Orthogonality of \boldsymbol{p}-adic characters

by W.H. Schikhof
Mathematisch Instituut, Katholieke Universiteit, Toernooiveld, 6525 ED Nijmegen, the Netherlands

Communicated by Prof. T.A. Springer at the meeting of January 27, 1986

Abstract

For an abelian topological group G and a non-archimedean complete valued field K necessary and sufficient conditions are derived in order that the K-valued characters on G form an orthogonal set with respect to the supremum norm (Theorems 2.1, 2.2,3.1, 4.3). Examples of groups satisfying these conditions (for example \mathbb{Q}_{p}) are considered in § 5 .

NOTATIONS AND TERMINOLOGY

Throughout this note, K is a non-archimedean nontrivially valued complete field with valuation $\|$ and residue class field k, G is an additively written topological abelian group. For a prime number p the field of the p-adic numbers is \mathbb{Q}_{p}, with valuation $\left.\right|_{p} ; \mathbb{Z}_{p}:=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\} ; C_{p}$ is the group of p elements. The characteristic of a field L is denoted char L. Let H be an abelian topological group. Then $\operatorname{Hom}(G, H)$ is the group of all continuous homomorphisms $G \rightarrow H ; G_{K}^{\wedge}:=\operatorname{Hom}(G,\{x \in K:|x|=1\})$ is the group of the K-valued characters.

DEFINITION. Let p be a prime number. G is p-finite if there is no sequence of open subgroups $G=H_{0} \supset H_{1} \supset H_{2} \supset \cdots$ such that for each n the index [$H_{n}: H_{n+1}$] equals p.

DEFINITION. Let $0<c \leq 1$. A subset X of $G_{K}^{\hat{N}}$ is a c-orthogonal set if for each finite number of distinct elements $\alpha_{1}, \ldots, \alpha_{n}$ of X and for all $\lambda_{1}, \ldots, \lambda_{n} \in K$

$$
\left\|\sum_{i=1}^{n} \lambda_{i} \alpha_{i}\right\|_{\infty}:=\sup _{x \in G}\left|\sum_{i=1}^{n} \lambda_{i} \alpha_{i}(x)\right| \geq c \max _{1 \leq i \leq n}\left|\lambda_{i}\right|
$$

A 1-orthogonal set is orthonormal.
For elementary analysis in K e.g. the properties of the K-valued functions exp and \log (defined if char $K=0$) we refer to [1].

§ 1. TWO GENERAL PROPOSITIONS ON ORTHOGONALITY

PROPOSITION 1.1. Let $\alpha_{1}, \ldots, \alpha_{n} \in G_{K}^{\hat{A}}$. Then $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an orthogonal set if and only if $i \neq j$ implies $\left\|\alpha_{i}-\alpha_{j}\right\|_{\infty}=1$.

PROOF. It suffices to consider the induction step $n-1 \rightarrow n$ of the "if" part of the statement, so let $\lambda_{1}, \ldots, \lambda_{n} \in K$ and $f=\sum_{i=1}^{n} \lambda_{i} \alpha_{i}$. We have

$$
\|f\|_{\infty} \geq \sup _{s, x \in G}\left|f(s+x)-\alpha_{n}(s) f(x)\right|=\sup _{s, x \in G}\left|\sum_{i=1}^{n-1} \lambda_{i}\left(\alpha_{i}(s)-\alpha_{n}(s)\right) \alpha_{i}(x)\right| .
$$

By the induction hypothesis the right hand side equals

$$
\sup _{s \in G} \max _{1 \leq i \leq n-1}\left|\lambda_{i}\right|\left|\alpha_{i}(s)-\alpha_{n}(s)\right|=\max _{1 \leq i \leq n-1}\left|\lambda_{i}\right|
$$

so that

$$
\|f\|_{\infty} \geq \max _{1 \leq i \leq n-1}\left|\lambda_{i}\right| .
$$

But also

$$
\begin{aligned}
& \left|\lambda_{n}\right|=\left\|f-\sum_{i=1}^{n-1} \lambda_{i} \alpha_{i}\right\|_{\infty} \leq \max \left(\|f\|_{\infty},\left\|\sum_{i=1}^{n-1} \lambda_{i} \alpha_{i}\right\|_{\infty}\right) \leq \\
& \leq \max \left(\|f\|_{\infty}, \max _{1 \leq i \leq n-1}\left|\lambda_{i}\right|\right) \leq\|f\|_{\infty}
\end{aligned}
$$

which finishes the proof.
PROPOSITION 1.2. Let H be a closed subgroup of G, let $c_{1}, c_{2} \in(0,1]$. Suppose that $H_{\hat{K}}$ is a c_{1}-orthogonal set and that $(G / H)_{\hat{K}}$ is a c_{2}-orthogonal set. Then $G_{\hat{K}}^{\hat{}}$ is a $c_{1} c_{2}$-orthogonal set.

PROOF. Let $\pi: G \rightarrow G / H$ be the canonical surjection and let $\pi^{\wedge}:(G / H)_{\hat{K}} \rightarrow G_{K}^{\wedge}$ be defined by the formula $\pi^{\wedge}(\beta)=\beta \circ \pi$. Choose a full set R of representatives modulo H in G and a full set S of representatives modulo $\pi^{\wedge}\left((G / H)_{K}\right)$ in $G_{K}^{\hat{K}}$. Then we have trivially
(i) $\sigma_{1}, \sigma_{2} \in S, \sigma_{1} \neq \sigma_{2} \Rightarrow \sigma_{1} \neq \sigma_{2}$ on H,
(ii) $\beta_{1}, \beta_{2} \in(G / H)_{K}^{\wedge}, \beta_{1} \neq \beta_{2} \Rightarrow \beta_{1} \circ \pi \neq \beta_{2} \circ \pi$,
(iii) Each $x \in G$ has a unique representation $x=r+h(r \in R, h \in H)$,
(iv) Each $\alpha \in G_{K}^{\hat{K}}$ has a unique representation $\alpha=\sigma \cdot \pi^{\wedge}(\beta)\left(\sigma \in S, \beta \in(G / H)_{K}\right)$.

Now let $f=\sum_{\alpha \in G_{\kappa}^{\lambda}} \lambda_{\alpha} \alpha$ be a finite K-linear combination of characters of G.

We shall prove that $\|f\|_{\infty} \geq c_{1} c_{2} \max _{\alpha}\left|\lambda_{\alpha}\right|$. We have

$$
f=\sum_{\sigma \in S} \sum_{\beta \in(\bar{G} / H)_{\hat{k}}} \lambda_{\sigma, \beta} \sigma \cdot \pi^{\wedge}(\beta)
$$

where $\lambda_{\sigma, \beta}:=\lambda_{\sigma \pi^{\wedge}(\beta)}$. For each $r \in R$ we have, by (i) and the c_{1}-orthogonality of $H_{K}^{\hat{K}}$,

$$
\begin{aligned}
\|f\|_{\infty} & \geq \sup _{h \in H}\left|\sum_{\sigma} \sum_{\beta} \lambda_{\sigma, \beta} \sigma(r+h) \beta(\pi(r+h))\right| \\
& =\sup _{h \in H}\left|\sum_{\sigma}\left(\sum_{\beta} \lambda_{\sigma, \beta} \sigma(r) \beta(\pi(r))\right) \sigma(h)\right| \\
& \geq c_{1} \sup _{\sigma}\left|\sum_{\beta} \lambda_{\sigma, \beta} \sigma(r) \beta(\pi(r))\right| \\
& =c_{1} \sup _{\sigma}\left|\sum_{\beta} \lambda_{\sigma, \beta} \beta(\pi(r))\right| .
\end{aligned}
$$

By the c_{2}-orthogonality of $(G / H)_{\hat{K}}$ and (ii) we have the further estimate

$$
\begin{aligned}
\|f\|_{\infty} & \geq c_{1} \sup _{\sigma}\left\|\sum_{\beta} \lambda_{\sigma, \beta} \beta\right\|_{\infty} \\
& \geq c_{1} c_{2} \sup _{\sigma} \sup _{\beta}\left|\lambda_{\sigma, \beta}\right|=c_{1} c_{2} \max _{\alpha \in G^{*}}\left|\lambda_{\alpha}\right| .
\end{aligned}
$$

§ 2. THE CASE OF MIXED CHARACTERISTICS

Throughout § 2 we assume char $K=0$, char $k=p \neq 0$. Without loss of generality, $K \supset \mathbb{Q}_{p}$.

THEOREM 2.1. (Compare Theorem 4.3). Suppose that K does not contain p th roots of unity except 1 . Then the following are equivalent.
(α) G_{K}^{\wedge} is orthonormal.
$(\beta) G_{K}^{\hat{K}}$ is c-orthogonal for some $c \in(0,1)$.
(γ) $\operatorname{Hom}\left(G, \mathbb{Z}_{p}\right)=(0)$.
PROOF. $(\alpha) \Rightarrow(\beta)$ is trivial. Assume (β). Let $\phi \in \operatorname{Hom}\left(G, \mathbb{Z}_{p}\right)$. Choose $s \in K$ such that $0<|s|<\min \left(p^{1 /(1-p)}, c\right)$. Then $\alpha: x \mapsto \exp (s \phi(x))(x \in G)$ is a well defined element of $G_{\hat{K}}^{\hat{K}}$. For $x \in G$ we have $|\alpha(x)-1|=|s \phi(x)| \leq|s|<c$ so that $\|\alpha-1\|_{\infty}<c$. By (β) we then have $\alpha=1$ implying $\phi(x)=0$ for all $x \in G$ and (γ) follows. Finally we prove $(\gamma) \Rightarrow(\alpha)$. Suppose (α) is not true. Then by Proposition 1.1 there exists an $\alpha \in G_{K}^{\hat{K}}$ with $0<\|1-\alpha\|_{\infty}<1$. Our assumption on K implies that the function \log maps $\{x \in K:|1-x|<1\}$ injectively into the additive group K. By analyticity \log is bounded on $\alpha(G)$. The ultrametric Hahn Banach Theorem ([1] A.8) yields a continuous \mathbb{Q}_{p}-linear map $\phi: K \rightarrow \mathbb{Q}_{p}$ that does not vanish on $\left(\log ^{\circ} \alpha\right)(G)$. Then $\phi^{\circ} \log ^{\circ} \alpha$ is a continuous nontrivial homomorphism of G into a bounded subgroup of \mathbb{Q}_{p}. It follows that Hom $\left(G, \mathbb{Z}_{p}\right) \neq(0)$.

THEOREM 2.2. Suppose that K contains the p th roots of unity. Then the following are equivalent.
$(\alpha) G_{K}^{\wedge}$ is orthonormal.
$(\beta) \operatorname{Hom}\left(G, C_{p}\right)=(0)$.
PROOF. $(\alpha)=(\beta)$. It suffices to prove that $\alpha \in G_{K}^{\hat{K}}, \alpha^{p}=1$ implies $\alpha=1$. For each $x \in G$ we have $|1-\alpha(x)| \leq p^{1 /(1-p)}<1$. Hence, by $(\alpha), \alpha=1$. We proceed to prove $(\beta) \Rightarrow(\alpha)$. If (α) is not true then by Proposition 1.1 there is an $\alpha \in G_{K}^{\hat{K}}$ such that $\tau:=\|1-\alpha\|_{\infty}$ is strictly between 0 and 1 . We shall prove that Hom $\left(G, C_{p}\right) \neq(0)$. In fact, set $\tau^{\prime}:=\tau \max (\tau, 1 / p)$. Then $H:=\{x \in G$: $\left.|\alpha(x)-1| \leq \tau^{\prime}\right\}$ is a proper open subgroup of G. We have $x \in G \Rightarrow|\alpha(x)-1| \leq \tau \Rightarrow$ $\Rightarrow|\alpha(p x)-1| \leq \max (\tau, 1 / p)|\alpha(x)-1| \leq \tau^{\prime}$. It follows that each nonzero element of the nontrivial discrete group G / H has order p. One easily obtains a homomorphism of G / H onto C_{p}. We see that Hom $\left(G, C_{p}\right) \neq(0)$.

THEOREM 2.3. Suppose that, for each $n \in \mathbb{N}, K$ contains the p^{n} th roots of unity. Then the following are equivalent.
$(\alpha) G_{K}^{\hat{K}}$ is c-orthogonal for some $c \in(0,1)$.
(β) G is p-finite.
PROOF. $(\alpha) \Rightarrow(\beta)$. Suppose (α) and G is not p-finite; we derive a contradiction. Let $n \in \mathbb{N}$ be such that $p^{-n+1}<c$. There is an open subgroup H of G for which $[G: H]=p^{-n}$. Then $F:=G / H$ has p^{n} elements and so has $F_{K}^{\hat{K}}$ by our assumption on K. From

$$
\sum_{\alpha \in F_{\hat{k}}^{\alpha}} \alpha(x)=\left[\begin{array}{ll}
0 & \text { if } x \in F, x \neq 0 \\
p^{n} & \text { if } x \in F, x=0
\end{array}\right.
$$

it follows directly that F_{K} is not p^{-n+1}-orthogonal, hence not c-orthogonal. But then G_{K}^{\wedge} is not c-orthogonal.

Now suppose (β). There is an open subgroup H of finite index such that Hom $\left(H, C_{p}\right)=(0)$. By Theorem $2.2 H_{K}^{\hat{K}}$ is orthonormal. By finiteness and linear independence $(G / H)_{\hat{K}}$ is c-orthogonal for some $c \in(0,1)$. Then, by Proposition 1.2, G_{K}^{\wedge} is c-orthogonal.

PROBLEM. Is $(\alpha) \Rightarrow(\beta)$ true if we assume only that K contains the p th roots of unity?
§ 3. THE CASE char $k=0$
THEOREM 3.1. Let char $k=0$. The following are equivalent.
(α) G_{K}^{\wedge} is orthonormal.
(β) $G_{K}^{\hat{K}}$ is c-orthogonal for some $c \in(0,1)$.
$(\gamma) \operatorname{Hom}(G, \mathbb{Q})=(0)$ (where \mathbb{Q} carries the discrete topology).
PROOF. $(\alpha) \Rightarrow(\beta)$ is trivial. Assume (β). Let $\phi \in \operatorname{Hom}(G, \mathbb{Q})$. Choose $s \in K$, $0<|s|<c$. Then $\alpha: x \mapsto \exp (s \phi(x))(x \in G)$ is in G_{K}^{\wedge} and $\|1-\alpha\|_{\infty} \leq|s|<c$. By (β) we have $\alpha=1$ implying $\phi=0$ and (γ) is proved. To prove $(\gamma) \Rightarrow(\alpha)$, suppose (α)
is false. By Proposition 1.1 there is an $\alpha \in G_{K}^{\hat{K}}$ with $0<\|1-\alpha\|_{\infty}<1$. Then $T:=\left(\log { }^{\circ} \alpha\right)(G)$ is a nontrivial additive subgroup of K. Choose $t \in T, t \neq 0$ and let $\pi: K \rightarrow K /\{x \in K:|x|<|t|\}$ be the quotient map. Then $\pi(n t) \neq 0$ for all $n \in \mathbb{N}$. Thanks to the divisibility of \mathbb{Q} there is a homomorphism $\phi: K /\{x \in K:|x|<$ $<|t|\} \rightarrow \mathbb{Q}$ mapping $\pi(t)$ into 1 . We see that $\phi \circ \pi \circ \log \circ \alpha$ is a continuous nonzero homomorphism $G \rightarrow \mathbb{Q}$ so that $\operatorname{Hom}(G, \mathbb{Q}) \neq(0)$.
REMARK. It is easy to see that condition (γ) is equivalent to the following. For each open subgroup H the quotient G / H is a torsion group.

§ 4. THE CASE char $K=p \neq 0$

This case has to be treated in a way different from the previous ones as we do not have a K-valued logarithm or exponential.

Let K be algebraically closed, char $K=p \neq 0$. The group $K^{+}:=\{x \in K$: $|1-x|<1\}$ does not contain roots of unity except 1 . For each $n \in \mathbb{N}$ and $a \in K^{+}$there is a unique $b \in K^{+}$for which $b^{n}=a$. We write $b=a^{1 / n}$. In an obvious way we obtain a homomorphism

$$
r \mapsto a^{r}
$$

of \mathbb{Q} into K^{+}which is uniformly continuous with respect to the p-adic metric on \mathbb{Q} since for $r_{1}, r_{2} \in \mathbb{Q}, r_{1} \neq r_{2}$

$$
\left|a^{r_{1}}-a^{r_{2}}\right|=\left|a^{r_{1}-r_{2}}-1\right|=|a-1|^{\left|r_{1}-r_{2}\right|_{p}^{-1}}
$$

and therefore extends to a continuous homomorphism $\lambda \mapsto a^{\lambda}$ of \mathbb{Q}_{p} into K. The easy proof of the following proposition is left to the reader.

PROPOSITION 4.1. Let K be algebraically closed, let char $K=p \neq 0$. Then $K^{+}:=\{x \in K:|x-1|<1\}$ has the structure of a Banach space over \mathbb{Q}_{p} with respect to addition, scalar multiplication and norm defined respectively by

$$
\begin{aligned}
& (x, y) \mapsto x y \\
& \left.(\lambda, x) \mapsto x^{\lambda} \quad(x, y) \in K^{+}\right) \\
& \|x\|=\left[\begin{array}{ll}
-(\log |1-x|)^{-1} & \text { if } x \in K, x \neq 1 \\
0 & \text { if } x \in K, x=1
\end{array}\right.
\end{aligned}
$$

Furthermore, the norm topology equals the initial topology on K^{+}.
COROLLARY 4.2. Let char $K=p \neq 0$, let $s \in K, 0<|s-1|<1$. Then there exists a continuous homomorphism

$$
\{x \in K:|1-x| \leq|1-s|\} \rightarrow \mathbb{Z}_{p}
$$

that maps s into 1.
Proof. We may assume that K is algebraically closed. By Proposition 4.1 and the ultrametric Hahn Banach theorem there is a homomorphism
$\phi: K^{+} \rightarrow \mathbb{Q}_{p}$ such that $\phi(s)=1$ and $|\phi(x)|_{p} \leq\|s\|^{-1}\|x\|$ for all $x \in K^{+}$, where $\|\|$ is the norm defined above. Then ϕ is continuous. If $x \in K,|1-x| \leq|1-s|$ then $\|x\| \leq\|s\|$ so $|\phi(x)|_{p} \leq\|s\|^{-1}\|s\|=1$ i.e. $\phi(x) \in \mathbb{Z}_{p}$.

THEOREM 4.3. Let char $K=p \neq 0$. The following are equivalent.
(α) G_{K}^{\wedge} is orthonormal.
(β) $G_{K}^{\hat{K}}$ is c-orthogonal for some $c \in(0,1)$.
(γ) Hom $\left(G, \mathbb{Z}_{p}\right)=(0)$.
Proof. $(\beta) \Rightarrow(\gamma)$. Choose $a \in K, 0<|1-a|<c$. It is easily seen that the map $n \mapsto a^{n}$ extends continuously to an injection $x \mapsto a^{x}$ of \mathbb{Z}_{p} into $\{x \in K:|1-x| \leq$ $\leq|1-a|\}$. Let $\phi \in \operatorname{Hom}\left(G, \mathbb{Z}_{p}\right)$. Then $\alpha: x \mapsto a^{\phi(x)}(x \in G)$ is in $G_{K}^{\hat{K}}$ and $\|1-\alpha\|_{\infty} \leq|1-a|<c$. By (β) we have $\alpha=1$, whence $\phi=0$. To prove $(\gamma) \Rightarrow(\alpha)$ we may assume that K is algebraically closed. Suppose (α) is not true. By Proposition 1.1 there is an $\alpha \in G_{K}^{\hat{K}}$ such that $\tau:=\|1-\alpha\|_{\infty}$ is strictly between 0 and 1. There is an $x \in G$ for which $|\alpha(x)-1| \leq \tau<|\alpha(x)-1|^{1 / p}$; let $s \in K$ be such that $s^{p}=\alpha(x)$. For each $y \in G$ we have $|\alpha(y)-1| \leq \tau \leq|\alpha(x)-1|^{1 / p}=\left|s^{p}-1\right|^{1 / p}=$ $=|s-1|$. By Corollary 4.2 there is a continuous homomorphism $\phi:\{x \in K$: $|1-x| \leq|1-s|\} \rightarrow \mathbb{Z}_{p}$ mapping s into 1 . Then $\phi \circ \alpha \in \operatorname{Hom}\left(G, \mathbb{Z}_{p}\right)$ and since $\phi(\alpha(x))=\phi\left(s^{p}\right)=p \neq 0$ we conclude that Hom $\left(G, \mathbb{Z}_{p}\right) \neq(0)$.

§ 5. COROLLARIES

The next two theorems can easily be obtained by modifying the proofs of the previous theorems in an obvious way. $\left(\mathbb{Z}_{p}\right)_{d}$ stands for the group \mathbb{Z}_{p} with the discrete topology.

THEOREM 5.1. (Compare Theorems 2.1 and 4.3). Let char $k=p \neq 0$ and suppose that K does not contain p th roots of unity except 1 . Then the locally constant K-valued characters on G form an orthonormal set if and only if Hom $\left(G,\left(\mathbb{Z}_{p}\right)_{d}\right)=(0)$.

THEOREM 5.2. (Compare Theorems 2.2 and 3.1). Suppose either char $k=0$, or char $k=p \neq 0$ and K contains the p th roots of unity. Then the locally constant K-valued characters form an orthonormal set if and only if all K-valued characters form an orthonormal set.

Let us consider the class \mathscr{C} of all G for which the K-valued characters form an orthonormal set for any choice of K. It is easily seen that each one of the following conditions $(\alpha)-(\gamma)$ is equivalent to $G \in \mathscr{C}$.
(α) For each K the locally constant K-valued characters form an orthonormal set.
$(\beta) \operatorname{Hom}(G, \mathbb{Q})=(0)$, Hom $\left(G, C_{p}\right)=(0)$ for each prime p.
(γ) For each open subgroup $H \neq G$ of G the quotient G / H is an infinite torsion group.

The class \mathscr{C} is closed for products. If ϕ is a continuous homomorphism of G into an abelian group and $G \in \mathscr{C}$ then $\phi(G) \in \mathscr{C}$. If G is a dense subgroup of an abelian topological group G^{\prime} then $G \in \mathscr{C}$ if and only if $G^{\prime} \in \mathscr{C}$.

It follows that $\mathbb{Q}_{p}, \Pi_{p \text { prime }} \mathbb{Q}_{p}, \mathbb{Q}_{p} / \mathbb{Z}_{p}, \mathbb{Q} / \mathbb{Z}$ are in $\mathscr{\mathscr { L }}$. (In [3] it is proved in a different way that the \mathbb{C}_{p}-valued characters of $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ are orthonormal.) No compact zerodimensional group, except (0), is in \mathscr{C}.

We present some further examples.
PROPOSITION 5.3. Let E be a locally convex space over \mathbb{Q}_{p}. Then for any K the K-valued characters on E form an orthogonal set.

Proof. Let H be an open subgroup of E, let $x \in E \backslash H$. There is an $n \in \mathbb{N}$ such that $p^{n} x \notin H, p^{n+1} x \in H$. Hence E / H is a torsion group. Set $y:=p^{n} x$. Then $y, p^{-1} y, p^{-2} y, \ldots$ are mutually distinct modulo H. It follows that E / H is infinite.

From 5.3 we may conclude that the additive group of any valued field extension of \mathbb{Q}_{p} is in $\mathscr{\mathscr { C }}$. This leads to a question that is solved in the next proposition.

PROPOSITION 5.4. Let L be a non-archimedean complete value field with residue class field l.
(i) If char $L=$ char l then no subgroup of L, except (0), is in \mathscr{C}.
(ii) If $L \supset \mathbb{Q}_{p}$ for some prime p then a closed subgroup of L is in \mathscr{C} if and only if it is a vector space over \mathbb{Q}_{p}.

PROOF. (i) Let H be a subgroup of L, let $s \in H, s \neq 0$. Set $H_{1}:=H /\{x \in H$: $|x|<|s|\}$. One easily establishes a nontrivial homomorphism of H_{1} into \mathbb{Q} if char $l=0$, into C_{p} if char $l=p \neq 0$. Then $H \notin \mathscr{G}$.
(ii) By Proposition 5.3 it suffices to prove that a closed subgroup G of L that is not a vector space over \mathbb{Q}_{p} is not in \mathscr{C}. By continuity G is a \mathbb{Z}_{p}-module i.e. G is a closed convex set. There is an $x \in L$ such that $x \notin G$, but $\lambda \in G$ for some $\lambda \in \mathbb{Q}_{p}, \lambda \neq 0$. By the geometric form of the ultrametric Hahn Banach Theorem (see, for example, [2]) there is a continuous \mathbb{Q}_{p}-linear function $\phi: L \rightarrow \mathbb{Q}_{p}$ such that $|\phi(G)|_{p}<1,|\phi(x)|>1$. Observe that $\phi(G)$ is a nontrivial bounded subgroup of \mathbb{Q}_{p}. We see that $\operatorname{Hom}\left(G, \mathbb{Z}_{p}\right) \neq(0)$ so that $G \notin \mathscr{C}$.

We now turn to multiplicative groups in L. First we consider $L^{+}:=\{x \in L$: $|1-x|<1\}$.

PROPOSITION 5.5. Let L be as in 5.4, L algebraically closed.
(i) If char $L=p \neq 0$ then $L^{+} \in \mathscr{C}$.
(ii) If char $l=0$ then $L^{+} \ddagger \mathscr{G}$.
(iii) If $L \supset \mathbb{Q}_{p}$ then $L^{+} \in \mathscr{C}$.

Proof. (i) This is a direct consequence of Proposition 4.1 and Proposition 5.3.
(ii) The \log function maps L^{+}homeomorphically into a bounded additive subgroup of L which is not in \mathscr{C} by Proposition 5.4.
(iii) The function exp and \log can, since the additive group L and the multiplicative group L^{+}are divisible, be extended to continuous homomorphisms EXP: $L \rightarrow L^{+}$and LOG: $L^{+} \rightarrow L$ respectively. Set $\phi(x):=$ EXPLOG $x\left(x \in L^{+}\right)$, set $G:=\{$ EXP $x: x \in L\}, C_{p \infty}:=\left\{x \in L^{+}: x^{p^{n}}=1\right.$ for some $\left.n \in \mathbb{N}\right\}$. For each $x \in L^{+}, x / \phi(x)$ is in $C_{p \infty}$. The formula

$$
x=(x / \phi(x)) \cdot \phi(x)
$$

yields a decomposition of L^{+}as a direct product of $C_{p \infty}$ and G. But $C_{p \infty} \cong \mathbb{Q}_{p} / \mathbb{Z}_{p} \in \mathscr{C}$ and $G \simeq L \in \mathscr{C}$ (EXP is injective). Hence $L^{+} \in \mathscr{C}$.

Finally we have (observe that a subgroup of L^{\times}that belongs to \mathscr{C} must lie in $\{x \in L:|x|=1\}$ as $L^{\times} /\{x \in L:|x|=1\}$ is isomorphic to the value group of L which is not in \mathscr{C})

PROPOSITION 5.6. Let L be as in 5.5.
(i) If char $l=0$ then $\{x \in L:|x|=1\} \notin \mathscr{C}$.
(ii) If char $l=p \neq 0$ then $\{x \in L:|x|=1\} \in \mathscr{C}$ if and only if l is algebraic over the field of p elements.

PROOF. (i) $\{x \in L:|x|=1\} / L^{+}$is the multiplicative group of a field with characteristic 0 , which is not in \mathscr{C} (as a discrete group).
(ii) If $\{x \in L:|x|=1\} \in \mathscr{C}$ then $l^{\times}:=\{x \in l: x \neq 0\}$, being a quotient of $\{x \in L:|x|=1\}$, must be a torsion group so that l^{\times}is algebraic over the prime field. Conversely, if l^{\times}is algebraic it is easily seen that $l^{\times} \in \mathscr{C}$. By Proposition 5.5 we have $L^{+} \in \mathscr{H}$. As $\{x \in L:|x|=1\} / L^{+} \simeq l^{\times}$we have $\{x \in L:|x|=1\} \in \mathscr{C}$ by Proposition 1.2.

REFERENCES

1. Schikhof, W.H. - Ultrametric Calculus. Cambridge University Press (1984).
2. Tiel, J. van - Espaces localement K-convexes. Indag. Math. 27, 249-289 (1965).
3. Woodcock, C.F. - p-Adic Fourier Analysis. Thesis. Wolfson College, Oxford, England (1971).
