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ABSTRACT The entropy loss due to the formation of one or multiple loops in circular and linear DNA chains is calculated from
a scaling approach in the limit of long chain segments. The analytical results allow us to obtain a fast estimate for the entropy
loss for a given configuration. Numerical values obtained for some examples suggest that the entropy loss encountered in loop
closure in typical genetic switches may become a relevant factor in comparison to both kBT and typical bond energies in
biopolymers, which has to be overcome by the released bond energy between the looping contact sites.

INTRODUCTION

Gene expression in all organisms comprises the transcription

of a certain gene on the DNA into messenger RNA through

RNA polymerase starting from the promoter site, and its

subsequent translation into a protein. The initiation of the

transcription at a specific gene underlies a subtle cooperative

scheme of transcription factors, which in turn is determined

by a given set of boundary conditions such as the concen-

tration of the transcription factors. Transcription factors often

act cooperatively, and they are known to interact with each

other over distances of several thousand basepairs (bp). This

interaction is effected through DNA looping (Alberts et al.,

1994; Blackwood and Kadonaga, 1998; Bolsover et al.,

2001; Ptashne and Gunn, 2002; Révet et al., 1999; Snustad

and Simmons, 2003), compare Fig. 1.

A typical example for DNA looping is found in the genetic

switch which determines whether the replication of bacte-

riophage l in Escherichia coli follows either the lysogenic

or the lytic pathway (Ptashne, 1992; Ptashne and Gunn,

2002; Snustad and Simmons, 2003). A key component of

this l-switch is the l-repressor which activates the

expression of a gene that encodes the production of the l-
repressor itself. l-repressor can bind to the three operator

sites OR which overlap the two promoter sites of the switch.

l-repressor binds cooperatively as a dimer, and typically

under stable lysogenic conditions two such dimers on OR

form a tetramer, the next higher order of cooperativity, which

is the main factor for the stability of the l-switch against

noise (Aurell and Sneppen, 2002; Aurell et al., 2002;

Metzler, 2001). However, l-repressor can also bind to the

very similar operator OL, which is located roughly 2300 bp

away and not part of the l-switch. It has been found that the

two l-repressor tetramers at OL and OR synergistically form

an octamer through DNA looping. This higher-ordered

oligomerization enhances the performance of the switch

considerably (Amouyal et al., 1998; Bell and Lewis, 2001;

Bell et al., 2000; Blackwood and Kadonaga, 1998; Ptashne

and Gunn, 2002; Révet et al., 1999; Semsey et al., 2002; Xu

and Hoover, 2001). The specific binding along the tetramer-

tetramer interface has recently been revealed through

crystallographic structure determination (Bell and Lewis,

2001; Bell et al., 2000). Similar realizations of DNA looping

also occur in linear DNA, naturally in the form of telomeres

or in vitro in engineered DNA (De Bruin et al., 2001; Griffith

et al., 1999; Zaman et al., 2002, compare Fig. 1). Multiple

looping in large DNA molecules around a locus can be

observed in vivo and can be induced in vitro by introducing

of specific binding zones on the DNA, which leads to a con-

siderable reduction of the gyration radius of the molecule

such that it can be more easily transferred into, for example,

mammalian cells (Montigny et al., 2001).

DNA looping often involves large loop sizes of several

thousand bp. Therefore, the formation of these loops causes

a non-negligible entropy loss which has to be overcome by

the binding energy released at the bond formation on loop

closure. In the present study, we quantify this entropy loss

for such long DNA loops, taking into account self-avoiding

effects due to both the monomer-monomer interaction within

the loop and the additional effects due to the higher order

contact points (vertices) at the loop closure site. The resulting

numbers for typical systems suggest that the entropy loss is

a relevant factor in the formation of DNA loops in com-

parison to the thermal energy and typical bond energies

found in DNA nucleotides and other biopolymers, and it

gives a lower bound for the bond-forming energy required to

stabilize the loop.

Entropy loss due to loop formation was studied for the

case of disconnected loops by Schellmann (1955), Flory

(1956), and Semlyen (1997). In their seminal article, Poland

and Scheraga (1965), and Wang and Uhlenbeck (1955), con-

sidered coupled Gaussian loops. To our knowledge the full

effect of self-avoidance in the DNA looping network has not

been considered before. Hereby, the contributions of non-

trivial vertices turns out to be a relevant factor, and for mul-

tiple looping with a common locus actually become the

dominating contribution. The analytical results presented

here are derived from a scaling approach for general polymer
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networks and provide the advantage that, on their basis,

estimates for the entropy loss in a given DNA system can

be computed in a straightforward manner. It should also be

noted that the additional vertex effects studied herein may

be crucial in the analytical treatment of the DNA looping

dynamics, as the higher-order self-interaction at such vertices
poses an additional barrier in the loop closure process (Lee

et al., 1976; Merlitz et al., 1998). Our results for long DNA

with large loops complement the investigations of the bend-

ing and twisting energies in small DNA plasmids (Coleman

et al., 2000; Tobias et al., 2000). In the case of intermediate-

sized DNA segments, both approaches may be combined.

In what follows, we calculate the scaling results for the

entropy loss on looping for the three different cases: 1),

looping in a circular DNA; 2), looping in a linear DNA; and

3), multiple looping in a circular DNA. In the Appendix, the

general expressions for calculating the system entropy of an

arbitrary polymer network are compiled so that the entropy

loss for different configurations can be calculated according

to the general procedure developed below.

LOOPING IN A CIRCULAR DNA CHAIN

As stated before, we consider the limit in which each seg-

ment of the looped DNA, e.g., both subloops created in the

circular DNA upon looping, are long in comparison to the

persistence length ‘p of the double-stranded DNA chain. (It

can be assumed that this criterion is fulfilled if the segment

contains more than ten persistence lengths.) In this long

chain limit, we can neglect energetic effects due to bending

or twisting, such that we treat the DNA as a flexible self-

avoiding polymer. Therefore, we can employ results for the

configuration number of a general polymer network, which

we briefly review in the Appendix.

Before looping, the free energy of the circular DNA of

total length L is given by

Fcirc ¼ H0 � TScirc; (1)

where H0 combines all binding enthalpies in the macromol-

ecule and the entropy Scirc ¼ kB lnvcirc is determined by the

number of configurations (see De Gennes, 1979; see also

the Appendix, this article)

vcirc ¼ Acirc m
LL�3n

; (2)

of a simply connected ring polymer of length L in units of

the monomer length. The latter can be estimated by the

persistence length ‘p of the polymer (;500 Å for double-

stranded DNA corresponding to 100 bp; see Marko and

Siggia, 1996). In Eq. 2, Acirc is a nonuniversal amplitude, m is

the support dependent connectivity constant, and n ’ 0:588
(Guida and Zinn-Justin, 1998) is the Flory exponent. Thus,

Scirc has the form

Scirc ¼ kBðlnAcirc 1 L lnm� 3n ln LÞ: (3)

On looping, as sketched in Fig. 1 to the left, the circular DNA

is divided into two subloops of lengths ‘ and L � ‘ by

creation of a vertex at which four legs of the chain are bound

together. For a self-avoiding chain, the number of config-

urations of the resulting figure-eight shape (Metzler et al.,

2002a,b) is not simply the product of the configuration

numbers of the two created loops, but has the more com-

plicated form (Duplantier, 1986, 1989; Ohno and Binder,

1988; Schäfer et al., 1992; see also the Appendix, this

article),

v8 ¼ A8m
LðL� ‘Þ�6n1s4Y8

�
‘

L� ‘

�
: (4)

In this expression, A8 is a nonuniversal amplitude, Y8 is

a universal scaling function, and s4 ’ �0:48 is a universal

exponent associated with the vertex with four outgoing legs.

Note that in the Gaussian chain limit, the exponents sN

vanish; as we are going to show, the inclusion of the ad-

ditional effects due to the higher order vertex formation

reflected by nonzero values for sN are non-negligible. Given

the entropy S8 ¼ kB lnv8 of the figure-eight configuration,

the entropy loss suffered from creating this configuration out

of the original circular DNA amounts to jS8 � Scircj. To
proceed, we now evaluate the scaling function Y8(x) in

some special cases, and calculate typical numbers for the

required entropy loss compensation. Two limiting cases can

be distinguished.

Limiting case 1

If one of the loop sizes is much smaller than the other (‘� L
� ‘, say), the big loop of size L � ‘ will essentially behave

like a free circular chain so that its contribution to v8 will

scale like a regular ring polymer, i.e., like (L � ‘)�3n. Con-

sequently, we find the behavior Y8ðxÞ ¼ ax�3n1s4 for x� 1,

where a is a universal amplitude, and therefore (Hanke and

Metzler, 2002; Metzler et al., 2002a,b),

FIGURE 1 DNA looping in a circular (left) and linear DNA (right). The
rounded boxes indicate the chemical bonds established between the

transcription factors through looping at specific contact sites on the DNA

double-helix, which are fairly distant from one another in terms of the arc

length along the DNA. A telomere loop corresponds to the right

configuration with vanishing ‘1 [or ‘2].
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v8 ¼ A8am
LðL� ‘Þ�3n

‘
�3n1s4 : (5)

In this case, the free energy difference between the initial

circular and the looped states becomes

DF ¼ DHbond � TðS8 � ScircÞ; (6)

where DHbond is the binding enthalpy at the loop closure site.

The formation of the looping bond has to release a higher

enthalpy than what is lost in entropy, i.e., DHbond\ T(S8 �
Scirc). Collecting the different expressions, we thus find the

condition

DHbond\kBT ln
A8a

Acirc

1 3n ln
L

‘ðL� ‘Þ 1s4 ln ‘

� �
: (7)

In this expression (and in similar expressions below), the

first term in the square brackets is nonuniversal and de-

pends on details of the model (for a Gaussian random

walk on a cubic lattice, lnðA8a=AcircÞ ¼ lnðA8Y8ð1Þ=AcircÞ ¼
ln½3=ð2pÞ� ’ �0:74; is small compared with the other

contributions in Eqs. 7 and 9; for the cases discussed below,

we give the corresponding numbers in Table 1), whereas the

remaining contributions are universal (apart from the fact that

L is measured in units of the nonuniversal monomer length).

To get an estimate for the magnitude of the entropy loss,

consider the case of the l-repressor loop in E. coli. With the

size of the entire DNA of ;3.5 3 103 kbp and the looping

branch of ;2.3 kbp, the two loops correspond to 3.5 3 104

and 23 monomers, respectively (each monomer corresponds

to a persistence length ‘p of 100 bp; see above). Neglecting

the nonuniversal first term in brackets in Eq. 7, these

numbers produce

DHbond\ � 7:0 kBT ¼ �17:5 kJ=mol ¼ �4:2 kcal=mol;

(8)

here and in the following examples, we choose T ¼ 300 K

and make use of the gas constant, R ¼ 8.31 JK�1 mol�1, and

the conversion factor 1 cal ¼ 4.2 J (Abramowitz and Stegun,

1972). Eq. 8 gives a considerable minimal value for the

required bond energy between the two looping sites. For

comparison, the typical free energy for basepair formation in

DNA is 8 kcal/mol for AT pairs and 13 kcal/mol for GC pairs

(Breslauer et al., 1986). Thus, even for the relatively small

loop of 23 monomers, the required enthalpy release is non-

negligible. Note that the relative contribution stemming

from the s4 term in Eq. 7 amounts to ;20% of the required

enthalpy. In the Conclusion section, we compare the results

obtained in the text with the corresponding ones in the

Gaussian chain limit, demonstrating the significant increase

of jDHbondj if self-avoidance is taken into consideration (see

Table 1).

Limiting case 2

If the two created loops are of comparable size, i.e., x¼ ‘ / (L
� ‘ ) � 1, the corresponding value of the scaling function

Y8(x) is a finite number. For example, for ‘ ¼ L/2 one finds

DHbond\kBT ln
A8Y8ð1Þ
Acirc

1s4 ln
L

2
� 3n ln

L

4

� �
: (9)

In a modified DNA with two loops of 2.3 kbp each, one finds

a bond enthalpy requirement of

DHbond\ � 5:8 kBT ¼ �14:5 kJ=mol ¼ �3:4 kcal=mol;

(10)

where we again neglect the nonuniversal first term in the

square brackets. If both loops are of size 2 3 103 kbp each,

the required bond enthalpy would increase to DHbond \
�12.5 kcal/mol.

LOOPING IN A LINEAR DNA CHAIN

A linear chain of length L can assume

vlin ¼ Alin m
L
L
g�1

(11)

distinct configurations, where Alin is a nonuniversal ampli-

tude and g ’ 1:16 is a universal exponent (Caracciolo et al.,

1998; Guida and Zinn-Justin, 1998). If looping occurs and

produces the A-shape in Fig. 1 to the right, the configuration

number is modified to

vA ¼ AAm
LðL� ‘Þg�1�3n1s4YA

�
‘

L� ‘
;
‘1
‘2

�
; (12)

where ‘ is the size of the loop, and ‘1 and ‘2 are the sizes of
the two loose end-segments, respectively.

We distinguish four different cases belonging to two

groups: the configuration with ‘1 � ‘2, and the telomere

configuration for which ‘1 ¼ 0 (or ‘2 ¼ 0).

Case 1

If ‘1 ¼ ‘2, we find

vA ¼ AAm
LðL� ‘Þg�1�3n1s4WA

�
‘

L� ‘

�
; (13)

where WA(x) ¼ YA(x,1). If furthermore ‘ � L � ‘, an anal-

TABLE 1

Equation �DHSAW
bond =ðkBTÞ �DHGauss

bond =ðkBTÞ jDHNUj/(kBT )
7, 8 7.0 4.7 0.74

9, 10 5.8 3.7 0.74

15, 16 7.0 4.7 0.74

18, 19 8.6 5.7 0.3

22, 23 6.3 4.7 0.74

25, 26 15.8 11.6 0.74

28, 29 67.4 38.8 2.2

Comparison of the calculated minimum bond energies in the fully self-

avoiding (SAW ) and in the Gaussian (n ¼ 1/2, g ¼ 1, and sN ¼ 0) cases:

the increase due to self-avoiding effects is distinct. We also compare to the

(negligible) nonuniversal (NU ) contributions (first term in square brackets

in the cited equations for DHbond), which are calculated for a Gaussian

random walk on a cubic lattice.
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ogous reasoning as in the limiting case 1 of the previous

section, leads to

vA ¼ AAbm
LðL� ‘Þg�1

‘
�3n1s4 ; (14)

where b is a universal number. The fact that ‘ carries the

same exponent as in Eq. 5 is due to the local effect of self-

interaction for the small loop; in both cases, the small loop is

connected to a 4-vertex.

For the binding enthalpy, we obtain the condition

DHbond\kBT ln
AAb

Alin

1 ðg � 1Þ ln L� ‘

L
� ð3n � s4Þ ln ‘

� �
:

(15)

To obtain a numerical value, consider the l-repressor loop
of 23 monomers and the E. coli DNA length of 3.5 3 104

monomers, a configuration which can be obtained by cutting

the E. coli DNA. Neglecting the (nonuniversal) first term in

the square brackets, we find in this case

DHbond\ � 7:0 kBT ¼ �17:5 kJ=mol ¼ �4:2 kcal=mol;

(16)

where the exact numerical value is slightly smaller than in

Eq. 8.

Case 2

Conversely, if ‘ ¼ ‘1 ¼ ‘2, the simpler expression

vA ¼ AAWA

�
1

2

�
m

L

�
2L

3

�g�1�3n1s4

(17)

emanates, and the binding enthalpy has to fulfill

DHbond\kBT ln
AAWAð1=2Þ

Alin

� ðg � 1Þ ln 2
3

�

� ð3n � s4Þ ln 2L
3

�
: (18)

Taking 23 monomers for each segment and neglecting the

(nonuniversal) first term in the square brackets yields the

condition

DHbond\ � 8:6 kBT ¼ �21:6 kJ=mol ¼ �5:1 kcal=mol

(19)

for the binding energy. If the segments are larger by a factor

of 100, this value gets modified to DHbond\�11.3 kcal/mol.

Cases 3 and 4

The next two cases belong to the telomere configura-

tion corresponding to Fig. 1 (right) with ‘1 ¼ 0 and ‘2 ¼
L � ‘.

Case 3

This case involves a 3-vertex instead of a 4-vertex, and has

only one loose end-segment. The number of configurations

the telomere configuration can assume is

vtelo ¼ Atelom
LðL� ‘Þ�3n1s31s1X telo

�
‘

L� ‘

�
; (20)

where s3 ’ �0:18 and s1 ¼ ðg � 1Þ=2 ’ 0:08 (see the

Appendix). We note that in Eq. 20, the explicit occurrence of

s1 is due to the existence of only one loose end. In the two

cases (case 1 and case 2, this section) considered above, we

encounter two loose ends, and the s1 can be incorporated

into g ¼ 1 1 2s1.

Let us first calculate the entropy loss in the small loop limit

‘ � L � ‘. Here, the linear chain part should essentially

behave like a simple linear chain, which implies that

X teloðxÞ ¼ cx�3n1s3�s1 for x � 1, and thus

vtelo ¼ Atelocm
LðL� ‘Þg�1

‘
�3n1s3�s1 ; (21)

where c is a universal number.

The corresponding condition for the bond enthalpy reads

DHbond\kBT ln
Ateloc

Alin

1 ðg � 1Þ ln L� ‘

L

�

�
�
3n � s3 1

g � 1

2

�
ln ‘

�
: (22)

Taking a loop of 2.3 kbp in a chain of length 3500 kbp and

neglecting the (nonuniversal) first term in the square brackets

gives

DHbond\ � 6:3 kBT ¼ �15:8 kJ=mol ¼ �3:8 kcal=mol:

(23)

For comparison, if the loop size is 230 kbp, this value is

increased to DHbond\�9.3 kcal/mol.

Case 4

If the loop size and the linear chain segment are of equal size,

‘ ¼ L/2, the configuration number becomes

vtelo ¼ AteloX teloð1ÞmL

�
L

2

��3n1s31s1

; (24)

and we obtain the condition

DHbond\kBT
AteloX teloð1Þ

Alin

� ð3n � s3Þ ln L
2

�

� g � 1

2
ln ð2LÞ

�
: (25)

Taking a chain length of 460 kbp and neglecting the

(nonuniversal) first term in the square brackets we find

DHbond\ � 15:8 kBT ¼ �39:3 kJ=mol ¼ �9:4 kcal=mol:

(26)
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MULTIPLE LOOPING IN A CIRCULAR
DNA CHAIN

Assume that m potential connector points are distributed

evenly along a circular DNA chain of total length L. If these
condense to form a common locus, a number m of loops of

equal size are created which are held together at this locus, as

sketched in Fig. 2 (Montigny et al., 2001). This creates, in

the scaling limit, a high-order vertex where 2m legs are

joined. The procedure for the configuration number for this

locus configuration yields

vlocus ¼ Alocusm
L

�
L

m

��3mn1s2m

; (27)

where the universal exponent s2m is associated with a vertex

with 2m outgoing legs (see the Appendix). It should be noted

that this result holds true only if the size of the locus is much

smaller than the sizes of the created loops (Metzler et al.,

2002a,b).

Due to the assumption that allm loops are of the same size,

we immediately arrive at

DHbond\kBT ln
Alocus

Acirc

1 3nð1� mÞ ln L
�

1 3mn lnm1s2m ln
L

m

�
: (28)

The absolute value of s2m increases rapidly with increasing

m, and can be determined from Padé or Padé-Borel analysis

as shown in Schäfer et al. (1992). We list the topological

exponents up to order 8 in the Appendix. Taking a circular

chain of 3500 kbp and m ¼ 4, and neglecting the (non-

universal) first term in the square brackets, we find that the

entropy loss is fairly high (using s8 ¼ �2.4),

DHbond\ � 67:4 kBT ¼ �168 kJ=mol ¼ �40:1 kcal=mol:

(29)

In this case, the contribution due to the s8 term is as large as

50% of the total entropy loss.

CONCLUSIONS

We have presented an analytical method to estimate the

entropy loss in different scenarios of DNA looping in the limit

of long segments. This approach takes explicitly the self-

avoidance and interacting nature of the formed loops and

other segments into account, and considers the additional

effect of vertex formation, i.e., the effective interaction be-

tween different segments at the point where they are joined.

This is possible via the scaling theory for arbitrary poly-

mer networks derived by Duplantier. The obtained numbers

do not vary much, due to the logarithmic dependence on the

segment sizes. However, they are all non-negligible, and

therefore have to be compensated by the released bond energy

on formation of the DNA loop.We noted that the entropy loss

is of the same order or close to the bond melting energy

required for splitting an AT or GC bond, i.e., a considerable

amount. Moreover, it is to be expected that the vertex effect

increases the characteristic bond formation times in analytical

approaches which are based on the free energy.

In Table 1 we summarize the obtained estimates for the

minimum bond energy DHbond in the present self-avoiding

model, and compare them with the corresponding results in

the Gaussian limit. The differences are significant, clearly

showing the much higher entropy loss in the self-avoiding

case. In Table 1 we also show estimates for the correspond-

ing nonuniversal contributions, which we neglected in the

explicit calculation of DHbond.

Our calculations are valid in the long chain limit. In units

of the monomer size of a typical DNA double-helix per-

sistence length ‘p ; 100 bp, a minimum number of at least

10 monomers is expected to be required to consider a seg-

ment in the final structure flexible. For shorter segments,

additional effects due to bending and twisting energy are

expected to become relevant. As the mentioned examples

document, there are numerous systems, both in vivo and in

vitro, in which the flexibility condition is easily fulfilled, and

in which our estimation method for the entropy loss becomes

fully applicable. The persistence length of single-stranded

DNA and RNA is much shorter, typically taken to be of the

order ‘p ; 8 bases. Thus, in single strand looping experi-

ments the expected entropy loss will be considerably larger.

APPENDIX A: CONFIGURATION EXPONENTS
FOR A GENERAL POLYMER NETWORK

A general polymer network G like the one depicted in Fig. 3 consists of

vertices which are joined by N chain segments of lengths s1, . . . ,sN. Their
total length is L ¼ +N

i¼1
si: In the scaling limit si � 1, the number of

configurations of such a network is given by Duplantier (1986, 1989), Ohno

and Binder (1988), and Schäfer et al. (1992) as

FIGURE 2 DNA loop condensation. The circles in the original DNA

double-helix denote likely contact points. Formation of bonds between these

contacts with one common agglomeration center, as indicated by the dashed

lines, result in the locus configuration on the right. Note the reduction in the

gyration radius during this process. A higher-order vertex is created at the

locus point (Montigny et al., 2001).
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vG ¼ AGm
L
s
gG�1

N YG

�
s1

sN
; . . . ;

sN�1

sN

�
; (A1)

where AG is a nonuniversal amplitude, m is the effective connectivity

constant for self-avoiding walks, and YG is a scaling function. The topology
of the network is reflected in the configuration exponent

gG ¼ 1� 3nL1 +
N$1

nNsN: (A2)

L ¼ +
N$ 1

ðN � 2ÞnN=211 is the Euler number of independent loops, nN is

the number of N-vertices, and sN is an exponent connected to an N-vertex.

Thus, Eq. A1 generalizes the familiar form v ; mLLg�1 of a linear polymer

chain. The numerical values we use in the text are given in Table 2 for the

topological exponents sN; furthermore, we employ n ¼ 0.588 and g ’ 1:16

(Caracciolo et al., 1998; Guida and Zinn-Justin, 1998). We also make use of

the relation g ¼ 2s1 1 1.

Note that in this work we consider the entropy of a given polymer network,

in which enters the total number of physically distinct configurations. Two

configurations are considered distinct if they cannot be superimposed by

translation. In particular, the monomers of the chain are distinguishable. For

a simple ring of length L this implies that two configurations are distinct

even if they have the same trajectory, but differ from each other by a reptation

(translation of the chain within the trajectory) by a noninteger multiple of L.

The number of configurations of the simple ring is therefore (Duplantier,

1986, 1989),

vcirc ¼ ~vvL ; L
�3n

; (A3)

where ~vv ; L�3n�1 is the number of configurations of a ring polymer with

indistinguishable monomers. Likewise, vcirc corresponds to the number of

closed random walks of length L which start and end at a given point in

space (compare also to Metzler et al., 2002a,b).

The number of configurations of a looped structure (with at least one

vertex) is also given by Eq. A1. This is due to the fact that the established

looping bond is chemically fixed within the chain, so that the chain cannot

reptate within a given trajectory. For the same reason (and in contrast to

references Hanke and Metzler, 2002; Metzler et al., 2002a,b), different loops

cannot exchange length with each other.
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