?PT*X ® E; L, & P4 (1)) denotes the.?-closure of the space of those
sections o@p A2PT*X ® E whose restrictions t& lie in the sum ofC; and the positive
eigenspace, () of D,, andD;, (L + P;) is the restriction oD;.

The main theorem of [17] states thf (L + P,) forms an analytic path of self-adjoint
operators and hence one can find fhbasis of analytically varying eigenvectors and
corresponding analytically varying eigenvalues gL + P.).

Proposition 5.2 of [11] shows that the setrof J where the kernel oD, (L + Py)
jumps up is discrete, and so we may assume by shrinking the intérifalecessary that
the kernel jumps up only at= 0. In particular, the pat®, (£ + P;) defines the sequence
of matricesM, as in 2.1 corresponding to the jumprat 0.

Thusthetriple («: J — Hom(z1 X, U (k)), r: U (k) — U(V), L;) determinesan integer,
namely the spectral flow of the family D, (L + P.) through r = 0, and this spectral flowis
determined by the signatures, dimension and kernels of the matrices M,..
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3. Stretching the collar

3.1. The crudest approximation to the spectral flow is the dimension of the kernel of
D;(L + Py) ast varies. We will now show how to identify this kernel with a certain
cohomology group. In the next section we will show how the “first order part” of the
spectral flow (i.e., the signature of the matri%) can be understood in terms of cup
products in the cohomology of.

First, we will need a “stretched” version af. Let

X(R) = X U, 1yxv ([0, R] x Y).

Thus X (R) corresponds taX with a long tube added to the boundary. Similarly let
X (00) denoteX with an infinitely long tubel0, co) x Y added to the boundary. Since
the connectiom and the formsy; are cylindrical, there is an obvious way to extend the
operatorD; to X (R) and X (c0). We denote this operator bpX. If W is any closed
subspace ofp,, 525(1"5\), denote byDX (W) the restriction ofDF to those sections with
boundary values ifV. In particular, ifZ; is a path of Lagrangian subspacegffwe have
the important path of self-adjoint operatdd$ (£ + P4) on X (R).

We can motivate the introduction of the stretched manifold in the following way. Our
goal is to relate cohomological invariants constructed from cup products to invariants
constructed from differential forms and wedge products. Consider for example the
intersection form on an oriented manifok with boundary. There is a well defined
non-degenerate cup produg? (X; C) x H¢=?(X;C) — H%(X,3X, C) = C in singular
cohomology (where as befof” (X) means the image of the relative conomology in the
absolute cohomology). Suppose thas a closegy-form representing a class H” (X; C)
andb is a closed(d — p)-form representing a class IH?~?(X; C). Then the wedge
product ofa andb gives a closed form, but

[a]U[b];é/aAb.
X

The right hand side is not a topological invariant; for example one can repldnethe
complement of an open collar to change the right side, but the left depends only of the
cohomology classes afandb.

If, however,a andb extend to exponentially decaying forms &rioo), then

[alU[b] = / anb.
X (00)

Thus the stretching procedure is a convenient way of relating cup products to wedge
products on a manifold with boundary.

3.2. We use Fourier expansions in terms of eigenvectorﬁpfthe tangential operator
defined in Lemma 2.2. The results of [14] imply that there exists a complete system of
analytically varying eigenvectong; (1), i € Z — {0}, with analytically varying eigenvalues
wi(t),i € Z—{0},sothav (¥;) = v_;, u—j = —u;, andu; < w;+1. One may assume that
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H; =spany;}7__,, so thatu;(t) = 0 for —n < i < n and that the Lagrangiad;, is the
span ofy; () fori =1, ..., n by a change of basis.

We now turn to properties of the operatddswhich are independent of the parameter
For notational ease we will therefore temporarily drop the subseriffithe following
assertions hold for every value of

Everyw € Q?’(E) has an expansion on the col[@ 1] x Y

0= ¢,

whereu € [0, 1]. Forms in the kernel oD have expansions on the cylinder
oljoaxy = ci€ ity

ieZ
If in addition  satisfies thé{ 4+ P, boundary conditions, then

wloaxy = Y cie€ iy,
iZ—n
In particular, one can extend € kerD to X(R) by this formula for anyR including
R = oo. The resulting expression converges and gives an element Dfkel + P..).
Notice that the indexing is chosen so thatuife kerD satisfies theP, boundary
conditions, thenw|jo1xy = > ;., ci€ *"y;. If o satisfies theP, + £ boundary
conditions, themo|jo,1xy = >_;>1 ci€ H" ;.
We list two useful observations:
(1) If w satisfies theP,. boundary conditions, then it extends (as a kernel element) over
X (00) and is inL2(X (00)). This follows from the estimathu{u}xz lL20ry < Ke™H"
for someu > 0 smaller than the smallest positive eigenvalu@®ofConversely any
L? solution toDw = 0 on X (00) satisfiesP,. boundary conditions when restricted to
X (R) for any R. This gives a natural identification between the space®KeP,.)
for a givenR and theL? kernel onX (co).
(2) Letig:{R} x Y — X denote the inclusion andg, the corresponding restriction of
sections. Lepy, denote thd.? projection ontdH. Let

NR = py (i3 (kerDR (P4 +H))) C H.

ThenN R is the set of “limiting values of extenddd solutions toDw = 0” (see [2])
and is independent ak. We denote it byN (or by N, when the parameteris
introduced). Explicitly, A/ is the set ofx ¢ H such that the kernel ob contains
an element of the forny_>°_, c;e #i"y; on the cylinder withx = Y"__ ci;.

(Recall thatu; =0 for —n <i <n.)

3.3. The next lemma shows that elements of Rewith appropriate boundary conditions
are both closed and co-closed, just as in the case of closed manifolds.

Lemma3.1. If w € 2F(E) has’H + P, boundary conditionsand Dw = 0, then dyw =
0=dw.
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Proof. Extendw as above tdX (co). Then

0=Do=i"Y (1)’ (xds — dax)wz,.
p
Taking homogeneous parts we see thdlwy, — da * w2p12 = 0. We claim that both
terms are zero. Expanad on the cylinder ofX (co) into the sum of its harmonic part and
its exponentially decaying part:
n o0
w= Z cipi + Z cie Mty
i=—n i=n+1
They; fori = —n, ..., n are in the kernel 050 and hence are harmonic singes closed.
ThUSdAW,' ZOZdZW,' fori =—n,...,n.
Onthe cylinderdsw =d ;o + du A (dw/0u).
Thus on the cylinder we have the expansion:

o0
daw= ) ci€ " dyg — piduy).
i=n+1
Consequently, there is an estimate

ldawlwyxy l L2(uyxy) < ka€™""

for some constant; depending only on the restriction af to {0} x Y. Hereu > 0 is
smaller than the smallest positive eigenvaludof

A similar argument shows th#itl4 x w| < koe™#* for some constark,; depending only
on the restriction ofv to {0} x Y. Thus bothdsw andd4 * w exponentially decay, and
hence have extensions IF(X (00), E). Furthermore these extensions have the property
that their wedge produdsw A d4 * w exponentially decays.

Similarly there is an estimate

I * @liuyxy ||L2({u}xy) <ks

for some constantz depending only on the restriction afto {0} x Y. (Notice that the
harmonic part does not vanish and-go|(,;xy does not exponentially decay. However, it
does exponentially limit to a harmonic form, i.e., it is an extenfiédorm.)

We can therefore integrate by parts:

|(>r< daw2p, da * C0217+2)x(oo) | =

lim / K(daw2p A da * w2p42)

R—o0
X(R)

‘Iim / K (daw2p A xw2py2)
R—o0
{R}xY

< lim kikze "R =0.
R—o00

Thusx dwy, is orthogonal tais * wzp 42 in L?(X (00)). Since their sum is zero, they are
both zero onX (c0), and in particular, orX (R) for any R. This shows thatiqw =0 =
dio. O
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It follows from the previous lemma that the DeRham map induces a linear map from
the kernel ofDR(H + Py ) to H¥(X; V,), since forms in the kernel dd® (H + P,) are
closed. Also there is a map from the kernel@f (H + P, ) to the odd forms7°%4(X: v,,)
since taking the Hodgeof a form in the kernel oD R (H + P, ) yields a closed form. This
second map depends on the Riemannian metric in general.

From the Fourier expansion one sees that the first map takes the kefn&{ Bf ) to the
image of the relative cohnomology in the absolute, i.e HR(X; V,). Indeed, such a form
is closed onX (co) but its values on cycles ifiR} x Y exponentially decay (aB — o0),
and hence the restriction of the corresponding cohomology class to the boundary is O.
In [2] it is shown that this gives an isomorphism from &&¥(P,) with H¥(X; V,). In
particular, if LN A = 0 in H, then the kernels oD® (£ + P, ) and DX(P,) coincide.
Now N is a Lagrangian ir{ [21,22,27]. It follows from the previous lemma that under
the identification ofH{ with H*(Y; V,), N lies in the imageH*(X; V) — H*(Y; V).
Since this image is also Lagrangian, they are equal.

3.4. In many applications one can choose an analytic path of Lagrangiass that for

all ¢, £; missesMV;. In such a case one can tell where the kerneDpfC + P,) jumps

in dimension along the path by computing when the image of the relative cohomology
in the absolute cohomology jumps up. In any case we remind the reader of our standing
assumption:

Assumption. Lo is transverse tdvp.

With this assumption the kernel @fp(L£ + P4.) is isomorphic to
HY(X; Vo) =ImH®¥(X,Y; Vo) > H¥(X; Vo),

and in particular is a homotopy invariant Of, ).
Poincaré duality implies that the pairing

HP(X; Vo) x HA717P(X; Vo) — C,

taking (¢, t) to ¢ - 7, is non-degenerate. The Hodgeperator preserves harmonic forms,
and theL? inner product induces a non-degenerate positive definite inner product on the
L? harmonic forms. Identifying.2 harmonic forms with cohomology using the Hodge
theorem (or Proposition 4.9 of [2] #X # 0) we see that the Riemannian metric &n
induces a positive definite inner product) on the cohomology o, and an isometry

*: H*(X; V) > H*(X; V,). These relate to the dot product in the following way, whose
proof we leave to the reader.

Lemma 3.2. If 7 and tZ~1-7 are L? harmonic forms on X (co) representing cohomol-
ogy classes [¢] and [t] in H* (X (00); Vo), then the dot product of these classes as defined
in Section 2 may be expressed as follows.

6] [x]= / K@),

X (00)
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where K denotes the Hermitian inner product on V. The L? inner product on harmonic
formsinduces an inner product (, ) on H”(X; Vp) and the formula

([(15], [t]) =[¢]- [x7]
relates the inner product, the Hodge * operator, and the dot product.

4. Thefirst order forms

4.1. We next define the bilinear form which will give the first order part of the spectral
flow. Recall thatu; is the element o 1(X, adag) which represents the tangent vector to
the arc of representations atz = 0.
Definition 4.1. Define theReduced First Order Formto be the bilinear form:
B H'"Y(X; Vo) x H7Y(X; Vo) > C,
given by the formula
(x, ) i'r(an)(x) - y.
This form clearly depends only on the homotopy type&ofNotice that
~ 2
B(x,y) = i'(ran(x) -y) =i' (D Py r(a)(y)

=il (=)D (r(ay)(y) - x) = By, x).

Thus B is Hermitian and has a well-defined signature. Notice that & H'~1(X; Vo)
satisfiesB(x, y) = 0 for all y € H'~1(X; Vp), then non-degeneracy of the dot product
implies thatr (a1) (x) = 0. We summarize:

Proposition 4.2. The signature of the reduced first order form Bisa homotopy invariant
of X. Moreover, the kernel of B is

{x e H'7(X; Vo) [ r(ap)(x) =0}.

We next relate the reduced first order fodnto a larger form which has the same
signature ass. This larger form is defined on all the even cohomology, and it is the form
which will arise in the proof of the main theorem in the next section. We will show that
this larger form is the direct sum of the reduced first order form and a hyperbolic form, and
so the signatures at and B coincide.

We define thélotal First Order Form

B:H¥(X; Vo) x H¥(X; Vo) » C
by the formula

-1

B(x,y)=i' Z(—l)p+l(r(al)(X2(1—p—1)) - y2p + r(a1) (xx20—p)) - *y2p).
p=0
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Wherex =} xp, andy =} y», is the decomposition into homogeneous parts. In this
formula we have identified cohomology with harmonic forms. It is easy to checltiat
Hermitian, and hence has a well-defined signature. The ®dapends on the Riemannian
metric in general.

The form B arises by considering the first variation of the path of operafprs the
following way. Recall thatD; = Do+ ) ; C;t' where(; is given by formula(2.2). So
Do = C1. Hence ifx, y are harmonic forms (with respectd,) andx Sz,z(p(E), then

(Dox, y) = i' (=1)P"Hxr(a) (x) — r(az) (xx), y)
=i (=1)P  (r(a)(x) -y — (@) (xx) - %)
= B(x,y). (4.1)

4.2. The next theorem relateB to B. It also identifies the kernel oB. This is done
by introducing a chain complex whose chain groups are the twisted cohomology groups
HP(X; Vp), and whose differential is the cup producty) : H? (X; Vo) — HPT1(X; Vo)
given byx — r(ay) (x).
Notice thatr (a1) satisfies (a1)2 = 0. Indeed,

r(ap)r(a1)(x) = 3r(la1, a1]) (x)
which equals 0 sinckiy, a1] = —2da,a2 (by Formula 2.1). Therefore
(H*(X; Vo), r(a1))

defines a (co-)chain complex.

Theorem 4.3. Thetotal first order form B has signature equal to the signature of B.The
signature of B does not depend on the Riemannian metric and is a homotopy invariant.
The kernel of B is isomorphic to the even-dimensional cohomology of the complex
(H*(X: Vo), r(a1)).

Proof. Assume first that is odd, sayl = 2k + 1. Then splitH'~1(X; Vo) into the
kernel of r(a1): H'=1(X; Vo) — H'(X; Vo), which we denote by, and its orthogonal
complementind '~1(X; Vo) (with respect to the.2 inner product defined in Lemma 3.2),
K+L. Then write

HY(X; Vo) =K~ & (K P F¥(x: Vo)>.
2p#l—-1
If x,y € K+, thenB(x, y) = i' (=1 (r(an)(x) - y). If x € K @,,,_1 H? (X; Vo) and
y € K+, then
B(x,y)=i'(£r(a)(x-1) - yi—1 £ 7(a1) (xx142) - %y1-1).

The first term vanishes sincg_; € K and the second term is, up to sign, equal to
(r(a1) (%x141), yi—1). But r(a1)(xx;41) € K sincer(a1)? = 0, and so this term vanishes
also. Thus the splitting’ - & (K @,,.,_1 H*"(X; Vo)) is orthogonal with respect to the
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form B. Moreover, the restriction t&* is equal to the restriction o to K. Clearly B
vanishes ork and the signature ] equals the signature of the restrictionto K.
An easy argument shows thathf: V x V — C is a Hermitian form, ang :V — V is
an involution so that' (j (x), j(y)) = —F(x, y) for all x, y € V, then the signature of
is zero (even ifF is degenerate).
Definej: K @y, 1 H?(X; Vo) > K @,,;_1 H?"(X; Vo) by the formula

-1 (-1)/2
j(Zsz) > S .
p=0 (1+1)/2
A routine calculation shows thé#t(x, y) = —B(jx, jy). The factthat;_1),2 € K implies
that the termr(a1) (x¢—1),2) - ya—1),2 vanishes, and this is the only term which does not
change signs. It follows that the signatureBéquals the signature .
A similar argument works if is even. In this case one decompogg$X; Vo) into the
kernel ofx — r(a1) (*x) and its orthogonal complement. In addition one observes that the
forms

H'(X; Vo) x H/(X; Vo) = C,  (x,y) > r(a1)(xx) - %y
and
H =YX Vo) x H 7YX, Vo) > C,  (x,y) P> r(a))(x) -y

are isomorphic (via the Hodgg and hence have the same signature.

Finally we compute the kernel aB. If x € H¥(X:; Vp) satisfiesB(x, y) = 0 for all
y e H¥(X; Vp), thenr (a1) (x24—p—1)) - Y2p + r(a1) (xx20—p)) - *y2p, = 0 for anyy. Since
e-xf =2=xe- f it follows that r(a1)(x2q—p—1)) £ *r(a1)(xx2¢—p) = 0 for some
appropriate sign. But

(r(av)(e), *r(a))(f)) = £r(ay)(e) - r(a))(f) = £r(a)?e) - f =0
and sor(a1) (x2¢— p—1)) andxr(a1)(xx2(— ) are orthogonal. Hence
r(ay) (XZ([_p_l)) and xr(ai) (*xz(l_p))
both equal 0, and so(a1) (x) = 0= r(a1) (xx).
Now
(rave, f)=r(a)(e) -+ f ==%e-r(an)(xf) = £le, ¥r(a1) (xf)).

Thereforexr(a1)* is the adjoint ofr(a1) up to sign. It follows in the usual way that the
cohomology of the complexH*(X; Vo), (a1)) is isomorphic to the kernel of(ay) +
*r(a1)*, which in turn is isomorphic to the intersection of the kernels(af) andxr (a1)*.

We conclude that the set of € H¥(X; Vp) satisfying B(x,y) = 0 for all y
H®¥(X; Vp) coincides with the even dimensional cohomology of the com@EX (X ; Vo),
r(a1)). O

4.3. We finish this section by calculating explicit expressions#and B on a 3-manifold.
Consider first a connected 3-manifaldl with non-empty boundary. Then HO(X; Vo)
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can be identified with the invarianfy € V | (1 — ao(g))v =0, forall g € 71X} and
similarly for HO(Y; Vo). Thus HO(X; Vo) injects into HO(Y; Vo) and soH?(X; V) = 0.
By Poincaré dualityd 3(X; Vo) = 0 also.
Therefore, the total forn® is defined onH 2(X; Vo) by the formula
B(x,y) = —r(ar)(*x) - xy

and has kernel equal to the kernelrafin)*: H 2(X; Vo) — H 2(X; Vo). The orthogonal
complement of the kernel is the imagerafi1) : H 1(X; Vo) — H %(X; Vo). Moreover, the
hyperbolic part of the form (as in the proof of the Theorem 4.3) is zero.

The reduced fornB is defined ord 1(X; Vo) by

B(x,y)=—r(an)(x) -y

and has kernel equal to kew1):H 1(X; Vo) — H?(X; Vo). Both forms are non-
degenerate exactly when the first (or second) cohomology of the coraBlexX; Vo),
r(a1)) is zero.

The same facts apply to a closed 3-manifol@(X; Vo) = 0. This holds, for example,
if the representationo ag: 71X — U (V) is irreducible.

If X is closed and4%(X; Vo) 0, then the total fornB is metric dependent; it is given
by the formula

B(x,y) = —r(a1)xo- y2 — r(a1) (xx2) - xy2 + r(a1)(x2) - yo.
It splits orthogonally into the hyperbolic part
B(x,y) = —r(a1)(xo) - y2 +r(a1)(x2) - yo
on K @& HO%(X; Vo) and the non-hyperbolic part
B(x,y) = —r(a1)(xx) - *y
onK=. Here
K =kerr(a1)*: H¥(X; Vo) — H*(X; Vo)
and so
Kt =Imr(ar): HY(X; Vo) = H2(X; Vo).
The kernel ofB is the subspace
{(x0, x2) | 0=r(a1)(x0) = r(a1)(x2) = r(a1)(xx2)},

which is isomorphic to the even cohomology of the comglEX (X; Vo), r(a1)).
The formB: HY(X; Vo) x HY(X; Vo) — C is defined by

B(x,y)=—r(an)(x)-y.

Its kernel is the seftx | r(a1) (x) = 0}. Notice that the signature df is metric independent
since it equals the signature &f. Moreover, the dimension of the kernel 8fis also
metric independent since it equals the dimension of the even cohomology of the complex

(H*(X; Vo), r(a1)).
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The reduced form has a much simpler and, in particular, metric independent expression
than the total form. In the next section we will see that the signature and kernel of the total
form provide precisely the information we need to calculate the first order spectral flow.
(For specific computations, using these forms, of spectral flow on 3-manifolds, see [15].)

5. The main theorems

5.1. In this section we show how the for® gives the first order part of the spectral flow.
Again the main technicalities come from working on a manifold with boundary. It turns
out that by stretching the the collar &fis sufficiently, B gives information about the first
order part of the spectral flow.

This result can be thought of as a generalization of the Hodge theorem, which identifies
the kernel of Do(L + P;) (i.e., the Oth order part of the spectral flow along a path of
representations) with cohomology. Theorems 5.1 and 5.2 identify the first order part of the
spectral flow in terms of the cup product.

5.2. We begin with the theorem for a closed manifold. The proof is just a standard argument
working with the first variation of eigenvalues:

Theorem 5.1. Let X bea closed manifoldand «: / — Hom(r1X, U (k)) an analytic path
of representations, J = [0, ¢) or (—¢,¢). Let r: U (k) — U(V) be a representation and
let D, denote the Atiyah—Patodi—Singer odd signature operators obtained from the flat
connection A; with holonomy r o «; as described above. Suppose the dimension of the
kernel of D, jumpsupat r = 0.

Then the signature of the reduced first-order form Bis equal to the sum of the signs of
the derivatives of the eigenvalues of D, which passthrough O at ¢+ = 0. Thisiswhat we call
the “ first order spectral flow” of D, at ¢ = 0.

Moreover, if the cohomology of (H*(X; Vo), r(a1)) is zero, then the signature of B
equals the spectral flow through ¢ = 0 of the family D;.

Proof. Choose an analytic path of flat connectiofisusing the main results of [11]. Let

¢i(t),i=1,...,m, be an analytically varying orthonormal family of eigenvectorsfpy

with analytically varying eigenvalues (¢), so that{¢; (0)}_; spans the kernel ab,. The

existence of such a family follows from the main results of [14]. The important point is

that on a closed manifold the domainBf is independent of. (See also Section 2.)
Differentiating the expressioB, ¢; (1) = 1; (t)¢; (t) att = 0 one obtains:

Do (0) + Dogi (0) = 4; (0)¢; (0).

Taking the inner product withp;(0) and using the fact thaDg is self adjoint and
Do¢;(0) =0 one gets:

4i8ij = (Do¢i(0). ¢ (0)).
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Formula (4.1) shows thatDox, y) = B(x, y). Therefore, in the basigp; (0)} the form

B is diagonal with entries.;(0). Hence the signature a8 is just the sum of the signs
of the derivatives of the\;(¢r) at r = 0. Theorem 4.3 shows that the signature Bf
equals the signature df and thatB is nondegenerate if the cohomology of the complex
(H*(X; Vo), r(a1)) vanishes. O

For sample computations using this theorem, see Theorems 7.9 and 7.10 of [15]. For
extensions of this result (for closed manifolds) to higher derivatives of the eigenvalues,
see [16,9].

5.3. We now turn to the case of a manifold with boundary. The results of [17] as
explained in Section 2 show that one can find an appropriate family of analytically varying
eigenvectors and eigenvalues Bf(£ + P;) and so one can try to repeat the proof of
Theorem 5.1. However, the argument fails in two ways. First, the derivafii® need

no longer satisfy the boundary conditions since the boundary conditions are varying,
and so(Do<i>,~(0),¢j(O)> need not vanish; in fact it equa{d:i(O),¢j(O)}|ax. Moreover,

the derivative ofD; atr = 0 is not given by the bilinear fornB, i.e., the difference
(Dox,y) — B(x,y) is non-zero in general. However, both of these difficulties can be
overcome by stretching the collar of; we will prove that both{¢; (0), ¢;(0)}lsx and
(Dox, y)— B(x, y) approach zero as the metric &ris deformed so that the collar becomes
increasingly long. Hence, the eigenvalues of the f@&mgive the limiting values (as the
collar becomes infinitely long) of the derivatives of the eigenvalue®pfwhich pass
through O.

If the first order formB is degenerate, then a further difficulty seems to arise: what if
the time-derivative of an eigenvalue @, is, say, positive for each finite collar length,
but its limit as the collar becomes infinite is 0? Then the forms defined above would
simply tell us that 0 is the limiting value of this derivative, which would not tell us the
first order spectral flow of the compact manifold (i.e., with finite collar) in which we were
originally interested. The solution to this problem lies in the main theorems of [18], in
which we show that this phenomenon cannot occur. In other words, if the time derivative
of an eigenvalue of oD, approaches 0 as the collar becomes infinitely long, then that
derivative must already have been 0 for all finite collar lengths. Thus the theorems in this
section really do give the first order spectral flow. We will give a more detailed discussion
of this phenomenon in the statement and proof of Theorem 5.3, below.

We assemble our notation and assumptiernis! — Hom(wr1(X), U (k)) is an analytic
path of representations on a compact manifdlavith collar isometric to[0, 1] x Y. We
are given a representatienU (k) — U (V) of U (k) on a Hermitian vector spadé. For
eachz, V; is the system of local coefficients given by the compositer;. We assume
that dimH*(Y; V;) is independent of € J. We let D, denote the odd signature operator
on X coupled to the flat connection with holonomy «,. We choose an analytic path
of Lagrangians inH*(Y; V;) so that att = 0, Lg is transverse td\Vp, the limiting values
of extended.? solutions toDow = 0. Hence the kernel abo(Lo + P) is isomorphic to
H¥(X; Vp). Finally, X (R) denotes the manifol& with a collar[0, R] x Y glued toX
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along[0, 1] x Y, and D,R denotes the obvious extension Bf to X (R). Notice that the
kernel ofD(’f(E + P, ) isindependent oR, although the other eigenvalues do (in general)
depend orR.

The assumption in the last paragraph tiiatis transverse to the limiting values of
extended.? solutions does not restrict the usefulness of this theorem in the calculation of
spectral flow. Calculations of spectral flow whégpis not transverse to the limiting values
of extended.? solutions can be broken down into two problems: one when this assumption
holds, and another involvingfexed operator but with varying boundary conditidh. This
latter situation has been extensively studied, and is easily understood in terms of the Maslov
index of the family.; with respect to the limiting values of extendeésolutions. See [22]
and [20].

Theorem 5.2. Given any ¢ > 0, there exists an R, > 0 so that for all R > R,, thereis
a 1-1 correspondence between the eigenvalues t; (B) of B and the first derivatives of the
eigenvalues A; (r) of DX (L + P,) passing through O at t = 0, denoted by 7;(B) <> X (0),
so that

|t:(B) — A8 (0)| <e.

In particular, if the conomology of (H*(X; Vo), r(a1)) is zero, then the signature of the
reduced first order form B equals the spectral flow of DX (£ + P4) through ¢ = O for
R > R,, where e < 3inf|7;(B)|.

Before giving the proof of Theorem 5.2, we will state and prove an addendum to this
theorem (stated as Theorem 5.3) which sharpens the results of Theorem 5.2.

Theorem 5.3. The correspondences of Theorem 5.2 may be set up in such a way that they
satisfy the following additional condition: For each i, the sign of )lf (0) equalsthe sign of
7; (B) (where, of course, the three possible “signs’ are +, —, and 0).

Note that this theorem implies that if the limiting value)'q?(O) asR — oo is 0, then
for finite R we must already havie® (0) = 0.

Proof of Theorem 5.3. In Definition 6.6 of [18], we define forms,, for all m > 0; in the
proof of Theorem 6.7 of the same paper, we show thatoincides with the “total form
B of the current paper, i.e.,

Bi(v,w) = (Dv, w).

To conclude, Theorem 7.1 of [18] shows that the eigenvalu@s ¢€alled B in the current
paper) have the same signs as the{i;létO)} forall R. O

Proof of Theorem 5.2. Choose the path of flat connectioAson X with holonomyr o o,
to vary analytically and be in cylindrical form, using the result in [11]. These extend in the
obvious way toX (R) and X (c0).
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Notice that by our assumption on the Lagrangianthe kernel ofD(’)e (L+ Py)is
independent ofR, and in fact equals thé&2-kernel of Dy on X (c0). (Recall that each
element of the kernel oD{f(E + Py) has a Fourier expansion ;. c;e #i*4; on the

i>n

collar.)
Given any R > 0, the main result of [17] implies that we can find analytic paths
of eigenvectorspf(t), i =1,...,m, for DR(L + P;) with corresponding paths of

eigenvalueiiR (1) so that{¢iR(t)} are orthonormal for eacmand{c/)iR (0)} spans the kernel
of DE(L + Py).

Theqbl.R (1) have Fourier expansions on the collar

o0
$f W= Y af, @ty
p=—00

Hereu denotes the collar coordinate. We recall thigf(s) are the orthonormal set of
eigenvectors for the tangential operafmr, andu p, (¢) their corresponding eigenvalues; the
indexing is chosen so that_,(t) = —u,(t) andu,(t) =0forp=—n,..., =1, 1,...,n,
moreoverL; = sparfy, (1)|1 < p < n}. (Also yo(r) = 0).

Since the¢iR(t) satisfy Py (¢) + £, boundary conditions orX (R), we know that
afp(t, R) =0 if p < 0. Moreover, sincepj(0) lies in the kernel ofD§ (L + Py), we
know that

ozfpe_“l”’l/fp(O) if p>n,

R
a:' (0,u) =
nr if p<n

for some constant.ssl.’; (recall thatZ, is transverse to the limiting values of extendetl
solutions, and therefozq’fp O,u)=0forl< p<n).

Notice that eacbiR (0) exponentially decays di®, R] x Y, and so the Fourier expansion
gives a canonical extension ¢f (0) to X (c0). Moreover, a simple calculation shows that

2 2
qul.R(O) ||L2([0,oo)><Y) < m”qﬁiR(O) HLZ([O,l]xY)

and so sinc$¢f(0)||iz([oyl]xy) < |lpR (0)||22(X(R)) =1, the extension ap’, (0) to X (c0)
is in L2(X (00)) and its L2 norm is bounded by a constafiy independent of and R.
Let W c L%(X (c0)) denote theL? kernel of Dg, which is canonically identified with
kerD¥(L + Py) for any R. Of course W is isomorphic toH® (X; Vo) via the DeRham
map.

For anyi or R the vector¢iR(0) lies in W and has finiteL2(X (c0)) norm. Also, the
usual regularity theorems show tHait consists only of smooth functions.

A few lemmas will be needed.

Lemma 5.4. Let Cq:L2Q2*(Y, E) — L22*(Y, E) denote the derivative at + = 0 of the
tangential operator D;. Then:

1 ~
Tl 0= Y g GO O ©

q,M1q (0)75Np 0)
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+Z<(%

q:14q(0)=pp(0)

Vp (1), ¥q (O)>1/fq (0).

t=0
Proof. Differentiate the eigenvalue equatiﬁwp(t) = up ()Y, () with respect ta to
obtain

C1/,(0) + Doy (0) = (1, (0) ¥, (0) + 11, (0) ¥, (0).

Suppose that, (0) # 1, (0). Taking the inner product of the previous line wit}) (0) and
using the facts thabg is self adjoint and, (0) is orthogonal taj,(0), one obtains:

(¥, (0), ¥4 (0)) = (Cr¥p(0), ¥4 (0)).

1
MUp 0) - Hq (V)]
The lemma follows from the fact that= Zq (x, ¥4 (0))yry (0) for anyx € L% O

We will also need the following estimate.

Lemma5.5. There existsa constant K independentofi =1, ..., m and R so that

Z |ai1fp| < K.

p>n

Proof. Recall that on the cylinderp®(0) = Y _, of e #ry,(0). Each¢f(0) is

p>n~i,p
smooth, and so its restriction 1 x 0 is also smooth. Hence
> al, v, 0
p>n

lies in L2(Y x 0) for anys > 0.
Since they,(0) are eigenfunctions of the elliptic operatﬁ@, it follows that {(1 4
13)~5/2y,(0)} is an orthonormal basis for an admissible normigiy) (see [23]). Thus

2 K
D (@) W+ ud) = [of Oloyr | 2 < o0
p>n
We can say more. Fix an> (dimY)/2. Each¢X(0) has norm 1 inL2(X (R)), and in
particular

(PR ||L2<[o,1]xY) <1

Moreover eaclzpiR(O) lies in W which consists only of smooth functions. It is easy to see
that the normx|l; = llxll z20,1)xy) iS @ norm onW, and eachp’(0) has|¢X (0o < 1.
Since any two norms oV are equivalent, for each > 0 there is some constaut,
independent of or R so that||¢iR(0)||, is bounded byC,.

Choosingr large enough and applying the restriction theorem it follows that there is a
constantk; independent of or R so that the restriction o;biR(O) to{0} x Y hast(Y)
norm less tharKy, i.e.,

> (@f) 1+ 12)" =R Oloper | 2 < Ku.

p>n
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On the other hand, the eigenvalyes grow like p%/ @MY [12]. Thus

Y (1+ud) " <k

p>n

for some constank.
Partition the spectrum dbg into S1 U S», where

Su={p1(1+u2) (@)= ok, |}, $2=SpedDo) -
Then

2 eyl < E:]Aﬂé)(lﬁ < K1.

PESL

If p e Sz thenjaf,| < (1+ 12)™ and so

Z |alp| Z 1+/Lf,)_s < Ko.

PES2

The lemma follows by setting = K1+ K. O

We can now proceed with the proof of Theorem 5.2. We compare the diagonaMgrm
whose diagonal entries are the derivati)&é$0) to the total first order fornB.
Differentiating the expressio®/¢" (1) = AR (1)¢(t) att = 0 and taking the inner
product Withq&]’.e (0) gives
358ij = (DE (0, 9T )|y (&) + (D5 (0, 65 (O)] g,
= (D3 ¢ (0, 67 0) g, + (47 (0,0 (8] (0)) ).
(The second line follows by integrating by parts.) Formula (4.1) shows that
B(9;(0).¢7(0) = (Dg (¢ (0). ¢7 O)y (-

Hence if we subtraCB(d)f (0, ¢]’?(0)) from both sides of the preceding formula we obtain
3581 — B(¢{(0).¢7(0) = ~(Dg ¢ (0). 87 0)] 4 noycy
+ (@0, 0 (6 (0)); gy (5.1)
We first estimate{D'(’fqbiR (0), ¢R(O)>|[R7w)xy. With C; as above,

||c1|| (Z Jor} ,A)(Z |a;fq|)
p>n g>n
o0
3 Sl a1 [ e o)
p>nqg>n %

‘/aR aR e (“"“L“‘i)“(Clwp,wq)du
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R —u,URA R —
<Zo‘i,pe r Cll/”!’vzaj,qe Mqqu>

p>n q>n

= (D8 ). 67 O] 5 ey |

Yx[O,oo)‘

The last line follows from the fact thd, = o (d/du + D;) on the collar and s®g = o (C1)
on the collar. Using Lemma 5.4 we find that there exists a congtantependent of or
R so that

|<D§¢"R(o)’ ¢f(o)>|[R,oo)><Y| < Ke iR

We turn to the second term if6.1). Since ¢l.R(t) satisfies P, () + L; boundary
conditions, its restriction to the boundary Xf R) equals

Yo al, @ Ry, 0.

p>0

Therefore, the restriction of the derivative dil;R(t) at r =0 to {R} x Y equals
Y -0 li=o@f, (t, R) ¥, (1)).
Suppose > n. Then (taking inner products ib?({R} x Y)):

. d
(6. v (0) = <Z @

(@, (6. )Y, (1), ¥ <0>>

p>0 1=0
= 3@k ©. R)p(0) +ak, (0. Ry (0), ¥y (0)
p>0
= > a0 R)(0), y4(0)
p>0
= D (e, e R0, Y O).
p>n

This last sum converges absolutely, since

(X e rRejr, (0), Yr—q (0)]
=e " Raf | [ (0), v (0)]

(Cry,(0), ¥_4(0))

— e_/"pR

| —
“PH p(0) 4 114 (0)
1

20nt1

—Unt1R = R
<etn |Call e,
(note thatu,+1 is the smallest non-zero eigenvalue 56) and so the sum converges
absolutely by Lemma 5.4.

The sum

> 2l e 0. of je iy 0) (5.2)

g>n p>n
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also converges absolutely. In fact, using the same calculation as the previous estimate we
can bound the sum of the absolute values of the terms by

1 ~
e_2l'Ln+lR C R R .
s 1001 X Xl ey

Using Lemma 5.4 we conclude that there exists a conganhich is independent af /,
and so that the sun5.2) is bounded byk e~ 2#n+1R
Notice that

5 S ke 00 Ry 0)

g>n p>n

= <Z of &Ry, 0), ) ok e Ry, (0>>

p>n s
= (¢ (0), o (¢} (0)).
Hence
(620, 0 (67 (0))| < K&~k

for some constank independent of, j or R.
To simplify notation Iet;biR denotezpiR(O) for the rest of the proof. Returning to equation
(5.1) we see that

|48 — B(#f. ¢])| < Ke 2k,

This estimate suggests that b‘n,% are approaching the eigenvalueshf
To prove this fact, we first show that tla:(ée are almost orthonormal ok (c0). Indeed,

((biR’(beX(oo) - (¢1~Rv¢f>lx<m +(¢1R’¢f)|[R’OO>XY
= 0i,j +(¢iR’¢f)|[R,oo)xY'

Again we can easily estimat@?X, qb]’?) l[R.0c0)xy | < K& Hr+1R for somek independent of
i, j,orR.
Theorem 5.2 now follows from the next lemma.

Lemmab5.6. For each ¢ > O thereexistsan R, > 1 so that for all R > R,

. *R
slensf,,, (Sgdri(B) — A5y |) <e.

Remark. HereS,, is just the permutation group. Hence this lemma says thak ftarge
enough, the se{niR} is arbitrarily close to the set of eigenvaluesif

Proof. Suppose not. Then there existssan 0 and an unbounded sequernite< Ry < - - -

so that

inf (S?dri(B) — )'LSR(’;.) |) > ¢

SESH
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for all j. Choose a subsequence so tb,ﬁ”t converges for each, say to¢;°. Choose a
further subsequence so that the infimum is realized by the same permutation, which we
may assume is the identity by reindexing.

The limit lim,_. o B/, ¢ff) equalsB(¢{®, $%°), since

B(x, y) = (Dox, y)x(c0)-
On the other hand this limit equals the limit
. 'R
C“_)moo?»,- 3i.j + fij (Re)

for some exponentially decreasing functign(R). Hence the limit lim_, )lf" exists;
callit ¢;. Then:

B(¢{°, ¢5°) = ¢i 6i.;.

A similar argument shows that thg>} are an orthonormal basis, and hence the
eigenvalues oB are just the;;. But then

0= s?qg,- —%(B)| = lim sgqif‘f —5(B)| >,

a contradiction.
This concludes the proof of the lemma, and of Theorem 5(2.
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