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ABSTRACT
People spend most of their daytime in indoor environments. Their activities influence the composition of the indoor
air by emitting volatile organic compounds (VOCs). The increasing number of different VOCs became the focus of
attention in recent years as the question arises from the relationship between exposure to air pollutants and diseases.
The present study of flats in Leipzig (Germany) is based on measurements of 60 different VOCs and is unique in the
field of indoor air quality due to its enormous size of samples (n=2 242) and questionnaire data. The main purpose of
our analysis was to identify the sources and patterns that characterize airborne VOCs in occupied flats. We combined
two methods, principal components analysis (PCA) and non–negative matrix factorization (NMF), to assign compounds
to their origin and to understand the coinstantaneous existence of several VOCs. PCA clustering provided a source
apportionment and yielded 10 principal components (PCs) with an explained variance of 72%. However, real indoor air
quality is often affected by combined sources. NMF reveals characteristic compositions of VOCs in indoor
environments and emphasizes that constantly recurring structures are not single sources, but rather fusions of them,
so called patterns. Interpreting these sources, we realized that homes were strongly influenced by ventilation, human
activities, furnishings, natural processes (such as solar radiation) or their combinations. The very large set of samples
and the combination with questionnaires applied on this comprehensive assessment of VOCs allows generalizing the
results to homes in middle–scale cities with minor industrial pollution. As a conclusion, single VOC–dose–response
relationships are inopportune for situations when indoor sources occur in combination. Further studies are necessary
to assess associated health risks.
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1. Introduction

Due to the increased time periods spent in different interior
spaces in recent years, indoor air quality became a matter of
particular interest (Ayoko, 2004) and affects behavior, e.g.
ventilation (Qian et al., 2010), and the health of people (Rumchev
et al., 2004; Arif and Shah, 2007; Billionnet et al., 2011).

Indoor air quality is extremely variable and depends on
activities of the people (Morawska et al., 2003; Edwards et al.,
2006; Eklund et al., 2008; Buonanno et al., 2009; Buonanno et al.,
2012), home furnishings (Yrieix et al., 2010), building materials
(Missia et al., 2010) and season (Schlink, 2004). Current research is
involved with the constantly rising amount of sources, the
complexity of mixtures, and the role of outdoor air (Carslaw et al.,
2009). The diversity of compounds, their variable toxicity and the
addressed peer group complicate the determination of guidelines
for concentrations of volatile organic compounds (VOCs) in indoor
environments.

The formation of VOCs in indoor environments is difficult to
understand and to reconstruct (e.g. in experiments). On the one
hand, compounds originate exclusively from indoor sources (a
point of origin of gases or other materials, which appears
constantly in a similar way) and, on the other hand, they are
formed by mixtures of indoor and outdoor pollutants. In most

cases, indoor VOC concentrations are significantly higher than
outdoor levels (Batterman et al., 2007). This is influenced by type
and age of building materials (Missia et al., 2010) and personal
activities, e.g. renovation processes, that cause elevated levels.
Increased levels occur directly after renovations and then
normalize to lower concentrations (Jia et al., 2008a; Herbarth and
Matysik, 2010). Seasonal variations cause higher indoor levels to
accumulate due to abated ventilation in winter (Dodson et al.,
2008; Matysik et al., 2010). Furthermore, local conditions, such as
industry or busy roads, create emission sources that differentiate
the pollution amount of homes in industrial, urban, and nonurban
regions (Jia et al., 2008b). This high variety of possible sources in
indoor and ambient air poses a big challenge for scientists to assign
different compounds to their point of origin.

By retracing compounds to their origins, emission sources can
be recognized and eliminated in order to protect the human
health. Several methods for indoor and outdoor source apportion
ment are possible, e.g. chemical mass balance (Badol et al., 2008;
Gokhale et al., 2008) and positive matrix factorization–PMF (Cai et
al., 2010; Pindado and Perez, 2011), although PCA and related
procedures were mainly used for indoor air (Jia et al., 2008b;
Ohura et al., 2009; Jo and Kim, 2010; Guo, 2011). The majority of
studies concern source apportionment of outdoor air. The high
variability of indoor VOC combinations, caused by various
activities, differing indoor equipment and its age, complicates
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source apportionment and pattern recognition. Lately, PMF is the
new means of choice through its positive character, producing
stable results for small data sets and the independence on source
strength in contrast to PCA (Chan et al., 2011; Demir et al., 2012).
The elaborate correction of zero values, that changes the original
data, and the creation of error estimates brings disadvantages
(Pekey et al., 2013) and makes other methods more suitable, e.g.
non–negative matrix factorization.

As a consequence of the studies by Han et al. (2011) and
(2012), it seems more appropriate to consider mixtures of VOCs
from multiple sources, because various source combinations of
numerous air pollutants, including interactions as well as
superposition of compounds, possess different effects on human
health.

We suppose in the case of VOCs that items, activities, and
buildings emit a fixed compound spectra. Depending on the VOC
lifetime and the emission strength, the source intensity is variable
but usually the composition is relatively constant. These so called
“patterns” describe recurring structures or regular sequences,
characterized by the way in which something occurs and may
contain different sources or sub–patterns (Oxford Dictionaries,
2013).

For this VOC analysis both terms, sources and patterns were
used, analyzed and connected owing to the fact that the link
between “single VOC/indoor activities” (Shin and Jo, 2013) as well
as “indoor activities/disease outcomes” (Herbarth et al., 2006)
produced promising results, but a direct link of “single VOC/disease
outcome” is debated and limited to a restricted number of VOCs
(Diez et al., 2000; Rumchev et al., 2004; Fuentes–Leonarte et al.,
2009). Main reasons might be that indoor air is influenced by its
sources. Just a minority of sources emit single VOCs while the
majority give rise to various compounds, and that source emissions
interfere to pollution patterns. The innovation of this study is the
identification of the most frequent patterns in homes that might
be more harmful to human health than single VOCs.

Many studies on indoor air suffer from small sample sizes. This
study analyses 2 242 measurements of more than 60 VOCs of
622 homes in Leipzig. The high number of included VOCs improves
the matching of predicted model values to real measured concen
trations. Additional questionnaires helped to differentiate between
several living spaces and their effects on air quality.

At first, we identified the sources of VOCs in indoor environ
ments by means of principal component analysis (PCA), which
relates increased compound concentrations with normal average
levels of homes and aims to discover harmful VOC sources caused
by occupant activities and natural processes. Secondly, non–
negative matrix factorization (NMF) was applied to the compound
data set to find recurrent structures of air pollutants in homes. The
interpretation of sources and patterns was supported by regres
sion analysis.

Differences between sources and patterns might be caused by
the analyzing techniques, PCA and NMF. Several sources can be
combined to patterns but not vice versa. We found astonishing
results on recovering PCA sources in NMF patterns. The easement
of pattern description argues for the combination of both
methods, PCA and NMF.

2. Material and Methods

2.1. Sample collection and measurement site

This study was conducted in Leipzig, central Germany.
Approximately 523 000 people live in this midscale city with a small
industrial impact. Passive sampling with Organic Vapor Monitors
(3M, OVM 3500) was used to gain information about indoor

compound levels (Begerow et al., 1995). The VOCs are collected by
the principle of diffusion on a single charcoal sorbent wafer that
was placed at a height of 1.5 to 2 m in the middle of the rooms.
VOC data was collected in the mother–child study LINA (Lifestyle
and environmental factors and their Influence on new–born’s
Allergy risk), which is an on–going birth cohort study in Leipzig. The
study included 622 homes of pregnant mothers, who were
recruited from May 2006 to December 2008. To get a wide variety
of indoor activities, with emissions covering a large range of VOCs
(e.g. smoking or recent renovation), homes were chosen randomly.
Samples were collected over a period of approximately 4 weeks in
a room where the child spent most of its time (preferential living or
child’s room). Dwellers were asked to keep their usual behaviors in
order to reproduce typical indoor environments. 3M–samplers
were then returned to laboratory for GC/MS analysis using
previously reported extraction methods (Matysik et al., 2010).
Sampling was performed through the whole year (summer: 1 140,
winter: 1 102).

The VOC dataset contained 2 246 measurements of 61 VOCs
(Table 1). Missing values were replaced by VOC–specific half
detection limits (HDL) and VOCs were included into analyses as
long as the detection frequency exceeded 70%. The total
dimension of the additive questionnaire involved 2 242 cases.

2.2. Questionnaires

The housings were characterized by recent renovations
(53.6%), painting of walls (62.6%) and arrangements of new
furniture (68.3%). Further features with an expected long–term
influence on VOC concentration, such as new flooring (19.6%) or
smoking (3.9%), were rare. Lower importance proved questions for
the use of solvents, mothballs or cleansing agents (see Figure 1).
Small response to questions was a reason for attaching little
importance to their results in multivariate regression (all items
<10%).

The majority of homes were close to roads with residential
traffic (78.2%); almost one third was located next to streets with
transit traffic (31.4%). Traffic exhaust may be the most effecting
outdoor source of Leipzig due to the fact that heavy industry was
not located near by the housings.

2.3. Principle component analysis (PCA)

PCA is a full spectral dimensionality reduction method and
uses Euclidean distances to classify the measured data (van der
Maaten, 2009). The analysis identified special sources in
environments which may be detectable in numerous housings in
medium–sized cities like Leipzig. All presented results of PCA
followed from Varimax–rotation of logarithmically transformed
VOC concentrations. The number of factors was invigorated by
eigenvalues >1 with at least one variable covering a factor loading
>0.5. Scree plots were further checked. The algorithms of PCA
were executed with STATISTICA 10 (StatSoft, Inc. 1984–2011) and
Matlab Version 7.12.0.635 (Mathworks, 1984–2011).

2.4. Non–negative matrix factorization (NMF)

NMF is a method that was first implemented in computer
science to characterize pictures by dividing images in rows and
columns. Through iterative minimizing algorithms, the factorization
of the input matrix V (dimension: m×n) ends in two matrices W
(m×r) and H (r×n) with smaller dimensions. In the case of VOC
patterns, W is the pattern of VOC in indoor environments and H
reflects the weight of each pattern. Every vector of V can be
represented by linear combinations of W and H, which is very
specific for NMF. The reduction of dimension and the final number
of factors (r) must be chosen intuitively. In this case, the number of
separated factors from PCA was tested.
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Table 1. Standard deviation, mean, median, minimum and maximum concentrations (μg/m³) of each compound used in NMF and PCA

Species Abbreviation Mean Median S.D. Min. Max.

1 Butanol C1 8.08 7.45 7.02 0.0200 115.26
2 Ethyl 1 Hexanol C2 6.83 5.53 6.82 0.3055 153.59
2 Methyl 1 Propanol C3 1.32 0.68 2.87 0.0221 57.49
Ethyl acetate C4 10.86 4.74 27.03 0.0250 597.94
n Butyl acetate C5 6.23 2.76 16.42 0.0098 449.92
Hexane C6 2.40 1.12 6.59 0.0231 145.82
Heptane C7 4.20 1.20 16.84 0.0154 407.52
Octane C8 1.25 0.56 3.77 0.0373 73.40
Nonane C9 1.60 0.56 6.60 0.0221 198.93
Decane C10 4.33 1.40 18.82 0.0119 527.55
Undecane C11 3.81 1.26 13.54 0.0138 342.31
Dodecane C12 3.35 1.83 7.06 0.0151 132.23
Tridecane C13 1.78 0.85 5.20 0.0191 165.41
Tetradecane C14 6.16 2.18 20.51 0.1545 467.28
Pentadecane C15 3.91 0.93 17.29 0.0469 356.11
Hexadecane C16 3.71 1.46 12.42 0.0175 194.77
Methylcyclopentane C17 1.31 0.42 5.18 0.0326 129.84
Cyclohexane C18 1.60 0.41 11.29 0.0113 342.77
Tetrahydrofuran C19 0.45 0.14 1.02 0.0072 18.66
Texanol isobutyrate C20 1.63 0.60 5.82 0.0084 133.59
Tetrachloromethane C21 0.40 0.33 1.13 0.0208 45.42
Trichlorethylene C22 0.17 0.11 0.47 0.0171 16.22
Chlorobenzene a C23 2.93 1.98 2.18 0.0000 22.70
Benzene C24 1.51 1.09 1.76 0.0077 31.57
Toluene C25 13.18 8.06 16.91 0.0590 249.55
Ethylbenzene C26 1.51 0.90 2.59 0.0724 47.76
m p Xylene C27 3.27 1.84 7.25 0.0091 174.33
Styrene C28 0.83 0.37 1.90 0.0137 39.71
o Xylene C29 0.97 0.61 1.83 0.0079 47.46
Isopropylbenzene C30 0.23 0.13 0.51 0.0063 18.67
Propylbenzene C31 0.46 0.30 0.83 0.0105 20.26
4 Ethyltoluene C32 0.86 0.45 2.03 0.0084 52.21
1,3,5 Trimethylbenzene C33 0.41 0.21 1.13 0.0081 35.57
1,2,4 Trimethylbenzene C34 1.35 0.71 3.78 0.0079 126.07
1,2,3 Trimethylbenzene C35 0.40 0.20 1.07 0.0075 31.74
Pentanal C36 1.71 1.08 2.16 0.0184 33.92
Hexanal C37 4.22 2.47 5.68 0.0370 110.09
Benzaldehyde C38 1.40 1.05 1.38 0.0197 28.47
Octanal C39 1.19 0.82 1.72 0.0213 50.69
Nonanal C40 2.43 1.06 15.04 0.0392 598.09
Methylisobutylketone C41 0.63 0.28 1.91 0.0087 49.47
3 Heptanone C42 0.70 0.51 1.07 0.0119 31.87
Cyclohexanone C43 1.13 0.52 1.83 0.0458 20.20
Acetophenone C44 0.26 0.19 0.30 0.0066 5.57
2 Heptanone C45 0.55 0.44 0.45 0.0095 7.90
Pinene C46 31.69 15.53 51.93 0.0117 854.27
Pinene C47 3.69 1.84 13.16 0.0119 575.59
3 Carene C48 15.54 7.06 25.34 0.0189 303.54

Limonene C49 28.31 13.03 43.76 0.0730 641.97
Longifolene C50 0.71 0.48 0.84 0.0566 11.45

a Total number of measurements is smaller than 2 242, and VOCs were excluded from analysis



Rösch et al. – Atmospheric Pollution Research (APR) 132

To receive stable results, initialization matrices for W and H
were produced by singular value decomposition (SVD) (Boutsidis
and Gallopoulos, 2008). Otherwise, inconsistent and irreproducible
results would be created due to permanently new calculated
starting matrices. With SVD, initialized matrices converge to the
given and always identical local minimum. Initialization is followed
by iterative calculation of reconstructed matrices W and H with
alternating least squares and without the requirement of
orthogonality.

The non–negativity of the data matrix is the main advantage
of this application in comparison to positive matrix factorization
because it is often not feasible to gain measurement results
without zero entries. Furthermore, physical processes and source
contribution are usually not orthogonal what argues for an
application of NMF in addition to PCA. The calculation of VOC
patterns was obtained by using MathWorks Matlab, version
7.10.0.499.

3 Results and Discussion

3.1. Source identification via PCA

PCA was used to define frequently occurring VOCs in indoor
environments and to apportion them to household products and
indoor activities (arisen from questionnaires). Due to normal

distribution of input data for PCA, the VOC concentrations were
logarithmically transformed. For detailed results of elemental
analysis and PCA, we refer to the Supporting Material (SM).

Reproducibility was 72% and contained the following sources:
ventilation and season (18.7%), which can include intrusions of
vehicle emissions and environmental tobacco smoke. Further,
wooden furniture/parquet (8.2%); flooring, wallpapers, and gluing
emissions (8.2%), as well as recent renovations (7.6%) accounted
for a high percentage of the variability of compound levels. Natural
processes, e.g. solar radiation, aging of materials, and indoor
climate added nearly 16.3%; the background concentration
contributed to 4.2% (Table 2).

3.2. Results of NMF

NMF was used to quantify the existence of special patterns in
typical indoor environments after rearrangement procedures and
to research the difference to PCA. Concentrations of compounds
were logarithmically transformed for comparability with PCA
results.

The results of PCA and regression analysis as well as
comparison with literature helped to identify the different
patterns. A table including the percentage share of each compound
in all patterns is given in the SM.

Figure 1. Characterization criterions of housings that were inquired in LINA study, given in percent.
Abbreviations in brackets are used in Table S1 of Supporting Material. Total number of questionnaire

items amounts to N(max)=2 242, items with * were collected in 1 632 cases.

Table 2. Sources of VOCs in indoor environments developed by PCA

Factors % Variance PCA Possible source Included compounds

PCA1 18.75 Ventilation/season Aromatic hydrocarbons, nonane

PCA2 8.72 Wood products (furniture, parquet), personal care and
cleansing products Terpenes, 2 heptanone

PCA3 8.16 Solvents, adhesive emissions, PVC Hexane, heptane, methylcyclopentane,
cyclohexane

PCA4 7.6 Renovation, paints/traffic emissions Tri , tetra , penta , hexadecane
PCA5 7.17 Solar radiation/secondary emissions Texanol isobutyrate, benzaldehyde, cyclohexanone
PCA6 6.48 Renovation, new furniture/traffic emissions Decan, un , do , tridecan
PCA7 5.27 Aging of materials Pentanal, hexanal, octanal, nonanal
PCA8 4.23 Background Tetrachloromethane
PCA9 3.84 Indoor climate 1 Butanol, 2 ethylhexanol
PCA10 2.81 PVC flooring Tetrahydrofuran
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Pattern 1 is strongly influenced by 1–butanol, pentanal,
hexanal, octanal and nonanal. These aldehydes can be emitted by
linoleum floor coverings, floor lacquers, and aging of materials
(Wolkoff, 1995). The combined occurrence of these sources is
obvious, because flooring is a long–lasting source, which emits
specific compounds in low levels over a long period of time.
Emission of VOCs from aging materials was observed after
thoroughly drying, also.

The almost balanced contribution of alkanes in combination
with aromatic hydrocarbons in pattern 2 may follow from lowered
ventilation during and after renovation and painting of walls. The
portion of aromatic hydrocarbons is high and correlates with
ventilation behavior and renovation in regression analysis. The
classification of this pattern to smoker households is inadequate
due to a low number of smoker households.

NMF found a pattern of indoor air that is influenced, in most
instances, by alkanes due to renovation activities (pattern 3).

Pattern 4 shows a combination of terpenes and alkanes, a
pattern that is conceivable for households with renovation
activities and arrangement of new furniture. In this study, the
majority of the expecting parents had combined activities
[renovation and arrangement of new furniture: 963 instead of
having each separately (renovation without furniture: 239;
furniture without renovation: 569)]. The usage of cleansing agents
and air fresheners after renovation is increased, so the level of
terpenes might be lifted, additionally.

Pattern 5 is dominated by terpenes but equal contributions of
alkanes and aromatics are observable. These compounds are
emitted in indoor environments by renovations/painting of walls
(alkanes), arrangement of furniture/laying of parquet (terpenes)
and ventilation/traffic emission (aromatics). Elevated concentra
tions of alkanes, aromatics and terpenes might occur when
cleaning was carried out, but in most cases, renovation events are
followed by ventilation that diminishes the terpene level due to
chemical reactions with ozone and air mass transport (Morawska
et al., 2009; Salthammer and Bahadir, 2009). As we found, a high
number of study participants renovated their homes in winter
months when ventilation is reduced, which explains the shape of
pattern 5.

2–ethyl–1–hexanol, 2–methyl–1–propanol and ethyl acetate
are crucial for pattern 6 and appear in elevated levels after
renovation activities and in conjunction with laying of PVC flooring
and its sealing. Emission from PVC flooring is arguable due to a
small number of participants who chose this type of flooring. The
number of sealed floorings is five times higher but not reliable
either.

Pattern 7 is affected by high contributions of hexane, heptane,
methylcyclopentane and cyclohexane, which accumulate through
gluing emissions and renovation in homes.

Factor 8 includes a small proportion of VOCs, specific for
renovations (alkanes, C10–C16), and a higher amount of compounds
related to aging of materials (pentanal, hexanal, octanal, nonanal).

Styrene, pentanal, hexanal and methylisobutylketone define
the shape of pattern 9. These VOCs are affected by solar radiation,
arise from aging of materials, and ventilation. The combination of
solar radiation and aging of materials is not astonishing because
solar radiation and increased temperatures may be correlated and
influence the aging of materials.

The last extracted pattern is clearly influenced by tetrahydro
furan, mainly emitted by PVC, and a small contribution of terpenes.
This mixture might occur due to cleaning activities after the laying
of PVC–flooring or the usage of air fresheners to minimize the
olfactory irritation of the new flooring.

3.3. Combination of PCA and NMF results

PCA showed more or less special compositions of compounds,
which are thought to be emitted by a single or by inseparable
sources, which emit the same compounds in similar concentrations
(Geng et al., 2009). It is not possible to differentiate several
sources with equal VOC spectra. For example, accumulations of
aromatics were found to be characteristic for smoking indoors,
solvents of paints, or traffic emissions. Hence, this fact allows only
an assumption about sources and patterns. However, it was
noticeable, that almost all factors of PCA were contained in the
patterns of NMF, so that patterns seem to be modifications and
mixtures of sources. Due to this reason, we tested the correlation
of NMF patterns and PCA factors and linked NMF and PCA via
correlation coefficients (CCs). This resulted in some NMF patterns,
having high CCs for several PCA sources (NMF1, NMF2, NMF3 and
NMF8). In contrast, some NMF patterns only correlated with single
PCA components, e.g. NMF9 and NMF10 (see Table 3).

The CCs showed that the linear relationship between single
patterns and sources is barely reproducible with two influencing
items. Therefore, two regression analyses were conducted, one
with PCA sources as dependent variable and the second one with
NMF patterns as dependent variable.

The linear regression with PCA factors as dependent variables
failed as it did not reveal statistically significant findings suggesting
that it is unsuitable for describing PCA components as a
combination of NMF factors.

Table 3. Correlation coefficients (CCs) for NMF patterns and PCA factors

NMF1 NMF2 NMF3 NMF4 NMF5 NMF6 NMF7 NMF8 NMF9 NMF10
PCA1 0.36 a 0.84 b 0.35 a 0.09 0.44 a 0.10 0.19 0.48 a 0.01 0.04
PCA2 0.32 a 0.23 0.33 a 0.71 b 0.70 b 0.06 0.15 0.35 a 0.01 0.14
PCA3 0.41 a 0.46 a 0.40 a 0.11 0.17 0.08 0.93 b 0.47 a 0.21 0.01
PCA4 0022 0.30 a 0.92 b 0.15 0.00 0.30 a 0.30 a 0.14 0.01 0.13
PCA5 0.34 a 0.28 0.08 0.07 0.17 0.37 a 0.09 0.08 0.72 b 0.06
PCA6 0.19 0.27 0.21 0.48 a 0.16 0.09 0.18 0.11 0.22 0.14
PCA7 0.63 b 0.36 0.15 0.01 0.42 a 0.16 0.31 a 0.86 b 0.23 0.28
PCA8 0.17 0.02 0.13 0.13 0.33 a 0.45 a 0.01 0.12 0.12 0.02
PCA9 0.41 a 0.13 0.01 0.07 0.11 0.16 0.07 0.19 0.05 0.10
PCA10 0.04 0.00 0.15 0.17 0.08 0.09 0.17 0.21 0.12 0.78 b

a Significance levels of p 0.05
b Significant CCs higher than 0.5
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The contrary analysis with PCA sources as independent
variables showed astonishing results (Table 4). Each pattern of
NMF was calculated by a linear combination of all PCA factors with
positive and negative coefficients, as output of the linear
regression analysis.

Y(NMF)= 0+ 1x(PCA1)+ 2x(PCA2)+…+ 10x(PCA10) (1)

The analysis demonstrated that nearly all single sources,
found by PCA, were observable in the patterns of NMF. In addition,

it highlights that the best recovery of each NMF pattern is reached
when multiple sources were combined. Table 4 shows the different
influences of one source on various patterns (from top to bottom)
and the mixture of sources, which create the shape of the pattern
(from left to right hand side) by their individual strength.

Figure 2 shows the representation of NMF factors with varying
PCA coefficient factors. For this figure, the calculated NMF patterns
out of all PCA factors were used and the R² correspond to the
values in Table 4.

Figure 2. NMF patterns represented by the share of each VOC (grey bars) and by their reconstruction as a linear combination of 10 principal
components (PCA, black line). The numbers at the abscissa represent the VOCs. Full names are given at the bottom right panel.
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Table 4. The R² of linear regression analysis by taking all PCA factors into account in an additive way

NMF
factor

R²
(%) Contribution of PCA factors (%)

1 2 3 4 5 6 7 8 9 10
1 84 4.57 d 9.61 c 15.69 c 6.47 a 13.91 c 3.05 d 14.58 c 5.78 d 20.02 c 6.33 d

2 88 34.15 c 13.53 c 16.73 c 1.81 d 10.70 b 7.79 a 2.40 d 1.88 d 9.91 a 1.10 d

3 95 9.14 c 11.84 c 10.47 c 28.11 c 2.28 d 5.86 b 15.17 c 1.28 d 4.36 a 11.49 c

4 90 8.82 c 27.61 c 4.03 d 8.24 c 10.82 c 19.92 d 0.17 d 10.55 c 3.41 d 6.43 a

5 91 11.82 c 26.23 c 6.28 b 10.05 c 9.33 c 11.05 d 4.32 d 8.83 c 7.86 a 4.23 d

6 40 10.92 a 7.42 d 6.98 d 16.09 a 15.17 b 2.77 d 15.71 a 18.68 b 3.09 d 3.18 d

7 96 5.54 c 7.27 c 30.48 c 5.62 c 5.65 c 10.87 d 13.05 c 3.33 d 3.82 b 14.37 c

8 84 5.31 d 13.52 c 15.15 b 1.38 d 6.88 d 3.38 d 35.13 c 4.82 d 5.66 d 8.77 d

9 62 12.55 b 0.07 d 0.62 d 9.91 a 36.37 c 4.80 d 17.58 b 0.25 d 8.41 d 9.44 d

10 65 6.40 d 7.49 d 1.95 d 5.71 d 0.38 d 4.88 d 12.15 d 6.81 d 10.82 a 43.41 c

a Significance level 0.05 p>0.01
b 0.01 p>0.001
c p 0.001
d p>0.05

Hence, we found a mathematical way to identify NMF factors
as patterns, resulting from various combinations of PCA factors,
which can be described as underlying sub–patterns or sources. The
best model had a recovery efficiency of 96%, whereas the least
effective one had just about 40%. This might be caused by the
methodical differences and, in particular, by the exclusion of
negative values from NMF. The link between sources and patterns
is the individual impact of activities and environmental factors to
the whole indoor environment.

3.4. Discussion

PCA is a standard method for dimensionality reduction.
However, it tends to find more PCs than necessary and therewith
over–interprets the data structures. Kaiser criterion is a good
choice for the number of factors that should be included but fails if
explained variance is spread, which argues for underlying (non–
linear) structures. In this case, PCA calculated 73% of explained
variance containing 10 PCs. This is not much and highlights that
indoor air is extremely variable. The interpretation of all 10 factors
was complicated and is not suitable to extract more PCs for gaining
higher explained variances. To increase the cumulative variance
the involvement of more PCs is necessary, but this counteracts
with an improvement of variable number and makes source
identification more difficult.

The factors of PCA are always orthogonal, meaning that the
occurrence of two factors, and so two sources, is not very probable
at all. For example, source 1 of PCA is supposed to be the influence
of ventilation on indoor air quality but is not directly related to
indoor activities. We suggest that ventilation is intensified through
VOC–emitting activities, but the factor does not account for
mixtures. In reality, there are numerous possibilities for the
combinations of indoor activities, accommodation characters and
outdoor influences that have an impact on indoor air. Having this
in mind, PCA can be used to get an impression of the single factors
influencing air quality because VOCs with similar concentration
characteristics are pooled.

The combination of different factors, for example ventilation,
renovation and new furniture, is only combined in one principal
component when the overall variability of the whole VOC dataset
is strongly influenced by the most important compounds which
must not differ in their variances. So, PCA is more feasible when
profiles of specific sources are of concern.

NMF results are a combination of PCA–clustered VOCs
(Figure 2). Hence, it is possible that the method of NMF shows
more or less characteristic situations of VOCs in indoor
environments; constantly recurring structures are not single PCs

but rather a combination of them. This study gives evidence for
simultaneously occurring sources in indoor environments,
describing the various patterns of indoor compounds. Different
numbers for r were chosen but smaller quantities showed patterns
difficult to explain, and larger r split the patterns.

One would guess that seasonality and smoking indoors create
own PCs and patterns, but this was not observable in the analyses.
Although VOC measurements were conducted throughout the
whole year, only multiple regression analysis showed a
relationship. Seasonal variations, which are supposed to account
for a high variability in the VOC dataset, were not detected as a
special pattern of seasonality in PCA or NMF. PC1 describes the
influence of ventilation on indoor VOC concentrations and,
indirectly, ventilation is driven by season. Ventilation is more
pronounced in summer compared to winter months, and total VOC
concentrations do not differ much in smoker and nonsmoker
households. In winter months, VOCs accumulate indoors due to
inappropriate ventilation behaviors in nonsmoker houses, raising
the total VOC level as it is observable in factor 1 of PCA (Schlink et
al., 2010). In contrast, smoker housings tend to ventilate their
rooms independently of season. Hence, concentrations of
smoking–related VOCs are significantly elevated, but unrelated
VOC concentrations are free of influences from indoor smoking
and there was no significant difference between both housing
types. This may be one reason why smoking and seasonality did
not result in any single factor or PC.

Aromatics, especially the toluene/benzene (T/B) ratio are a
good marker for the influence of outdoor air and traffic. Gelencser
et al. (1997) showed that the strength of the ratio depends on the
proximity to roads. This ratio is inappropriate in our analysis
because benzene and toluene are emitted by indoor sources (e.g.
newspaper) as well and references for T/B ratios in indoor air are
still missing. The ratio between toluene and benzene is 0.18
(mean) and there are seven cases with a ratio >1 and 54 cases with
ratio >0.5. Therefore, there is no clear evidence that traffic
affected the indoor concentrations as a result of ventilation.

The main aim of the application of NMF to this data set was to
identify characteristic situations of VOC occurrences via combina
tions of origins, as specific and independent sources without
forcing requirements of orthogonality. PCA and NMF are both used
for data acquisition and processing. The comparison of PCA and
NMF showed that the characterizations of housings should be
done with NMF as combinations of VOCs out of different sources
from PCA so that results reflect distinctive VOC “pictures” from
different homes. PCA is a good choice for revealing sources of VOC
groups; NMF joins the pieces of a puzzle (sources) to form a big
picture (pattern).
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4. Conclusions

VOC concentrations were measured over a period of
16 months in 2 246 homes in Leipzig, Germany. To determine the
influence of sources and patterns of VOCs on indoor air, different
analyzing methods were applied to reduce the dataset to its main
structures (PCA) and to find recurring characteristics (NMF).
Factors were found that described the following sources: influence
of ventilation (PC1), wooden furniture, cleaning agents and plants
(PC2), gluing emissions (PC3), renovation activities (PC4 and PC6),
solar radiation (PC5), aging of materials (PC7), background concen
trations (PC8), indoor climate (PC9) and PVC flooring (PC10). PCA is
appropriate when the highest possible explained variance is of
interest. The aim of this study was, ideally, to find characteristic
sources of VOCs in urban housings in areas without strong outdoor
influences. The method was able to extract 10 factors, explaining
73% of the total variance.

Sources and patterns differ in their occurrence. We defined
sources to be a point of origin for related compounds in contrast to
patterns, which contain various, often unrelated compounds. PCA
is a statistical analyzing method for source–oriented analyses
whereas the NMF method is used for pattern–oriented purposes.
The most affecting difference between both methods is the
combination of sources to form patterns without any reverse
option. So, the catenation of typical sources for indoor
environments was established by NMF, which gave information
about potential combinations of single sources. The recovery rate
of PCA sources in NMF patterns averaged at 79.5%. So, indoor air
of participant housings is an interaction of renovation, flooring,
cleaning activities, and natural aging processes. Patterns of homes
showed various combinations of anthropogenic and natural
sources. These results affirm the latest studies by Guo (2011) and
Lau et al. (2010).

This study showed that most complex data relations can be
reproduced with NMF while data that do not contain several local
behaviors and has a limited dispersion can be represented using
PCA.

We suggest that adverse impacts of a combination of sources
should be researched in further studies as well as a verification of
existing results to the relationship between single/group VOC
sources and health effects.
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