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Abstract

In this paper we study spectral flow for paths of signature operators associated to analytic paths of
flat connections on an odd-dimensional manifold with boundary. We provide a topological method
for computing the “first order” spectral flow using cup products. 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

1.1. This paper has as its goal the computation of spectral flow for paths of signature
operators corresponding to analytic paths of flat connections on an odd-dimensional
manifold with boundary.

Our approach to this problem is to apply the results of analytic perturbation theory.
This theory asserts that an analytic path of self-adjoint operators (appropriately defined)
has analytically varying eigenvectors and eigenvalues [14]. Thus one can study how the
spectrum changes along an analytic path by studying the derivatives of the eigenvalues at
a point. In particular, one can study the spectral flow near a particular parameter value by
calculating the lowest order non-vanishing derivative of each eigenvalue passing through
zero at that parameter value.

Flat connections on a principalG-bundle are parameterized by the variety of represen-
tations of the fundamental group,R(X)=Hom(π1X,G). In fact this parameterization can
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be taken to be analytic [11], so that analytic paths of representations give rise to analytic
paths of flat connections. An analytic path of flat connections can be coupled with a geo-
metric differential operator to define a path of differential operators. On a closed manifold
the corresponding path of operators is analytic, and so analytic perturbation theory applies.
For a manifold with boundary, the results of [17] show that imposing Atiyah–Patodi–Singer
(APS) boundary conditions [2] yields an analytic path of self-adjoint operators in the sense
of [14] and so analytic perturbation theory applies in this case as well.

In this way the odd signature operator (which is half the tangential operator of the
signature operator) can be coupled to an analytic path of flat connections, providing a
topologically interesting path of self-adjoint operators, which we will denote byDt . For
each of these flat connections, the Hodge theorem identifies the kernel of the corresponding
twisted signature operator with the cohomology ofX (with local coefficients corresponding
to the connection). Thus the Hodge theorem allows one to detect when an eigenvalue
crosses zero (λ(t0)= 0) by examining when the cohomology jumps up in dimension. In this
paper we show that first-order information about the spectrum, i.e., the derivativeλ′(t0),
can be computed from the cup product structure of these cohomology spaces (in the case
in whichλ(t0)= 0).

Thus, the main results (Theorems 5.1 and 5.2) can be thought of as first order
generalizations of the Hodge theorem for analytic paths of representations. In the case in
whichX is closed, it has been shown (see [16] and [9]) that the lowest order nonvanishing
derivative ofλ(t) can always be expressed in terms of higher Massey products in the
cohomology ofX. Though there are strong indications that such a theorem should be true
for manifolds with boundary, we have not as yet been able to prove it (see [18] for more
on this subject).

1.2. We now outline the contents of this paper. In Section 2 we define a sequence of
matrices associated to an analytic path of self-adjoint operators whose signatures determine
the spectral flow. We then describe how an analytic path ofU(k) representations of the
fundamental group of an odd-dimensional manifold with boundaryX gives rise to a path
of twisted odd signature operators, and by imposing APS boundary conditions an analytic
path of self-adjoint operators. We also introduce related cohomology groups and cup
products.

The technique of stretching the collar is introduced in Section 3. Fourier expansions
along the collar of the boundary ofX are used to relate the kernel of the odd signature
operator with suitable APS boundary conditions to cohomology.

In Section 4 we introduce two Hermitian forms,B andB̃, on cohomology. We prove that
these forms have the same signatures, and relate their kernels to a “derived” cohomology.
One of these forms,̃B, can be defined entirely from the homotopy type of the manifold,
while the other,B, depends on the diffeomorphism type and, indeed, on the Riemannian
metric.

Finally, Section 5 contains the main theorems which state that the signatures of these
forms tell us how many of those eigenvalues passing through zero have first derivatives
which are positive, negative, or zero.
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We emphasize two important assumptions in Theorem 5.2.
(a) The dimension of the kernel of the tangential operatorD̂t is independent oft .
(b) The LagrangianLt (part of the global boundary conditions necessary in order to

makeDt self-adjoint) will be chosen so thatL0 is transverse to the limiting values
of extendedL2 solutions toD0φ = 0.

Though Theorem 5.2 is quite useful as stated, eliminating the first of these assumptions
would be a significant improvement and an interesting research project. The second is
mostly for convenience; see the paragraph immediately preceding Theorem 5.2.

1.3. The results in this paper extend those in an earlier paper,Computing Spectral Flow
Via Cup Products by the same authors [15]. In that paper, we proved the main theorems
(5.1 and 5.2) for the case in whichX is a 3-manifold with torus boundary, and we made
a technical assumption on the arc of flat connections, that it befine when restricted to the
boundary. Moreover, in that paper we only defined the formB, not the formB̃; hence it
was not clear that the signature ofB was an invariant of homotopy type. In the current
paper, all of these technical problems are solved.

The results in this paper are also related to those in a recent article by Farber and
Levine [8]. In the case of a closed odd-dimensional manifold, those authors define a
sequence of forms onHl(X;V ). Their forms are defined using a linking pairing on the
cohomology ofX with coefficients in a module over the ring of formal power series
defined using an analytic path of flat connections. The first of their forms coincides with
our reduced first order form̃B. Farber and Levine then show that the sum of the signatures
of their forms give the local contribution to the spectral flow along the analytic arc of flat
connections. The main information in our paper which is not in Farber and Levine is that
we consider the case of a manifold with boundary, for which boundary conditions and
stretching arguments are required. In addition we write the first order form explicitly in
terms of cup products.

If some of the eigenvalues passing through 0 att = 0 have vanishing first derivatives
then in order to compute their contribution to spectral flow one needs to calculate their first
nonvanishing higher-order derivatives. There is a sequence of forms whose domains are
subquotients ofH ev(X;V ) and whose signatures give the contributions of these higher-
order derivatives to spectral flow. These forms were first defined by Farber and Levine [8]
for closed manifolds as indicated in the previous paragraph. In subsequent work [16,18]
we give an alternative definition of these forms (and of their domains) in terms of higher
Massey products. Once again, for manifolds with boundary, we have not yet been able to
prove a definitive theorem of this type.

1.4. Computing the spectral flow for the odd signature operator coupled to a path of flat
connections has many important applications. Typically one is interested in computing
the spectral flow of the odd signature operator coupled to a path of (possibly non-
flat) connections starting and ending at flat connections on aclosed manifold. Sample
applications include computing the grading of Floer’s Instanton homology for a homology
3-sphere [10], computing the Atiyah–Patodi–Singerρα invariant [2], computing Casson’s
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invariant andSU(n)-generalizations [1,25,3] and computing invariants of 3-manifolds
coming from the perturbative expansion of Witten’s Chern–Simons path integral [26].

The main obstacle to carrying out such computations is the fact that non-flat connections
do not reflect the topology of the manifold; for example, spectral invariants of non-flat
connections depend on the Riemannian metric. The crucial observation which motivates
the present work is the following. A pair of flat connectionsA0,A1 on a closed manifoldM
may not lie on a path component of flat connections. However, ifM is decomposed along
a separating hypersurface, sayM =X⋃Σ Y , it may very well happen that the restrictions
of A0 andA1 toX (respectivelyY ) lie on a path offlat connections onX (respectivelyY ).

More generally one may inductively decomposeM by cutting it along a sequence of
separating hypersurfaces until one reaches a stage where the restrictions ofA0 andA1

lie on the same path component of the space of flat connections on each piece in the
decomposition. Note that the space of flat connections modulo gauge transformations on
any manifoldX is homeomorphic to the space of conjugacy classes of representations of
π1(X). In particular it is a purely topological question to decide if two flat connections lie
on the same path component of the space of flat connections.

Thus to compute spectral flow on the closed manifoldM one can use the following steps.
(1) DecomposeM into pieces so that the restrictions of the connectionsA0 andA1 to

each piece lie on the same path component of the space of flat connections.
(2) Compute the spectral flow of the odd signature operator along the paths of flat

connections on each piece in the decomposition.
(3) Assemble the results using a “splitting formula” for spectral flow which relates the

spectral flow on the pieces to the spectral flow on the closed manifold.
The second step of this program is the subject of the current article. As mentioned above,
the first step is a purely topological problem. The third step involves using a splitting
theorem. There are many articles in the literature which address this issue, starting with
Taubes’s article on the Casson invariant [25], and including [27,5,6,22,7].

Applications of this approach include the computations of spectral flow to compute
Witten’s 3-manifold invariants in [15]. In that article the relevant cup products which
control the spectral flow were computed explicitly using group cohomology techniques.
Another application in the literature is the computation ofSU(3) Casson invariants [4].
A particularly useful application of our technique is the computation of spectral flow along
a path of flat connections with abelian holonomy on the complement of a knot inS3. The
relationship to cup products in this situation gives a formula for the spectral flow in terms of
the Seifert matrix for the knot complement. This relationship was noticed using an indirect
method in the article [19], and was exploited in the beautiful article of Herald [13] in which
he identifies the “twisted” Casson invariant for knots with the Levine–Tristam signatures.

A long term potential application of the methods of the current paper is to gain
a complete understanding of the topological meaning of the Atiyah–Patodi–Singerρα

invariant by combining the cohomological approach to computing spectral flow with cut-
and-paste methods. The papers cited above contain partial results in this direction, mostly
in dimension 3. We hope to eventually obtain general and comprehensive results.
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2. First order deformations of the odd signature operator

2.1. We recall the notion of an analytic path of closed operators (see [14,17]). A path
Dt :H →H of bounded operators on a Hilbert spaceH is called analytic if it has a power
series expansion which converges with respect to the norm topology. IfDt is a path of
closed, unbounded operators, thenDt is called analytic if there exists an analytic path
Qt :K→H of bounded operators from some Hilbert spaceK toH satisfying

(1) the image ofQt is the domain ofDt ,
(2) the compositeDt ◦Qt is an analytic path of bounded operators.
We can now define the signatures which arise as successive approximations to the

spectral flow for any analytic path of self-adjoint operators. Suppose thatDt :L2 → L2,
t ∈ (−ε, ε) is an analytic path of closed, self-adjoint Fredholm operators. Suppose that the
kernel ofDt jumps up in dimension whent = 0. Analytic perturbation theory shows that
one can find pathsφi(t), for i = 1, . . . ,m, of vectors and pathsλi(t) of real numbers so
that

(1) Dtφi(t)= λi(t)φi(t) for all t ,
(2) {φi(t)} is an orthonormal set for allt ,
(3) {φi(0)} span the kernel ofD0,
(4) φi(t)=∑∞

j=0φij t
j for someφij ∈ L2, the sum converges inL2,

(5) λi(t)=∑∞
j=1λij t

j for someλij .
Our convention is to define the spectral flow ofDt for t ∈ [a, b] by

SF
(
Dt ; t ∈ [a, b]

)
= #

{
i | λi(a) < 0 andλi(b) > 0

}− #
{
i | λi(a)� 0 andλi(b)� 0

}
.

We define the spectral flow ofDt throught = 0 to beSF(Dt ; t ∈ [−ε, ε]) whereε > 0
is chosen small enough that the dimension of the kernel ofDt is constant on the two
subintervals[−ε,0) and(0, ε].

The spectral flow throught = 0 can be computed once one knows the sign of the first
non-vanishing derivative ofλi(t) at t = 0 for those eigenvalues satisfyingλi(0)= 0. We
make this assertion precise as follows:

Let Sr = {i ∈ Z | dkλi
dt k

|t=0= 0 for all k < r}. LetMr be the diagonal matrix with entries:{
drλi
dtr

∣∣∣∣
t=0

}
i∈Sr
.

The following easy result is the basic principle on which our approach rests:

Theorem 2.1. The signatures of the matrices M2r+1 determine the spectral flow of the
family Dt through t = 0.

Proof. Notice that the eigenvalues are varying analytically. Hence eitherλi(t)= 0 for all
t , or elseλi(t)= λi,r tr +o(tr ), so that ifr is oddλi(t) contributes sign(λi,r ) to the spectral
flow, and 0 ifr is even. ✷
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A similar analysis applies when studying paths of the formDt , t ∈ [0, ε). In this case,
we define the spectral flow ofDt throught = 0 as the difference

#
{
i | λi(0)= 0 andλi(t) > 0 for smallt > 0

}
−#

{
i | λi(0)= 0 andλi(t) < 0 for smallt > 0

}
with theλi(t) as above. Theorem 2.1 easily generalizes to this case, however notice that
the signatures ofall theMr are needed to determine the spectral flow, not just those withr

odd.
In this paper our goal is to compute the eigenvalues of the matrixM1 for the case in

whichDt is the path of signature operators associated to a path of flat connections on an
odd-dimensional manifold with boundary. I.e., we wish to compute the first derivatives of
those eigenvalues passing through 0 at timet = 0.

2.2. LetX2l−1 be an oriented, compact odd-dimensional manifold with possibly non-empty
boundary. Assume thatX has been given a Riemannian metric which is isometric to a
product[0,1] × ∂X on a collar of the boundary.

Throughout this paper we will letJ denote either the parameter interval(−ε, ε) or,
occasionally,[0, ε). Define ananalytic path of representations to be a pathα :J →
Hom(π1X,U(k)) so that for eachx ∈ π1X, the patht �→ αt(x) ∈ U(k) ⊂ Ck

2
is real-

analytic. This is the same as saying thatαt is an analytic path in the real-algebraic variety
Hom(π1X,U(k)).

We next define the relevant cohomology groups and cup products. LetV be some
Hermitian vector space and letr :U(k)→ U(V ) be a unitary representation. Then the

compositeπ1X
αt→ U(k)

r→ U(V ) defines a system of local coefficients onX whose
cohomology we denote byH ∗(X;Vt). By restricting the coefficients to the boundary we
obtain a local coefficient system onY giving cohomologyH ∗(Y ;Vt). Similarly we have a
relative cohomology groupH ∗(X,Y ;Vt). DefineH ∗(X;Vt) to be the image of the relative
cohomology in the absolute:

H ∗(X;Vt)= Im
(
H ∗(X,Y ;Vt)→H ∗(X;Vt)

)
.

Cup products on cohomology with local coefficients are constructed from equivariant
bilinear forms on the coefficients. In what follows, we will use two different bilinear
forms to define two types of cup products: adot product arising from the positive definite
Hermitian inner product onV , and a second type of cup product induced by the action of
the Lie algebrau(k) onV .

To be precise, letK :V ×V →C be the Hermitian inner product onV . We will refer to
any cup product defined using the inner productK on the coefficients as adot product. For
example,K induces dot products

Hp(X;Vt)×Hq(X,Y ;Vt)→Hp+q(X,Y ;C)

and

Hp(Y ;Vt)×Hq(Y ;Vt)→Hp+q(Y ;C).
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We will denote these pairings by(φ, τ ) �→ φ · τ and refer to them as dot products. The
range of these products is the ordinary (untwisted)C-cohomology.

Whenp andq are complementary dimensions we will also call the composites

Hp(X;Vt)×H 2l−1−p(X,Y ;Vt)→H 2l−1(X,Y ;C)=C

and

Hp(Y ;Vt)×H 2l−2l−p(Y ;Vt)→H 2l−2(Y ;C)=C

dot products, where the isomorphisms are given by capping with the fundamental class.
Poincaré duality implies that the first of these induces a non-degenerate pairing

Hp(X;Vt)×H 2l−1−p(X;Vt)→H 2l−1(X,Y ;C)=C;
we use the “dot product” notation for this pairing also.

The other cup product we will need is obtained from the bilinear form coming from the
action ofu(k), the Lie algebra ofU(k), onV . Composing the representationαt :π1X→
U(k) with the adjoint representationad :U(k)→ GL(u(k)), one obtains another system
of local coefficients overX, with fiber the Lie algebrau(k). It is traditional to denote the
corresponding cohomology groups byH ∗(X;adαt ) andH ∗(Y ;adαt ).

The differential ofr, dr :u(k)→ End(V ), givesV the structure of a module overu(k),
i.e., a bilinear form

r∗ :u(k)× V → V.

This givesH ∗(X;Vt) the structure of a module overH ∗(X;adαt ); To distinguish this
product from the dot product defined above we will denote it by

H ∗(X;adαt)×H ∗(X;Vt) � (φ, τ ) �→ r(φ)(τ ) ∈H ∗(X;Vt).
Since the action ofr∗ is skew-Hermitian the two products are related by the formula:

r(φ)(x) · y = (−1)|φ||x|+1x · r(φ)(y).

2.3. LetA be a flat connection on a principal bundleP overX with holonomyα0. (Assume,
as before, thatα :J → Hom(π1X,U(k)) is an analytic path of representations.) We fix
forever an identification of the restriction ofP to the collar withπ∗(P̂ ), whereP̂ denotes
the restriction ofP to the boundary ofX andπ : [0,1] × ∂X→ {1} × ∂X denotes the
projection. We assume thatA is in cylindrical form on the collar, that is,A is the product
of a flat connection̂A on the boundary with the trivial connection in the normal direction.
Any flat connection with holonomyα0 is gauge equivalent to such a connection.

Corollary 4.3 of [11] shows that (perhaps after shortening the intervalJ ) one can find a
sequenceai ∈Ω1

X(adP), i = 1,2, . . ., of smooth 1-forms with values in the Lie algebra
bundleadP = P ×ad u(k) in cylindrical form so that

At =A+
∞∑
i=1

ait
i
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is a path of flat connections with holonomies given by the pathαt . The sum converges in
theCk norm for allk.

For eacht , the connectionAt defines a covariant derivativedAt :Ω
p
X(F)→Ω

p+1
X (F)

for any bundleF associated toP . SinceAt is flat, d2
At
= 0 and so(Ω∗

X(F), dAt ) forms
a complex for eacht . In particular, for the bundleadP the cohomology of the complex
(Ω∗

X(adP), dAt ) is isomorphic toH ∗(X;adαt) by the DeRham theorem. (In fact these
are isomorphic as graded Lie algebras.) Similarly, the representationr :U(n)→ U(V )

defines a bundleE = P ×r V and the cohomology of(Ω∗
X(E), dAt ) is isomorphic to

H ∗(X;Vt). Denote byÊ the restriction ofE to the boundaryY . Restricting the flat
connectionAt to the boundaryY one obtains a flat connection̂At on Ê and hence
complexes(Ω∗

Y (ad P̂ ), d
Ât
) and (Ω∗

Y (Ê), dÂt
) with the appropriate cohomology. Since

Y is closed, these last 2 complexes are elliptic and Hodge theory applies, so that we
can identify the cohomology with the kernel ofd

Ât
+ d∗

Ât
. This is not true forX until

appropriate boundary conditions are imposed.
The formula for the curvature ofAt is

F(At)= F(A)+ dA
(∑

ait
i
)
+ 1

2

[∑
ait

i ,
∑
ait

i
]
.

SinceAt is flat,F(At)= 0, and expanding the right side each coefficient oft i is zero. In
particular:

(1) dAa1= 0, so thata1 defines a 1-dimensional cohomology class inH 1(X;adα0),
(2) [a1, a1] = −2dAa2 , and so[a1, a1] is zero in cohomology.

Notice that[−,−] is the cup product onH ∗(X;adα0) induced by the Lie bracket on the
coefficients; this is a basic example of the second type of cup product which we defined in
Section 2.2 (corresponding toV = u(k)).

Remark. Comparing higher coefficients oft gives the sequence of expressions:

−2dAan =
n−1∑
k=1

[ak, an−k]. (2.1)

This says that the “homogeneous Massey powers” ofa1, {a1, . . . , a1} all vanish. For a
definition of Massey products in a differential graded-commutative Lie algebra see [24];
see also [16] for applications of these Massey products to the closed manifold case.

We will let a1 denote both the form and its cohomology class inH 1(X;adα0). The
image ofa1 in the group cohomologyH 1(π1(X),adα0) is just the Zariski tangent vector
to the pathαt of representations att = 0.

2.4. One can couple an operator to the pathAt , giving an analytic path of operators.
The operator which we will work with in what follows is the Atiyah–Patodi–Singer odd
signature operator onX defined in [2]. Thus

Dt :
⊕
p

Ω
2p
X (E)→

⊕
p

Ω
2p
X (E)
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is defined by

Dtω= il(−1)p−1(∗dAt − dAt ∗)ω
for ω ∈ Ω2p

X (E), where∗ :ΩpX(E)→ Ω
2l−1−p
X (E) denotes the Hodge∗ operator. Then

Dt is formally self-adjoint for eacht , and is half the tangential operator to the signature
operator on a 2l manifold.

Notice thatDt has a power series expansion. In fact,Dt =D0+∑∞
i=1Cit

i where

Ciω= il(−1)p−1(∗r(ai)− r(ai)∗)ω. (2.2)

Since the series
∑
i ai t

i converges inCk for anyk, so does
∑
i Ci t

i . In the next section,
we will apply the results of [17] to construct an analytic path of self-adjoint operators
Dt(L+ P+) onX using APS boundary conditions.

2.5. The tangential operator of the odd signature operator is just the DeRham operator
±(d − d∗). The next technical lemma is needed to set conventions and signs. We omit the
routine proof.

Lemma 2.2. Let u denote the collar coordinate in the collar I × Y . Identify
∧p

T ∗X ⊗
E|Y with

∧p T ∗Y ⊗ Ê⊕∧p−1T ∗Y ⊗ Ê by sending ω= ω1+ω2 du to the pair (ω1,ω2).
This gives an isomorphism of bundles (

⊕
p

∧2p
T ∗X⊗E)|Y with

⊕
q

∧q
T ∗Y ⊗ Ê. Then

on the cylinder I × Y , Dt takes the form

Dt = σ
(
D̂t + ∂

∂u

)
where σ :

∧∗
T ∗Y ⊗ Ê → ∧∗

T ∗Y ⊗ Ê is the bundle isomorphism defined for φk ∈∧k
T ∗Y ⊗ Ê by

σ(φk)=
{
il(−1)p+1∗̂φk if k = 2p;

il(−1)p∗̂φk if k = 2p− 1.

∗̂ is the Hodge star operator on
⊕
p Ω

p

Y (Ê), and D̂t :
⊕
p Ω

p

Y (Ê)→
⊕
p Ω

p

Y (Ê) is the
(self-adjoint) twisted DeRham operator given by the formula

D̂tφk = (−1)k+1( d̂
Ât
− d̂ ∗

Ât

)
φk.

Note thatσ 2=−1, andσ+σ ∗ = 0. Using theL2 inner product one obtains a symplectic
structure onΩ∗

Y (Ê) by the formula

{φ, τ } = 〈σφ, τ 〉L2.

This symplectic inner product is independent of the Riemannian metric (because the∗
appearing in the definition ofσ cancels with the∗ in the definition of theL2 inner product).

The kernel ofD̂t is the set of̂d
Ât

-harmonic forms, which we denote byHt . By the

DeRham and Hodge theoremsHpt ∼=Hp(Y ;Vt). Moreover,σ preserves harmonic forms,



208 P. Kirk, E. Klassen / Topology and its Applications 116 (2001) 199–226

and the induced symplectic structure onH ∗(Y ;Vt) coincides (up to±i) with the dot
product

· :Hp(Y ;Vt)×H 2l−2−p(Y ;Vt)→C

defined above.
We restate the important assumption made in the introduction.

Assumption. The kernel ofD̂t is independent oft .

Since the connection̂At is flat, this assumption is equivalent to assuming that the
dimension ofH ∗(Y ;Vt) = Ht is independent oft . With this assumption, the kernels of
the operatorŝDt form a finite dimensional symplectic vector subbundleH ⊂Ω∗

Y (Ê)× J
over the intervalJ whose fiber overt is Ht . As a topological object, one can think of this
as a symplectic bundle with fiberH ∗(Y ;Vt). Notice however thatH has more structure
coming from the Riemannian metric onX: the involutionσ induces a complex structure
onH, andH has a Hermitian metric induced by restricting theL2 inner product onΩ∗

Y (Ê).
We turn the pathDt into a path of self-adjoint operators by imposing Atiyah–Patodi–

Singer boundary conditions. To do this, first fix an analytic path of LagrangiansLt ⊂Ht .
What this means is thatLt is spanned by paths of vectorsei(t), i = 1, . . . ,dim(Ht )/2,
which have an expansionei(t) = ∑

j ai,j (t)ψj (t) with ψj (t), j = 1, . . . ,dim(Ht ),
analytic paths of̂Dt -harmonic forms (which exist by analytic perturbation theory since
Y is closed) andai,j (t) are analytic functions.

Then useLt to define the path of self-adjoint operators

Dt(L+ P+) :L2
(⊕

p

∧2pT ∗X⊗E;Lt ⊕P+(t)
)
→L2

(⊕
p

∧2pT ∗X⊗E
)
,

whereL2(
⊕
p∧2pT ∗X ⊗ E;Lt ⊕ P+(t)) denotes theL2-closure of the space of those

sections of
⊕
p∧2pT ∗X⊗E whose restrictions toY lie in the sum ofLt and the positive

eigenspaceP+(t) of D̂t , andDt(L+ P+) is the restriction ofDt .
The main theorem of [17] states thatDt(L+ P+) forms an analytic path of self-adjoint

operators and hence one can find anL2-basis of analytically varying eigenvectors and
corresponding analytically varying eigenvalues forDt(L+ P+).

Proposition 5.2 of [11] shows that the set oft ∈ J where the kernel ofDt(L + P+)
jumps up is discrete, and so we may assume by shrinking the intervalJ if necessary that
the kernel jumps up only att = 0. In particular, the pathDt(L+P+) defines the sequence
of matricesMr as in 2.1 corresponding to the jump att = 0.

Thus the triple (α :J →Hom(π1X,U(k)), r :U(k)→U(V ),Lt ) determines an integer,
namely the spectral flow of the family Dt(L+ P+) through t = 0, and this spectral flow is
determined by the signatures, dimension and kernels of the matrices Mr .
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3. Stretching the collar

3.1. The crudest approximation to the spectral flow is the dimension of the kernel of
Dt(L + P+) as t varies. We will now show how to identify this kernel with a certain
cohomology group. In the next section we will show how the “first order part” of the
spectral flow (i.e., the signature of the matrixM1) can be understood in terms of cup
products in the cohomology ofX.

First, we will need a “stretched” version ofX. Let

X(R)=X ∪[0,1]×Y
([0,R] × Y ).

Thus X(R) corresponds toX with a long tube added to the boundary. Similarly let
X(∞) denoteX with an infinitely long tube[0,∞) × Y added to the boundary. Since
the connectionA and the formsai are cylindrical, there is an obvious way to extend the
operatorDt to X(R) andX(∞). We denote this operator byDRt . If W is any closed
subspace of

⊕
p Ω

p
Y (Ê), denote byDRt (W) the restriction ofDRt to those sections with

boundary values inW . In particular, ifLt is a path of Lagrangian subspaces ofHt we have
the important path of self-adjoint operatorsDRt (L+ P+) onX(R).

We can motivate the introduction of the stretched manifold in the following way. Our
goal is to relate cohomological invariants constructed from cup products to invariants
constructed from differential forms and wedge products. Consider for example the
intersection form on an oriented manifoldXd with boundary. There is a well defined
non-degenerate cup productHp(X;C)×Hd−p(X;C)→Hd(X,∂X,C)= C in singular
cohomology (where as beforeHp(X) means the image of the relative cohomology in the
absolute cohomology). Suppose thata is a closedp-form representing a class inHp(X;C)
and b is a closed(d − p)-form representing a class inHd−p(X;C). Then the wedge
product ofa andb gives a closed form, but

[a] ∪ [b] �=
∫
X

a ∧ b.

The right hand side is not a topological invariant; for example one can replaceX by the
complement of an open collar to change the right side, but the left depends only of the
cohomology classes ofa andb.

If, however,a andb extend to exponentially decaying forms onX(∞), then

[a] ∪ [b] =
∫

X(∞)
a ∧ b.

Thus the stretching procedure is a convenient way of relating cup products to wedge
products on a manifold with boundary.

3.2. We use Fourier expansions in terms of eigenvectors ofD̂t , the tangential operator
defined in Lemma 2.2. The results of [14] imply that there exists a complete system of
analytically varying eigenvectorsψi(t), i ∈ Z− {0}, with analytically varying eigenvalues
µi(t), i ∈ Z−{0}, so thatσ(ψi)= ψ−i ,µ−i =−µi , andµi � µi+1. One may assume that
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Ht = span{ψi}ni=−n, so thatµi(t) = 0 for −n � i � n and that the LagrangianLt is the
span ofψi(t) for i = 1, . . . , n by a change of basis.

We now turn to properties of the operatorsDt which are independent of the parametert .
For notational ease we will therefore temporarily drop the subscriptt . The following
assertions hold for every value oft .

Everyω ∈Ωev
X (E) has an expansion on the collar[0,1] × Y

ω=
∞∑
−∞
ci(u)ψi,

whereu ∈ [0,1]. Forms in the kernel ofD have expansions on the cylinder

ω|[0,1]×Y =
∑
i∈Z
cie−µiuψi .

If in additionω satisfies theH+ P+ boundary conditions, then

ω|[0,1]×Y =
∑
i�−n

cie−µiuψi .

In particular, one can extendω ∈ kerD to X(R) by this formula for anyR including
R =∞. The resulting expression converges and gives an element of kerDRt (L+ P+).

Notice that the indexing is chosen so that ifω ∈ kerD satisfies theP+ boundary
conditions, thenω|[0,1]×Y = ∑

i>n cie
−µiuψi . If ω satisfies theP+ + L boundary

conditions, thenω|[0,1]×Y =∑i�1 cie
−µiuψi .

We list two useful observations:
(1) If ω satisfies theP+ boundary conditions, then it extends (as a kernel element) over

X(∞) and is inL2(X(∞)). This follows from the estimate‖ω{u}×Y ‖L2(Y ) �Ke−µu
for someµ> 0 smaller than the smallest positive eigenvalue ofD̂. Conversely any
L2 solution toDω = 0 onX(∞) satisfiesP+ boundary conditions when restricted to
X(R) for anyR. This gives a natural identification between the spaces kerDR(P+)
for a givenR and theL2 kernel onX(∞).

(2) Let iR : {R} × Y →X denote the inclusion andi∗R the corresponding restriction of
sections. LetpH denote theL2 projection ontoH. Let

NR = pH
(
i∗R
(
kerDR(P+ +H)

))⊂H.

ThenNR is the set of “limiting values of extendedL2 solutions toDω = 0” (see [2])
and is independent ofR. We denote it byN (or by Nt when the parametert is
introduced). Explicitly,N is the set ofx ∈ H such that the kernel ofD contains
an element of the form

∑∞
i=−n cie−µiuψi on the cylinder withx =∑n

i=−n ciψi .
(Recall thatµi = 0 for−n� i � n.)

3.3. The next lemma shows that elements of kerD with appropriate boundary conditions
are both closed and co-closed, just as in the case of closed manifolds.

Lemma 3.1. If ω ∈Ωev
X (E) has H+ P+ boundary conditions and Dω = 0, then dAω =

0= d∗Aω.
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Proof. Extendω as above toX(∞). Then

0=Dω = il
∑
p

(−1)p+1(∗dA − dA∗)ω2p.

Taking homogeneous parts we see that∗dAω2p − dA ∗ ω2p+2 = 0. We claim that both
terms are zero. Expandω on the cylinder ofX(∞) into the sum of its harmonic part and
its exponentially decaying part:

ω=
n∑

i=−n
ciψi +

∞∑
i=n+1

cie
−µiuψi .

Theψi for i =−n, . . . , n are in the kernel of̂D0 and hence are harmonic sinceY is closed.
Thusd

Â
ψi = 0= d∗

Â
ψi for i =−n, . . . , n.

On the cylinder,dAω= dÂω+ du∧ (∂ω/∂u).
Thus on the cylinder we have the expansion:

dAω=
∞∑

i=n+1

cie−µiu(dÂψi −µi duψi).

Consequently, there is an estimate

‖dAω|{u}×Y ‖L2({u}×Y ) � k1e−µu

for some constantk1 depending only on the restriction ofω to {0} × Y . Hereµ > 0 is
smaller than the smallest positive eigenvalue ofD̂.

A similar argument shows that‖dA ∗ω‖� k2e−µu for some constantk2 depending only
on the restriction ofω to {0} × Y . Thus bothdAω anddA ∗ ω exponentially decay, and
hence have extensions toL2(X(∞),E). Furthermore these extensions have the property
that their wedge productdAω ∧ dA ∗ω exponentially decays.

Similarly there is an estimate

‖ ∗ ω|{u}×Y ‖L2({u}×Y ) � k3

for some constantk3 depending only on the restriction ofω to {0} × Y . (Notice that the
harmonic part does not vanish and so∗ω|{u}×Y does not exponentially decay. However, it
does exponentially limit to a harmonic form, i.e., it is an extendedL2 form.)

We can therefore integrate by parts:∣∣〈∗dAω2p, dA ∗ω2p+2
〉
X(∞)

∣∣ = ∣∣∣∣ lim
R→∞

∫
X(R)

K(dAω2p ∧ dA ∗ω2p+2)

∣∣∣∣
=
∣∣∣∣ lim
R→∞

∫
{R}×Y

K(dAω2p ∧ ∗ω2p+2)

∣∣∣∣
� lim
R→∞ k1k3e−µR = 0.

Thus∗dAω2p is orthogonal todA ∗ω2p+2 in L2(X(∞)). Since their sum is zero, they are
both zero onX(∞), and in particular, onX(R) for anyR. This shows thatdAω = 0=
d∗Aω. ✷
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It follows from the previous lemma that the DeRham map induces a linear map from
the kernel ofDR(H+ P+) to H ev(X;Vα), since forms in the kernel ofDR(H+ P+) are
closed. Also there is a map from the kernel ofDR(H+P+) to the odd formsH odd(X;Vα)
since taking the Hodge∗ of a form in the kernel ofDR(H+P+) yields a closed form. This
second map depends on the Riemannian metric in general.

From the Fourier expansion one sees that the first map takes the kernel ofDR(P+) to the
image of the relative cohomology in the absolute, i.e., toH ev(X;Vα). Indeed, such a form
is closed onX(∞) but its values on cycles in{R} × Y exponentially decay (asR→∞),
and hence the restriction of the corresponding cohomology class to the boundary is 0.
In [2] it is shown that this gives an isomorphism from kerDR(P+) with H ev(X;Vα). In
particular, ifL ∩ N = 0 in H, then the kernels ofDR(L + P+) andDR(P+) coincide.
Now N is a Lagrangian inH [21,22,27]. It follows from the previous lemma that under
the identification ofH with H ∗(Y ;Vα), N lies in the imageH ∗(X;Vα)→ H ∗(Y ;Vα).
Since this image is also Lagrangian, they are equal.

3.4. In many applications one can choose an analytic path of LagrangiansLt so that for
all t , Lt missesNt . In such a case one can tell where the kernel ofDt(L + P+) jumps
in dimension along the path by computing when the image of the relative cohomology
in the absolute cohomology jumps up. In any case we remind the reader of our standing
assumption:

Assumption. L0 is transverse toN0.

With this assumption the kernel ofD0(L+ P+) is isomorphic to

H ev(X;V0)= ImH ev(X,Y ;V0)→H ev(X;V0),

and in particular is a homotopy invariant of(X,α0).
Poincaré duality implies that the pairing

Hp(X;V0)×H 2l−1−p(X;V0)→C,

taking(φ, τ ) to φ · τ , is non-degenerate. The Hodge∗ operator preserves harmonic forms,
and theL2 inner product induces a non-degenerate positive definite inner product on the
L2 harmonic forms. IdentifyingL2 harmonic forms with cohomology using the Hodge
theorem (or Proposition 4.9 of [2] if∂X �= 0) we see that the Riemannian metric onX
induces a positive definite inner product〈 , 〉 on the cohomology ofX, and an isometry
∗ :H ∗(X;Vt)→ H ∗(X;Vt). These relate to the dot product in the following way, whose
proof we leave to the reader.

Lemma 3.2. If φp and τ2l−1−p are L2 harmonic forms on X(∞) representing cohomol-
ogy classes [φ] and [τ ] in H ∗(X(∞);V0), then the dot product of these classes as defined
in Section 2 may be expressed as follows.

[φ] · [τ ] =
∫

X(∞)
K(φ ∧ τ ),
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where K denotes the Hermitian inner product on V . The L2 inner product on harmonic
forms induces an inner product 〈 , 〉 on Hp(X;V0) and the formula〈[φ], [τ ]〉= [φ] · [∗τ ]
relates the inner product, the Hodge ∗ operator, and the dot product.

4. The first order forms

4.1. We next define the bilinear form which will give the first order part of the spectral
flow. Recall thata1 is the element ofH 1(X,adα0) which represents the tangent vector to
the arc of representationsαt at t = 0.

Definition 4.1. Define theReduced First Order Form to be the bilinear form:

B̃ :H l−1(X;V0)×H l−1(X;V0)→C,

given by the formula

(x, y) �→ ilr(a1)(x) · y.

This form clearly depends only on the homotopy type ofX. Notice that

B̃(x, y) = il
(
r(a1)(x) · y

)= il(−1)(l−1)2+1x · r(a1)(y)

= il(−1)l+l(l−1)(r(a1)(y) · x
)= B̃(y, x).

Thus B̃ is Hermitian and has a well-defined signature. Notice that ifx ∈ H l−1(X;V0)

satisfiesB̃(x, y) = 0 for all y ∈ H l−1(X;V0), then non-degeneracy of the dot product
implies thatr(a1)(x)= 0. We summarize:

Proposition 4.2. The signature of the reduced first order form B̃ is a homotopy invariant
of X. Moreover, the kernel of B̃ is{

x ∈H l−1(X;V0) | r(a1)(x)= 0
}
.

We next relate the reduced first order form̃B to a larger form which has the same
signature as̃B. This larger form is defined on all the even cohomology, and it is the form
which will arise in the proof of the main theorem in the next section. We will show that
this larger form is the direct sum of the reduced first order form and a hyperbolic form, and
so the signatures ofB andB̃ coincide.

We define theTotal First Order Form

B :H ev(X;V0)×H ev(X;V0)→C

by the formula

B(x, y)= il
l−1∑
p=0

(−1)p+1(r(a1)
(
x2(l−p−1)

) · y2p + r(a1)
(∗x2(l−p)

) · ∗y2p
)
.
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Wherex =∑
x2p andy =∑

y2p is the decomposition into homogeneous parts. In this
formula we have identified cohomology with harmonic forms. It is easy to check thatB is
Hermitian, and hence has a well-defined signature. The formB depends on the Riemannian
metric in general.

The formB arises by considering the first variation of the path of operatorsDt in the
following way. Recall thatDt = D0 +∑

i Ci t
i whereCi is given by formula(2.2). So

Ḋ0= C1. Hence ifx, y are harmonic forms (with respect todA0) andx ∈Ω2p
X (E), then〈

Ḋ0x, y
〉 = il(−1)p−1〈∗r(a1)(x)− r(a1)(∗x), y

〉
= il(−1)p−1(r(a1)(x) · y − r(a1)(∗x) · ∗y

)
= B(x, y). (4.1)

4.2. The next theorem relatesB to B̃. It also identifies the kernel ofB. This is done
by introducing a chain complex whose chain groups are the twisted cohomology groups
Hp(X;V0), and whose differential is the cup productr(a1) :Hp(X;V0)→Hp+1(X;V0)

given byx �→ r(a1)(x).
Notice thatr(a1) satisfiesr(a1)

2= 0. Indeed,

r(a1)r(a1)(x)= 1
2r
([a1, a1]

)
(x)

which equals 0 since[a1, a1] = −2dA0a2 (by Formula 2.1). Therefore(
H ∗(X;V0), r(a1)

)
defines a (co-)chain complex.

Theorem 4.3. The total first order form B has signature equal to the signature of B̃ . The
signature of B does not depend on the Riemannian metric and is a homotopy invariant.
The kernel of B is isomorphic to the even-dimensional cohomology of the complex
(H ∗(X;V0), r(a1)).

Proof. Assume first thatl is odd, sayl = 2k + 1. Then splitH l−1(X;V0) into the
kernel ofr(a1) :H l−1(X;V0)→ H l(X;V0), which we denote byK, and its orthogonal
complement inH l−1(X;V0) (with respect to theL2 inner product defined in Lemma 3.2),
K⊥. Then write

H ev(X;V0)=K⊥ ⊕
(
K

⊕
2p �=l−1

H 2p(X;V0)

)
.

If x, y ∈K⊥, thenB(x, y)= il(−1)k+1(r(a1)(x) · y). If x ∈K⊕2p �=l−1H
2p(X;V0) and

y ∈K⊥, then

B(x, y)= il(± r(a1)(xl−1) · yl−1± r(a1)(∗xl+1) · ∗yl−1
)
.

The first term vanishes sincexl−1 ∈ K and the second term is, up to sign, equal to
〈r(a1)(∗xl+1), yl−1〉. But r(a1)(∗xl+1) ∈ K sincer(a1)

2 = 0, and so this term vanishes
also. Thus the splittingK⊥ ⊕ (K⊕2p �=l−1H

2p(X;V0)) is orthogonal with respect to the



P. Kirk, E. Klassen / Topology and its Applications 116 (2001) 199–226 215

formB. Moreover, the restriction toK⊥ is equal to the restriction of̃B toK⊥. ClearlyB̃
vanishes onK and the signature of̃B equals the signature of the restriction ofB̃ toK⊥.

An easy argument shows that ifF :V × V → C is a Hermitian form, andj :V → V is
an involution so thatF(j (x), j (y))=−F(x, y) for all x, y ∈ V , then the signature ofV
is zero (even ifF is degenerate).

Definej :K
⊕

2p �=l−1H
2p(X;V0)→K

⊕
2p �=l−1H

2p(X;V0) by the formula

j

(
l−1∑
p=0

x2p

)
=−

(l−1)/2∑
p=0

x2p +
l−1∑

p=(l+1)/2

x2p.

A routine calculation shows thatB(x, y)=−B(jx, jy). The fact thatx(l−1)/2 ∈K implies
that the termr(a1)(x(l−1)/2) · y(l−1)/2 vanishes, and this is the only term which does not
change signs. It follows that the signature ofB equals the signature of̃B.

A similar argument works ifl is even. In this case one decomposesHl(X;V0) into the
kernel ofx �→ r(a1)(∗x) and its orthogonal complement. In addition one observes that the
forms

Hl(X;V0)×Hl(X;V0)→C, (x, y) �→ r(a1)(∗x) · ∗y
and

H l−1(X;V0)×H l−1(X;V0)→C, (x, y) �→ r(a1)(x) · y
are isomorphic (via the Hodge∗) and hence have the same signature.

Finally we compute the kernel ofB. If x ∈ H ev(X;V0) satisfiesB(x, y) = 0 for all
y ∈H ev(X;V0), thenr(a1)(x2(l−p−1)) · y2p + r(a1)(∗x2(l−p)) · ∗y2p = 0 for anyy. Since
e · ∗f = ± ∗ e · f it follows that r(a1)(x2(l−p−1)) ± ∗r(a1)(∗x2(l−p)) = 0 for some
appropriate sign. But〈

r(a1)(e),∗r(a1)(f )
〉=±r(a1)(e) · r(a1)(f )=±r(a1)

2(e) · f = 0

and sor(a1)(x2(l−p−1)) and∗r(a1)(∗x2(l−p)) are orthogonal. Hence

r(a1)
(
x2(l−p−1)

)
and ∗r(a1)

(∗x2(l−p)
)

both equal 0, and sor(a1)(x)= 0= r(a1)(∗x).
Now〈

r(a1)e, f
〉= r(a1)(e) · ∗f =±e · r(a1)(∗f )=±

〈
e,∗r(a1)(∗f )

〉
.

Therefore∗r(a1)∗ is the adjoint ofr(a1) up to sign. It follows in the usual way that the
cohomology of the complex(H ∗(X;V0), r(a1)) is isomorphic to the kernel ofr(a1) +
∗r(a1)∗, which in turn is isomorphic to the intersection of the kernels ofr(a1) and∗r(a1)∗.

We conclude that the set ofx ∈ H ev(X;V0) satisfying B(x, y) = 0 for all y ∈
H ev(X;V0) coincides with the even dimensional cohomology of the complex(H ev(X;V0),

r(a1)). ✷

4.3. We finish this section by calculating explicit expressions forB andB̃ on a 3-manifold.
Consider first a connected 3-manifoldX with non-empty boundaryY . ThenH 0(X;V0)
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can be identified with the invariants{v ∈ V | (1− α0(g))v = 0, for all g ∈ π1X} and
similarly for H 0(Y ;V0). ThusH 0(X;V0) injects intoH 0(Y ;V0) and soH 0(X;V0) = 0.
By Poincaré dualityH 3(X;V0)= 0 also.

Therefore, the total formB is defined onH 2(X;V0) by the formula

B(x, y)=−r(a1)(∗x) · ∗y
and has kernel equal to the kernel ofr(a1)∗ :H 2(X;V0)→ H 2(X;V0). The orthogonal
complement of the kernel is the image ofr(a1) :H 1(X;V0)→H 2(X;V0). Moreover, the
hyperbolic part of the form (as in the proof of the Theorem 4.3) is zero.

The reduced form̃B is defined onH 1(X;V0) by

B̃(x, y)=−r(a1)(x) · y
and has kernel equal to kerr(a1) :H 1(X;V0) → H 2(X;V0). Both forms are non-
degenerate exactly when the first (or second) cohomology of the complex(H ∗(X;V0),

r(a1)) is zero.
The same facts apply to a closed 3-manifold ifH 0(X;V0)= 0. This holds, for example,

if the representationr ◦ α0 :π1X→U(V ) is irreducible.
If X is closed andH 0(X;V0) �= 0, then the total formB is metric dependent; it is given

by the formula

B(x, y)=−r(a1)x0 · y2− r(a1)(∗x2) · ∗y2+ r(a1)(x2) · y0.

It splits orthogonally into the hyperbolic part

B(x, y)=−r(a1)(x0) · y2+ r(a1)(x2) · y0

onK ⊕H 0(X;V0) and the non-hyperbolic part

B(x, y)=−r(a1)(∗x) · ∗y
onK⊥. Here

K = kerr(a1)∗ :H 2(X;V0)→H 2(X;V0)

and so

K⊥ = Im r(a1) :H 1(X;V0)→H 2(X;V0).

The kernel ofB is the subspace{
(x0, x2) | 0= r(a1)(x0)= r(a1)(x2)= r(a1)(∗x2)

}
,

which is isomorphic to the even cohomology of the complex(H ∗(X;V0), r(a1)).
The formB̃ :H 1(X;V0)×H 1(X;V0)→C is defined by

B̃(x, y)=−r(a1)(x) · y.
Its kernel is the set{x | r(a1)(x)= 0}. Notice that the signature ofB is metric independent
since it equals the signature of̃B. Moreover, the dimension of the kernel ofB is also
metric independent since it equals the dimension of the even cohomology of the complex
(H ∗(X;V0), r(a1)).
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The reduced form has a much simpler and, in particular, metric independent expression
than the total form. In the next section we will see that the signature and kernel of the total
form provide precisely the information we need to calculate the first order spectral flow.
(For specific computations, using these forms, of spectral flow on 3-manifolds, see [15].)

5. The main theorems

5.1. In this section we show how the formB gives the first order part of the spectral flow.
Again the main technicalities come from working on a manifold with boundary. It turns
out that by stretching the the collar ofX is sufficiently,B gives information about the first
order part of the spectral flow.

This result can be thought of as a generalization of the Hodge theorem, which identifies
the kernel ofD0(L + P+) (i.e., the 0th order part of the spectral flow along a path of
representations) with cohomology. Theorems 5.1 and 5.2 identify the first order part of the
spectral flow in terms of the cup product.

5.2. We begin with the theorem for a closed manifold. The proof is just a standard argument
working with the first variation of eigenvalues:

Theorem 5.1. Let X be a closed manifold and α :J →Hom(π1X,U(k)) an analytic path
of representations, J = [0, ε) or (−ε, ε). Let r :U(k)→ U(V ) be a representation and
let Dt denote the Atiyah–Patodi–Singer odd signature operators obtained from the flat
connection At with holonomy r ◦ αt as described above. Suppose the dimension of the
kernel of Dt jumps up at t = 0.

Then the signature of the reduced first-order form B̃ is equal to the sum of the signs of
the derivatives of the eigenvalues ofDt which pass through 0 at t = 0. This is what we call
the “first order spectral flow” of Dt at t = 0.

Moreover, if the cohomology of (H ∗(X;V0), r(a1)) is zero, then the signature of B̃
equals the spectral flow through t = 0 of the family Dt .

Proof. Choose an analytic path of flat connectionsAt using the main results of [11]. Let
φi(t), i = 1, . . . ,m, be an analytically varying orthonormal family of eigenvectors forDt ,
with analytically varying eigenvaluesλi(t), so that{φi(0)}mi=1 spans the kernel ofDt . The
existence of such a family follows from the main results of [14]. The important point is
that on a closed manifold the domain ofDt is independent oft . (See also Section 2.)

Differentiating the expressionDtφi(t)= λi(t)φi(t) at t = 0 one obtains:

D0φ̇i(0)+ Ḋ0φi(0)= λ̇i (0)φi(0).
Taking the inner product withφj (0) and using the fact thatD0 is self adjoint and
D0φj (0)= 0 one gets:

λ̇i δij =
〈
Ḋ0φi(0),φj (0)

〉
.
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Formula (4.1) shows that〈Ḋ0x, y〉 = B(x, y). Therefore, in the basis{φi(0)} the form
B is diagonal with entrieṡλi(0). Hence the signature ofB is just the sum of the signs
of the derivatives of theλi(t) at t = 0. Theorem 4.3 shows that the signature ofB
equals the signature of̃B and thatB is nondegenerate if the cohomology of the complex
(H ∗(X;V0), r(a1)) vanishes. ✷

For sample computations using this theorem, see Theorems 7.9 and 7.10 of [15]. For
extensions of this result (for closed manifolds) to higher derivatives of the eigenvalues,
see [16,9].

5.3. We now turn to the case of a manifold with boundary. The results of [17] as
explained in Section 2 show that one can find an appropriate family of analytically varying
eigenvectors and eigenvalues ofDt(L + P+) and so one can try to repeat the proof of
Theorem 5.1. However, the argument fails in two ways. First, the derivativeφ̇i(0) need
no longer satisfy the boundary conditions since the boundary conditions are varying,
and so〈D0φ̇i(0),φj (0)〉 need not vanish; in fact it equals{φ̇i(0),φj (0)}|∂X. Moreover,
the derivative ofDt at t = 0 is not given by the bilinear formB, i.e., the difference
〈Ḋ0x, y〉 − B(x, y) is non-zero in general. However, both of these difficulties can be
overcome by stretching the collar ofX; we will prove that both{φ̇i(0),φj (0)}|∂X and
〈Ḋ0x, y〉−B(x, y) approach zero as the metric onX is deformed so that the collar becomes
increasingly long. Hence, the eigenvalues of the formB give the limiting values (as the
collar becomes infinitely long) of the derivatives of the eigenvalues ofDt which pass
through 0.

If the first order formB is degenerate, then a further difficulty seems to arise: what if
the time-derivative of an eigenvalue ofDt is, say, positive for each finite collar length,
but its limit as the collar becomes infinite is 0? Then the forms defined above would
simply tell us that 0 is the limiting value of this derivative, which would not tell us the
first order spectral flow of the compact manifold (i.e., with finite collar) in which we were
originally interested. The solution to this problem lies in the main theorems of [18], in
which we show that this phenomenon cannot occur. In other words, if the time derivative
of an eigenvalue of ofDt approaches 0 as the collar becomes infinitely long, then that
derivative must already have been 0 for all finite collar lengths. Thus the theorems in this
section really do give the first order spectral flow. We will give a more detailed discussion
of this phenomenon in the statement and proof of Theorem 5.3, below.

We assemble our notation and assumptions:α :J → Hom(π1(X),U(k)) is an analytic
path of representations on a compact manifoldX with collar isometric to[0,1] × Y . We
are given a representationr :U(k)→ U(V ) of U(k) on a Hermitian vector spaceV . For
eacht , Vt is the system of local coefficients given by the compositer ◦ αt . We assume
that dimH ∗(Y ;Vt) is independent oft ∈ J . We letDt denote the odd signature operator
onX coupled to the flat connection with holonomyr ◦ αt . We choose an analytic pathLt
of Lagrangians inH ∗(Y ;Vt) so that att = 0, L0 is transverse toN0, the limiting values
of extendedL2 solutions toD0ω = 0. Hence the kernel ofD0(L0+ P+) is isomorphic to
H ev(X;V0). Finally,X(R) denotes the manifoldX with a collar [0,R] × Y glued toX



P. Kirk, E. Klassen / Topology and its Applications 116 (2001) 199–226 219

along[0,1] × Y , andDRt denotes the obvious extension ofDt to X(R). Notice that the
kernel ofDR0 (L+P+) is independent ofR, although the other eigenvalues do (in general)
depend onR.

The assumption in the last paragraph thatL0 is transverse to the limiting values of
extendedL2 solutions does not restrict the usefulness of this theorem in the calculation of
spectral flow. Calculations of spectral flow whenL0 is not transverse to the limiting values
of extendedL2 solutions can be broken down into two problems: one when this assumption
holds, and another involving afixed operator but with varying boundary conditionLt . This
latter situation has been extensively studied, and is easily understood in terms of the Maslov
index of the familyLt with respect to the limiting values of extendedL2 solutions. See [22]
and [20].

Theorem 5.2. Given any ε > 0, there exists an Rε # 0 so that for all R > Rε , there is
a 1–1 correspondence between the eigenvalues τi(B) of B and the first derivatives of the
eigenvalues λi(t) of DRt (L+ P+) passing through 0 at t = 0, denoted by τi(B)↔ λ̇Ri (0),
so that∣∣τi(B)− λ̇Ri (0)∣∣< ε.

In particular, if the cohomology of (H ∗(X;V0), r(a1)) is zero, then the signature of the
reduced first order form B̃ equals the spectral flow of DRt (L + P+) through t = 0 for
R >Rε , where ε < 1

2 inf |τi(B)|.

Before giving the proof of Theorem 5.2, we will state and prove an addendum to this
theorem (stated as Theorem 5.3) which sharpens the results of Theorem 5.2.

Theorem 5.3. The correspondences of Theorem 5.2 may be set up in such a way that they
satisfy the following additional condition: For each i , the sign of λ̇Ri (0) equals the sign of
τi(B) (where, of course, the three possible “signs” are +, −, and 0).

Note that this theorem implies that if the limiting value ofλ̇Ri (0) asR→∞ is 0, then
for finiteR we must already havėλRi (0)= 0.

Proof of Theorem 5.3. In Definition 6.6 of [18], we define formsBm for all m> 0; in the
proof of Theorem 6.7 of the same paper, we show thatB1 coincides with the “total form”
B of the current paper, i.e.,

B1(v,w)=
〈
Ḋv,w

〉
.

To conclude, Theorem 7.1 of [18] shows that the eigenvalues ofB1 (calledB in the current
paper) have the same signs as the set{λ̇Ri (0)} for all R. ✷
Proof of Theorem 5.2. Choose the path of flat connectionsAt onX with holonomyr ◦αt
to vary analytically and be in cylindrical form, using the result in [11]. These extend in the
obvious way toX(R) andX(∞).
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Notice that by our assumption on the LagrangianL0 the kernel ofDR0 (L + P+) is
independent ofR, and in fact equals theL2-kernel ofD0 on X(∞). (Recall that each
element of the kernel ofDR0 (L + P+) has a Fourier expansion

∑
i>n cie

−µiuψi on the
collar.)

Given anyR > 0, the main result of [17] implies that we can find analytic paths
of eigenvectorsφRi (t), i = 1, . . . ,m, for DRt (L + P+) with corresponding paths of
eigenvaluesλRi (t) so that{φRi (t)} are orthonormal for eacht and{φRi (0)} spans the kernel
of DR0 (L+ P+).

TheφRi (t) have Fourier expansions on the collar

φRi (t)=
∞∑

p=−∞
aRi,p(t, u)ψp(t).

Here u denotes the collar coordinate. We recall thatψp(t) are the orthonormal set of
eigenvectors for the tangential operatorD̂t , andµp(t) their corresponding eigenvalues; the
indexing is chosen so thatµ−p(t)=−µp(t) andµp(t)= 0 for p=−n, . . . ,−1,1, . . . , n,
moreoverLt = span{ψp(t)|1 � p � n}. (Alsoψ0(t)= 0).

Since theφRi (t) satisfy P+(t) + Lt boundary conditions onX(R), we know that
aRi,p(t,R) = 0 if p < 0. Moreover, sinceφRi (0) lies in the kernel ofDR0 (L + P+), we
know that

aRi,p(0, u)=
{
αRi,pe−µpuψp(0) if p > n,

0 if p � n
for some constantsαRip (recall thatLt is transverse to the limiting values of extendedL2

solutions, and thereforeaRi,p(0, u)= 0 for 1� p � n).

Notice that eachφRi (0) exponentially decays on[0,R]×Y , and so the Fourier expansion
gives a canonical extension ofφRi (0) toX(∞). Moreover, a simple calculation shows that∥∥φRi (0)∥∥2

L2([0,∞)×Y ) �
2

1− e−2µn+1

∥∥φRi (0)∥∥2
L2([0,1]×Y )

and so since‖φRi (0)‖2
L2([0,1]×Y ) < ‖φRi (0)‖2

L2(X(R))
= 1, the extension ofφiR(0) toX(∞)

is in L2(X(∞)) and itsL2 norm is bounded by a constantK0 independent ofi andR.
Let W ⊂ L2(X(∞)) denote theL2 kernel ofD0, which is canonically identified with
kerDR0 (L+ P+) for anyR. Of course,W is isomorphic toH ev(X;V0) via the DeRham
map.

For anyi or R the vectorφRi (0) lies inW and has finiteL2(X(∞)) norm. Also, the
usual regularity theorems show thatW consists only of smooth functions.

A few lemmas will be needed.

Lemma 5.4. Let Ĉ1 :L2Ω∗(Y, Ê)→ L2Ω∗(Y, Ê) denote the derivative at t = 0 of the
tangential operator D̂t . Then:

d

dt

∣∣∣∣
t=0
ψp(t) =

∑
q,µq (0) �=µp(0)

1

µp(0)−µq(0)
〈
Ĉ1ψp(0),ψq(0)

〉
ψq(0)



P. Kirk, E. Klassen / Topology and its Applications 116 (2001) 199–226 221

+
∑

q,µq (0)=µp(0)

〈
d

dt

∣∣∣∣
t=0
ψp(t),ψq(0)

〉
ψq(0).

Proof. Differentiate the eigenvalue equation̂Dtψp(t) = µp(t)ψp(t) with respect tot to
obtain

Ĉ1ψp(0)+ D̂0ψ̇p(0)= µ̇p(0)ψp(0)+µp(0)ψ̇p(0).
Suppose thatµq(0) �= µp(0). Taking the inner product of the previous line withψq(0) and
using the facts that̂D0 is self adjoint andψq(0) is orthogonal toψp(0), one obtains:〈

ψ̇p(0),ψq(0)
〉= 1

µp(0)−µq(0)
〈
Ĉ1ψp(0),ψq(0)

〉
.

The lemma follows from the fact thatx =∑q〈x,ψq(0)〉ψq(0) for anyx ∈ L2. ✷
We will also need the following estimate.

Lemma 5.5. There exists a constant K independent of i = 1, . . . ,m and R so that∑
p>n

∣∣αRi,p∣∣<K.
Proof. Recall that on the cylinder,φRi (0) =

∑
p>n α

R
i,pe−µpuψp(0). Each φRi (0) is

smooth, and so its restriction toY × 0 is also smooth. Hence∑
p>n

αRi,pψp(0)

lies inL2
s (Y × 0) for anys � 0.

Since theψp(0) are eigenfunctions of the elliptic operator̂D0, it follows that {(1+
µ2
p)
−s/2ψp(0)} is an orthonormal basis for an admissible norm onL2

s (Y ) (see [23]). Thus∑
p>n

(
αRi,p

)2(1+µ2
p

)s = ∥∥φRi (0)|{0}×Y∥∥L2
s
<∞.

We can say more. Fix ans > (dimY )/2. EachφRi (0) has norm 1 inL2(X(R)), and in
particular∥∥φRi (0)∥∥L2([0,1]×Y ) < 1.

Moreover eachφRi (0) lies inW which consists only of smooth functions. It is easy to see
that the norm‖x‖s = ‖x‖L2

s ([0,1]×Y ) is a norm onW , and eachφRi (0) has‖φRi (0)‖0< 1.
Since any two norms onW are equivalent, for eachr � 0 there is some constantCr
independent ofi orR so that‖φRi (0)‖r is bounded byCr .

Choosingr large enough and applying the restriction theorem it follows that there is a
constantK1 independent ofi or R so that the restriction ofφRi (0) to {0} × Y hasL2

s (Y )

norm less thanK1, i.e.,∑
p>n

(
αRi,p

)2(1+µ2
p

)s = ∥∥φRi (0)|{0}×Y∥∥L2
s
< K1.
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On the other hand, the eigenvaluesµp grow likep1/(dimY ) [12]. Thus∑
p>n

(
1+µ2

p

)−s
< K2

for some constantK2.
Partition the spectrum of̂D0 into S1 ∪ S2, where

S1=
{
p | (1+µ2

p

)s(
αRi,p

)2 �
∣∣αRi,p∣∣}, S2= Spec

(
D̂0
)− S1.

Then ∑
p∈S1

∣∣αRi,p∣∣�∑
p

(
1+µ2

p

)s(
αRi,p

)2
<K1.

If p ∈ S2 then|αRi,p |< (1+µ2
p)
−s and so∑

p∈S2

∣∣αRi,p∣∣�∑
p

(
1+µ2

p

)−s
< K2.

The lemma follows by settingK =K1+K2. ✷
We can now proceed with the proof of Theorem 5.2. We compare the diagonal formM1

whose diagonal entries are the derivativesλ̇Ri (0) to the total first order formB.
Differentiating the expressionDRt φ

R
i (t) = λRi (t)φRi (t) at t = 0 and taking the inner

product withφRj (0) gives

λ̇Rj δij =
〈
ḊR0 φ

R
i (0),φ

R
j (0)

〉∣∣
X(R)

+ 〈DR0 φ̇Ri (0),φRj (0)〉∣∣X(R)
= 〈
ḊR0 φ

R
i (0),φ

R
j (0)

〉∣∣
X(R)

+ 〈φ̇Ri (0), σ (φRj (0))〉{R}×Y .
(The second line follows by integrating by parts.) Formula (4.1) shows that

B
(
φRi (0),φ

R
j (0)

)= 〈ḊR0 (φRi (0)), φRj (0)〉X(∞).
Hence if we subtractB(φRi (0),φ

R
j (0)) from both sides of the preceding formula we obtain

λ̇Rj δij −B
(
φRi (0),φ

R
j (0)

) = −〈ḊR0 φRi (0),φRj (0)〉∣∣[R,∞)×Y
+ 〈φ̇Ri (0), σ (φRj (0))〉{R}×Y . (5.1)

We first estimate〈ḊR0 φRi (0),φRj (0)〉|[R,∞)×Y . With Ĉ1 as above,

‖Ĉ1‖e−µn+1R

2µn+1

(∑
p>n

∣∣αRi,p∣∣)(∑
q>n

∣∣αRj,q ∣∣)

�
∑
p>n

∑
q>n

∣∣αRi,p∣∣ ∣∣αRj,q ∣∣ ∥∥Ĉ1
∥∥( ∞∫

R

e−(µp+µq)u du

)

�
∣∣∣∣
∞∫
R

αRi,pα
R
j,qe

−(µp+µq)u〈Ĉ1ψp,ψq
〉
du

∣∣∣∣
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=
∣∣∣∣〈∑
p>n

αRi,pe−µpU Ĉ1ψp,
∑
q>n

αRj,qe
−µquψq

〉∣∣∣∣
Y×[0,∞)

∣∣∣∣
= ∣∣〈ḊR0 φRi (0),φRj (0)〉∣∣[R,∞)×Y ∣∣.

The last line follows from the fact thatDt = σ(d/du+D̂t ) on the collar and sȯD0= σ(Ĉ1)

on the collar. Using Lemma 5.4 we find that there exists a constantK independent ofi or
R so that∣∣〈ḊR0 φRi (0),φRj (0)〉∣∣[R,∞)×Y ∣∣<Ke−2µn+1R.

We turn to the second term in(5.1). Since φRi (t) satisfiesP+(t) + Lt boundary
conditions, its restriction to the boundary ofX(R) equals∑

p>0

aRi,p(t,R)ψp(t).

Therefore, the restriction of the derivative ofφRi (t) at t = 0 to {R} × Y equals∑
p>0

d
dt |t=0(a

R
i,p(t,R) ψp(t)).

Supposeq > n. Then (taking inner products inL2({R} × Y )):
〈
φ̇Ri (0),ψ−q(0)

〉 = 〈∑
p>0

d

dt

∣∣∣∣
t=0

(
aRi,p(t,R)ψp(t)

)
,ψ−q (0)

〉
=
∑
p>0

〈
ȧRi,p(0,R)ψp(0)+ aRi,p(0,R)ψ̇p(0),ψ−q(0)

〉
=
∑
p>0

〈
aRi,p(0,R)ψ̇p(0),ψ−q(0)

〉
=
∑
p>n

〈
αRi,pe−µpRψ̇p(0),ψ−q(0)

〉
.

This last sum converges absolutely, since∣∣〈αRi,pe−µpRψ̇p(0),ψ−q (0)
〉∣∣

= e−µpR
∣∣αRi,p∣∣ ∣∣〈ψ̇p(0),ψ−q(0)〉∣∣

= e−µpR
∣∣αRi,p∣∣ ∣∣∣∣ 1

µp(0)+µq(0)
〈
Ĉ1ψp(0),ψ−q(0)

〉∣∣∣∣
� e−µn+1R

1

2µn+1

∥∥Ĉ1
∥∥ ∣∣αRi,p∣∣

(note thatµn+1 is the smallest non-zero eigenvalue of̂D0) and so the sum converges
absolutely by Lemma 5.4.

The sum∑
q>n

∑
p>n

〈
αRi,pe−µpRψ̇p(0), αjl,qe

−µqRj ψ−q (0)
〉

(5.2)
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also converges absolutely. In fact, using the same calculation as the previous estimate we
can bound the sum of the absolute values of the terms by

e−2µn+1R
1

2µn+1

∥∥Ĉ1
∥∥∑
q>n

∑
p>n

∣∣αRi,p∣∣ ∣∣αRl,p∣∣.
Using Lemma 5.4 we conclude that there exists a constantK which is independent ofi, l,
andj so that the sum(5.2) is bounded byKe−2µn+1R .

Notice that∑
q>n

∑
p>n

〈
αRi,pe−µpRψ̇p(0), αRj,qe−µqRψ−q (0)

〉
=
〈∑
p>n

αRi,pe−µpRψ̇p(0),
∑
q>n

αRj,qe
−µqRψ−q(0)

〉
= 〈φ̇Ri (0), σ (φRj (0))〉.

Hence∣∣〈φ̇Ri (0), σ (φRj (0))〉∣∣�Ke−2µn+1R

for some constantK independent ofi, j orR.
To simplify notation letφRi denoteφRi (0) for the rest of the proof. Returning to equation

(5.1) we see that∣∣λ̇Ri δi,j −B(φRi ,φRj )∣∣�Ke−2µn+1R.

This estimate suggests that theλ̇Ri are approaching the eigenvalues ofB.
To prove this fact, we first show that theφRi are almost orthonormal onX(∞). Indeed,〈

φRi ,φ
R
j

〉∣∣
X(∞) =

〈
φRi ,φ

R
j

〉∣∣
X(R)

+ 〈φRi ,φRj 〉∣∣[R,∞)×Y
= δi,j +

〈
φRi ,φ

R
j

〉∣∣[R,∞)×Y .
Again we can easily estimate|〈φRi ,φRj 〉|[R,∞)×Y |<Ke−µn+1R for someK independent of
i, j, orR.

Theorem 5.2 now follows from the next lemma.

Lemma 5.6. For each ε > 0 there exists an Rε > 1 so that for all R > Rε ,

inf
s∈Sm

(
sup
i

∣∣τi(B)− λ̇Rs(i)∣∣)< ε.
Remark. HereSm is just the permutation group. Hence this lemma says that forR large

enough, the set{λ̇Ri } is arbitrarily close to the set of eigenvalues ofB.

Proof. Suppose not. Then there exists anε > 0 and an unbounded sequenceR1<R2< · · ·
so that

inf
s∈Sm

(
sup
i

∣∣τi(B)− λ̇Rjs(i)∣∣)> ε
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for all j . Choose a subsequence so thatφ
Rc
i converges for eachc, say toφ∞i . Choose a

further subsequence so that the infimum is realized by the same permutation, which we
may assume is the identity by reindexing.

The limit limc→∞B(φRci , φ
Rc
j ) equalsB(φ∞i , φ∞j ), since

B(x, y)= 〈Ḋ0x, y〉X(∞).
On the other hand this limit equals the limit

lim
c→∞ λ̇

Rc
i δi,j + fij (Rc)

for some exponentially decreasing functionfij (R). Hence the limit limc→∞ λ̇Rci exists;
call it ζi . Then:

B
(
φ∞i , φ∞j

)= ζi δi,j .
A similar argument shows that the{φ∞i } are an orthonormal basis, and hence the

eigenvalues ofB are just theζi . But then

0= sup
i

∣∣ζi − τi(B)∣∣= lim
c→∞ sup

i

∣∣λ̇Rci − τi(B)
∣∣> ε,

a contradiction.
This concludes the proof of the lemma, and of Theorem 5.2.✷
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