
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Functional Analysis 259 (2010) 561–582

www.elsevier.com/locate/jfa

Smooth approximations ✩

Petr Hájek a, Michal Johanis b,∗

a Mathematical Institute, Czech Academy of Science, Žitná 25, 115 67 Praha 1, Czech Republic
b Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

Received 18 September 2008; accepted 21 April 2010

Communicated by K. Ball

Abstract

We prove, among other things, that a Lipschitz (or uniformly continuous) mapping f : X → Y can be
approximated (even in a fine topology) by smooth Lipschitz (resp. uniformly continuous) mapping, if X

is a separable Banach space admitting a smooth Lipschitz bump and either X or Y is a separable C(K)

space (resp. super-reflexive space). Further, we show how smooth approximation of Lipschitz mappings is
closely related to a smooth approximation of C1-smooth mappings together with their first derivatives. As
a corollary we obtain new results on smooth approximation of C1-smooth mappings together with their first
derivatives.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of approximation of continuous mappings between infinite-dimensional Banach
spaces by smooth mappings, which goes back to Kurzweil [10] and Bonic and Frampton [2], is
nowadays well understood and provides satisfactory results, see for example [3].

The related problem, whether the smooth approximation of Lipschitz (or uniformly contin-
uous) mappings can retain the Lipschitz (or uniform continuity) property is much less studied,
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and so far the results available are not very general. One of the reasons is that most of the results
on approximation of continuous mappings use the notion of smooth partition of unity, and it is
very difficult, if not impossible, to keep some uniformity in the partition.

In the present paper we introduce some new techniques and prove several new results con-
cerning smooth approximation of Lipschitz mappings and smooth approximation of C1-smooth
mappings together with their first derivatives. In Section 2 we show how approximation of Lips-
chitz functions (i.e. mappings into reals) relates to bi-Lipschitz embeddings into c0(Γ ).

In Section 3 using the bi-Lipschitz embeddings into c0(Γ ) we develop some more general
theorems concerning uniform approximation of Lipschitz mappings and then apply the results
of Lindenstrauss on absolute retracts (see e.g. [1, Theorems I.1.6, I.1.26]). Thus we obtain one
of the main results of this paper, namely we prove that a Lipschitz (or uniformly continuous)
mapping f : X → Y can be approximated by smooth Lipschitz mapping (Corollary 8), resp. uni-
formly continuous mapping (Corollary 10), if X is a separable Banach space admitting a smooth
Lipschitz bump and either X or Y is a separable C(K) space (resp. super-reflexive space). These
two results complement the presently known theorems (see below), for example we remove the
assumption on X having a basis from Theorem H but unfortunately we have to restrict the type
of the target space.

However, since the main ingredient of this technique relies on integral convolutions in c0(Γ ),
we obtain only uniform approximation. To achieve the fine approximation we need to introduce
a new approach concerning smooth partitions of unity. This is done in Section 4.

In Sections 5 and 6 we show how this new approach can be used to translate some “sep-
arable” techniques into general (non-separable) setting. Namely, in Section 5 we prove that
uniform approximation of Lipschitz mappings implies fine approximation (Theorem 14) and
thus in combination with the results of Section 3 we obtain stronger versions of those theorems
(Corollary 15).

Finally, in Section 6 we prove the next of the main results of this paper, which shows how
smooth approximation of Lipschitz mappings is closely related to a smooth approximation of
C1-smooth mappings together with their first derivatives. In particular we generalise the re-
sult of Moulis (Theorem C) into arbitrary (non-separable) spaces (Theorem 18). As a corollary
we obtain results on approximation of C1-smooth mappings together with their first derivatives
(Corollaries 19, 21). Moreover our techniques also allow us to prove a result dual to the result
of Moulis (Theorem A): The approximation result also holds for X being arbitrary (separable)
and Y having an unconditional basis. Thus Corollary 19 exhibits an interesting symmetry in its
hypotheses.

To put our results into perspective and also to formulate precisely the results that we use, we
collect most of the theorems relevant to the theory below.

But first, we need to fix some notation. Let BX (UX) denote a closed (open) unit ball
of a normed linear space X. Further, for a metric space (P,ρ), we denote B(x, r) =
{y ∈ P ; ρ(x, y) � r} and U(x, r) = {y ∈ P ; ρ(x, y) < r} the closed and open ball in P centred
at x ∈ P with radius r � 0. Let A ⊂ P . A neighbourhood U ⊂ P of A is called an r-uniform
neighbourhood if there is r > 0 such that

⋃
x∈A U(x, r) ⊂ U . A neighbourhood is called a uni-

form neighbourhood if it is r-uniform for some r > 0. For a set M ∈ P and ε > 0 we denote
Mε = {x ∈ M; dist(x,P \M) > ε}. For a function f into reals we denote suppf = f −1(R\{0}).

Now we list almost all of the known results, in the order as they appeared in the literature:

Theorem A (Moulis). Let X be a Banach space with an unconditional Schauder basis that admits
a Ck-smooth Lipschitz bump function, k ∈ N ∪ {∞}, and Y be a Banach space. For any open
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Ω ⊂ X, any mapping f ∈ C1(Ω,Y ) and any continuous function ε : Ω → (0,+∞) there is
g ∈ Ck(Ω,Y ) such that ‖f (x) − g(x)‖ < ε(x) and ‖f ′(x) − g′(x)‖ < ε(x) for all x ∈ Ω .

This theorem immediately follows from the following two results:

Theorem B (Moulis). Let X be a Banach space with a monotone unconditional Schauder basis
{ei}∞i=1 that admits a Ck-smooth Lipschitz bump function. Denote Xn = span{ei}ni=1. There is a
constant C > 0 such that if Y is a Banach space, M ⊂ X such that PnM ⊂ M for all n ∈ N,
Ω a uniform open neighbourhood of M , f : Ω → Y an L-Lipschitz Gâteaux differentiable
mapping such that the mappings x 
→ f ′(x)ei are uniformly continuous on Ω ∩ Xn for each
i, n ∈ N, and ε > 0, then there is g ∈ Ck(X,Y ) such that ‖g′(x)‖ � C(1 + ε)L for all x ∈ Mε

and ‖f (x) − g(x)‖ < ε for all x ∈ Mε .

Theorem C (Moulis). Let X, Y be normed linear spaces, X separable, and k ∈ N∪{∞}. Suppose
there is C ∈ R such that for any L-Lipschitz mapping f ∈ C1(2UX,Y ) and any ε > 0 there is a
CL-Lipschitz mapping g ∈ Ck(UX,Y ) such that supx∈UX

‖f (x) − g(x)‖ � ε. Then for any open
Ω ⊂ X, any mapping f ∈ C1(Ω,Y ) and any continuous function ε : Ω → (0,+∞) there is
g ∈ Ck(Ω,Y ) such that ‖f (x) − g(x)‖ < ε(x) and ‖f ′(x) − g′(x)‖ < ε(x) for all x ∈ Ω .

We note, that Theorem B is actually formulated as [13, Lemme fondamental 1] under much
stronger assumptions, namely for Lp spaces and mappings C1-smooth on some ball. However,
the proof in [13] works also for spaces with unconditional basis with only formal modifications.
Denote fn = f �Xn

. Then the assumptions of Theorem B imply that f ′
n are uniformly continu-

ous on Ω ∩ Xn. Noticing this, the proof in [13] works also almost verbatim under the relaxed
differentiability assumptions.

The next theorem uses the infimal convolution techniques, hence it provides only C1-smooth
approximation of functions. Nevertheless, it is the first non-separable result.

Theorem D. (See Lasry and Lions [11].) Let X be a Hilbert space, f : X → R an L-Lipschitz
function, and ε > 0. Then there is an L-Lipschitz function g ∈ C1,1(X) such that
supx∈X |f (x) − g(x)| � ε.

We note that the original formulation in [11] is for bounded functions, however in the Lips-
chitz case the boundedness is not needed.

If we put no assumptions on the smoothness of the source space, we obtain only a uniformly
Gâteaux differentiable approximation.

Theorem E. (See Johanis [8].) Let X be a separable Banach space, Y a Banach space,
f : X → Y be an L-Lipschitz mapping and ε > 0. Then there is a mapping g : X → Y which is
L-Lipschitz, uniformly Gâteaux differentiable, and supx∈X ‖f (x) − g(x)‖ � ε.

The following theorem gives smooth approximations of bounded Lipschitz functions.

Theorem F (Fry). Let X be a separable normed linear space that admits a Ck-smooth Lip-
schitz bump function, k ∈ N ∪ {∞}. For each ε > 0 there is a constant K ∈ R such that
if f : X → [0,1] is 1-Lipschitz, then there is a K-Lipschitz function g ∈ Ck(X) such that
supx∈X |f (x) − g(x)| � ε.
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By obvious adjustments of the proof of [4, Theorem 1] we obtain this more general The-
orem F, see also the proof of Theorem 3, (i) ⇒ (ii). We note that the subsequent attempt to
generalise Theorem F for WCG spaces in [6] appears to be seriously flawed and it is unknown at
present if the result holds.

Finally, there is a recent result on approximation of Lipschitz (or more generally uniformly
continuous) mappings on c0(Γ ).

Theorem G (Hájek–Johanis). Let Γ be an arbitrary set, Y be a Banach space, M ⊂ c0(Γ ),
U ⊂ c0(Γ ) be a uniform neighbourhood of M , f : U → Y be a uniformly continuous map-
ping with modulus of continuity ω and let ε > 0. Then there is a mapping g ∈ C∞(c0(Γ ),Y )

which locally depends on finitely many coordinates, such that supM ‖f (x) − g(x)‖ � ε, and g

is uniformly continuous on M with modulus of continuity dominated by ω. In particular, if f is
L-Lipschitz, then g is L-Lipschitz on M .

This stronger version of [7, Theorem 1] follows by not very difficult modification of the
proof.

If a uniformly continuous mapping f : X → Y is uniformly Gâteaux differentiable, then the
mappings x 
→ f ′(x)h are uniformly continuous on X (see e.g. [7, Lemma 4]). Thus combining
Theorems E and B we immediately obtain the following corollary:

Theorem H. Let X be a Banach space with an unconditional Schauder basis that admits
a Ck-smooth Lipschitz bump function, k ∈ N ∪ {∞}. There is a constant C > 0 such that
if Y is a Banach space, f : X → Y an L-Lipschitz mapping, and ε > 0, then there is a
C(1 + ε)L-Lipschitz mapping g ∈ Ck(X,Y ) such that ‖f (x) − g(x)‖ < ε for all x ∈ X.

This result was first announced in [5].

2. Approximation of functions and embeddings into c0(Γ )

First, although not directly related to our results, we show the following observation, which
basically says that to approximate Lipschitz functions it only suffices to consider approximation
of bounded functions, and moreover we gain control over the Lipschitz constant of the approxi-
mation.

Proposition 1. Let k ∈ N ∪ {∞} and X be a normed linear space with the following property:
There is a C ∈ R such that for each A ⊂ X there is a C-Lipschitz function hA ∈ Ck(X, [0,1])
satisfying hA(x) = 0 for all x ∈ A and hA(x) = 1 for all x ∈ X such that dist(x,A) � 1.

Then for each ε > 0 and an arbitrary L-Lipschitz function f : X → R there is a CL-Lipschitz
function g ∈ Ck(X) such that |g(x) − f (x)| � ε for each x ∈ X.

Proof. Let us define a function f̃ : X → R by f̃ (x) = 1
ε
f ( ε

L
x). This function is obviously

1-Lipschitz. Next, let us define sets An = {x ∈ X; f̃ (x) � n} for n ∈ Z. Clearly, An+1 ⊂ An for
all n ∈ Z, and using the 1-Lipschitz property of f̃ it is easy to check that

dist(X \ An,An+1) � 1 for all n ∈ Z. (1)

Further, denote hn(x) = 1 − hAn+1(x) for n ∈ Z. For each n ∈ Z, hn ∈ Ck(X, [0,1]), hn is
C-Lipschitz, hn(x) = 1 for all x ∈ An+1 and, by (1), hn(x) = 0 for all x ∈ X \ An.



P. Hájek, M. Johanis / Journal of Functional Analysis 259 (2010) 561–582 565
Now, put

h(x) =
∞∑

n=0

hn(x) −
−1∑

n=−∞

(
1 − hn(x)

)
. (2)

Fix an arbitrary x ∈ X. Then there is m ∈ Z such that x ∈ Am \ Am+1. It follows, that hn(x) = 0
for all n > m and hn(x) = 1 for all n < m. Hence (2) defines a function h : X → R. Moreover,
by (1), the sums in (2) are even locally finite, therefore h ∈ Ck(X). Further, it is easy to check
that h(x) = m+hm(x). This implies that h(x) ∈ [m,m+ 1], while f̃ (x) ∈ [m,m+ 1) and hence
|h(x) − f̃ (x)| � 1.

It remains to show that h is C-Lipschitz. To this end, choose x, y ∈ X and find n, l ∈ Z such
that x ∈ An \An+1 and y ∈ An+l \An+l+1. Without loss of generality we may assume that l � 0.
If l = 0, then clearly |h(x) − h(y)| = |n + hn(x) − n − hn(y)| � C‖x − y‖.

We prove the case l > 0 by induction on l. As the first step of the induction assume that l = 1.
Denote by [x, y] the line segment between the points x and y. Since [x, y] is connected, there
is a point z ∈ [x, y] ∩ An+1 ∩ (X \ An+1). From the properties of hn and hn+1 and from the
continuity of hn+1 it follows that hn(z) = 1 and hn+1(z) = 0. Thus

∣∣h(y) − h(x)
∣∣ = ∣∣n + 1 + hn+1(y) − n − hn(x)

∣∣ = ∣∣hn+1(y) + 1 − hn(x)
∣∣

= ∣∣hn+1(y) − hn+1(z) + hn(z) − hn(x)
∣∣

�
∣∣hn+1(y) − hn+1(z)

∣∣ + ∣∣hn(z) − hn(x)
∣∣

� C‖y − z‖ + C‖z − x‖ = C‖y − x‖.
To prove the general induction step assume that l > 1. By the continuity of f̃ there is z ∈ [x, y]

such that z ∈ An+1 \ An+2. Using the induction hypothesis on the pair x, z and again on the
pair z, y we obtain |h(x) − h(y)| � |h(x) − h(z)| + |h(z) − h(y)| � C‖x − z‖ + C‖z − y‖ =
C‖x − y‖.

Finally, let g(x) = εh(L
ε
x). It is straightforward to check that g satisfies the conclusion of our

theorem. �
Combining Proposition 1 and Theorem F we would obtain a smooth approximation of Lips-

chitz functions on smooth separable normed linear spaces. However, we skip the details, since
we will show much more, see Corollary 15.

In the sequel we will be using smooth bi-Lipschitz homeomorphisms into c0(Γ ). The fol-
lowing two results show how they can be constructed and how they are related to smooth
approximation of Lipschitz functions. First we define some notions useful in this context.

For a metric space P , we denote U(r) = {U(x, r); x ∈ P }.
Let X be a set. A collection {ψα}α∈Λ of functions on X is called a sup-partition of unity if

• ψα : X → [0,1] for all α ∈ Λ,
• for each x ∈ X the set {α ∈ Λ; ψα(x) > 0} is finite,
• for each x ∈ X there is α ∈ Λ such that ψα(x) = 1.

Let U be a covering of X. We say that the sup-partition of unity {ψα}α∈Λ is subordinated to U if
{suppψα}α∈Λ refines U.
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Fact 2. Let Γ be an infinite set, r > 0 and 0 < δ < r
2 . There is an open point-finite uniform refine-

ment V = {Vγ }γ∈Γ of the uniform covering U(r) of c0(Γ ) such that U( r
2 −δ) refines V. Moreover,

V is formed by the translates of the open ball U(0, r − δ). Further, there is a C∞-smooth, locally
dependent on finitely many coordinate functionals, and ( 2

r
+ δ)-Lipschitz sup-partition of unity

{ψγ }γ∈Γ on c0(Γ ) subordinated to U(r).

The first part of this fact was already shown in [14, Proposition 2.3], but with more compli-
cated proof.

Proof. Notice that, by homogeneity, it suffices to prove all the statements only for r = 1.
Let {aγ }γ∈Γ be the set of all vectors in c0(Γ ) with coordinates in Z. (Notice that the cardinal-

ity of such set is |Γ | and so we may index its points by Γ .) We claim that V = {U(aγ ,1−δ)}γ∈Γ

is the desired refinement.
Clearly, V is an open refinement of U(1). To see that it is point-finite, pick any x ∈ c0(Γ )

and find a finite F ⊂ Γ such that |x(γ )| < δ whenever γ ∈ Γ \ F . Suppose that α ∈ Γ is
such that x ∈ U(aα,1 − δ). Then for γ /∈ F , |aα(γ )| � |aα(γ ) − x(γ )| + |x(γ )| < 1 and so
aα(γ ) = 0. From |x(γ ) − aα(γ )| < 1 − δ and aα(γ ) ∈ Z it follows that there are at most two
possibilities for aα(γ ) for each γ ∈ F . From this we can conclude that |{α; x ∈ U(aα,1− δ)}| �
2|F |.

Finally, we show that U( 1
2 − δ) refines V. Choose any x ∈ c0(Γ ) and find β ∈ Γ such that

‖x − aβ‖ � 1
2 . This is always possible, since there is a finite F ⊂ Γ such that |x(γ )| < 1

2
whenever γ /∈ F , and so aβ(γ ) = 0 for such γ . Suppose z ∈ U(x, 1

2 − δ). Then ‖aβ − z‖ �
‖aβ − x‖ + ‖x − z‖ < 1

2 + 1
2 − δ = 1 − δ, which implies U(x, 1

2 − δ) ⊂ U(aβ,1 − δ).
To construct the sup-partition of unity subordinated to U(1), find ε > 0 and 0 < η < 1

2 such
that 0 < 1/(1 − η − 1+ε

2 ) < 2 + δ
4 and (1 + ε)(2 + δ

2 ) � 2 + δ. Let W = {U(aγ ,1 − η)}γ∈Γ be
the point-finite refinement of U(1) from the first part of the proof such that U( 1

2 − η) refines W.
Further, let ‖ · ‖ be an equivalent C∞-smooth norm ‖ · ‖ on c0(Γ ) which locally depends on
finitely many of the coordinate functionals {e∗

γ }γ∈Γ (away from the origin) and such that ‖x‖∞ �
‖x‖ � (1+ε)‖x‖∞ for all x ∈ c0(Γ ). (To construct such a norm, take for example the Minkowski
functional of the set {x ∈ c0(Γ ); ∑

γ∈Γ ϕ(xγ ) � 1}, where ϕ ∈ C∞(R), ϕ is convex and even,

ϕ(1) = 1, and ϕ(t) = 0 for t ∈ [− 1
1+ε

, 1
1+ε

].)
For each γ ∈ Γ we put ψγ (x) = q(‖x − aγ ‖), where q ∈ C∞(R, [0,1]), q is

(2 + δ
2 )-Lipschitz, q(t) = 0 for t � 1 − η, and q(t) = 1 for t � 1+ε

2 . The collection {ψγ }γ∈Γ is
a sup-partition of unity. Indeed, it is easy to see, that suppψγ ⊂ U(aγ ,1 − η) for each γ ∈ Γ ,
and consequently the set {γ ∈ Γ ; ψγ (x) > 0} is finite for each x ∈ X. Further, fix any x ∈ X.
There is an α ∈ Γ such that U(x, 1

2 − η) ⊂ U(aα,1 − η), which gives ‖x − aα‖∞ � 1
2 . Hence

‖x − aα‖ � (1 + ε)‖x − aα‖∞ � 1+ε
2 , which in turn implies ψα(x) = 1.

As the function q is (2 + δ
2 )-Lipschitz and the function ‖ · ‖ is (1 + ε)-Lipschitz (with respect

to the norm ‖ · ‖∞), the functions ψγ are (2 + δ)-Lipschitz according to the choice of ε. The rest
of the properties of the functions ψγ is obvious. �
Theorem 3. Let X be a normed linear space, Γ an infinite set, and k ∈ N ∪ {0,∞}. Then the
following are equivalent:
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(i) There is M ∈ R such that there is a Ck-smooth and M-Lipschitz sup-partition of unity
{φγ }γ∈Γ on X subordinated to U(1).

(ii) X is uniformly homeomorphic to a subset of c0(Γ ) and for each ε > 0 there is K > 0 such
that for each 1-Lipschitz function f : X → [0,1] there is a K-Lipschitz function g ∈ Ck(X)

such that supx∈X |g(x) − f (x)| � ε.
(iii) There is a bi-Lipschitz homeomorphism ϕ : X → c0(Γ ) such that the coordinate functions

e∗
γ  ϕ ∈ Ck(X) for every γ ∈ Γ .

Proof. First we show that (i) implies (iii). From the properties of the sup-partition of unity there
is β ∈ Γ such that φβ(0) = 1. By scaling and composing φβ with a suitable function we construct
a C-Lipschitz function h ∈ Ck(X, [0,1]) such that h = 0 on B(0, r) and h = 1 outside U(0,1)

for some constants C, r ∈ R, r > 0. (We may for example choose r such that 1 − 2Mr > 0
and take h(x) = q(φβ(2x)), where q ∈ Ck(R), q is Lipschitz, q([0,1]) = [0,1], q(0) = 1, and
q(s) = 0 for s � 1 − 2Mr .)

Choose t > 1 and for each n ∈ Z and γ ∈ Γ define functions φn
γ ∈ Ck(X) by

φn
γ (x) = tnφγ

(
x

tn

)
h

(
x

tn

)
.

The properties of the functions φγ and h guarantee that each φn
γ is (M + C)-Lipschitz. Let

d : Z × Γ → Γ be some one-to-one mapping and define ϕ : X → R
Γ by ϕ(x)α = φn

γ (x) if
α = d(n, γ ) for some n ∈ Z, γ ∈ Γ ; ϕ(x)α = 0 otherwise.

We show that ϕ actually maps into c0(Γ ). Choose an arbitrary x ∈ X and ε > 0. There is
n0 ∈ Z such that tn < ε for all n < n0 and n1 ∈ Z such that ‖x‖ � rtn for all n > n1. It fol-
lows that |φn

γ (x)| < ε for all n < n0 and γ ∈ Γ , and, by the properties of h, φn
γ (x) = 0 for all

n > n1 and γ ∈ Γ . As for each n0 � n � n1, φγ (x/tn) �= 0 only for finitely many γ ∈ Γ , we can
conclude that ϕ : X → c0(Γ ).

Since each φn
γ is (M + C)-Lipschitz, the mapping ϕ is (M + C)-Lipschitz as well.

To prove that ϕ is one-to-one and ϕ−1 is Lipschitz too, choose any two points x, y ∈ X, x �= y,
and find m ∈ Z such that 2tm � ‖x − y‖ < 2tm+1. Without loss of generality we may assume
that ‖x‖ � tm. Then h(x/tm) = 1 and so there is γ ∈ Γ such that φm

γ (x) = tm. Now suppose
there is z ∈ X such that φm

γ (z) > 0. As suppφγ ⊂ U(w,1) for some w ∈ X, ‖ x
tm

− z
tm

‖ < 2 and
consequently ‖x − z‖ < 2tm. But this means that φm

γ (y) = 0 and therefore

∥∥ϕ(x) − ϕ(y)
∥∥∞ �

∣∣φm
γ (x) − φm

γ (y)
∣∣ = φm

γ (x) = tm >
1

2t
‖x − y‖.

(iii) ⇒ (i): Let A,B ∈ R are such that A‖x − y‖ � ‖ϕ(x) − ϕ(y)‖∞ � B‖x − y‖. By Fact 2,
there is a C > 0 and a C∞-smooth, locally dependent on finitely many coordinate function-
als, and C-Lipschitz sup-partition of unity {ψγ }γ∈Γ on c0(Γ ) subordinated to U(A). Putting
φγ = ψγ ϕ, {φγ }γ∈Γ is a BC-Lipschitz sup-partition of unity subordinated to U(1). Fix γ ∈ Γ .
To see that φγ ∈ Ck(X), pick any x ∈ X. There is a neighbourhood V of ϕ(x) such that
ψγ (w) = G(f1(w), . . . , fn(w)) for each w ∈ V , where f1, . . . , fn ∈ {e∗

γ }γ∈Γ and G ∈ C∞(Ω)

for some Ω ⊂ R
n open. Let U be an open neighbourhood of x such that ϕ(U) ⊂ V . Then

φγ (y) = ψγ (ϕ(y)) = G(f1(ϕ(y)), . . . , fn(ϕ(y))) for each y ∈ U . Since, by the assumption,
fi  ϕ ∈ Ck(X) for each i = 1, . . . , n, and G ∈ C∞(Ω), φγ is Ck-smooth on U .
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(i) ⇒ (ii): We already know that (iii) holds and from this the first part of (ii) follows imme-
diately. To prove the second part of (ii), let ε > 0. The basic idea of the proof is that Lipschitz
functions are stable under the operation of pointwise supremum. To preserve the smoothness,
we will use a “smoothened supremum”, or an equivalent smooth norm on c0(Γ ). Let ‖ · ‖ be an
equivalent C∞-smooth norm on c0(Γ ) which locally depends on finitely many of the coordinate
functionals {e∗

γ }γ∈Γ (away from the origin), and let C > 0 be such that ‖x‖∞ � ‖x‖ � C‖x‖∞
for all x ∈ c0(Γ ) (see the proof of Fact 2). We will show that K = 4C3M/ε satisfies our
claim.

By adding the constant 1 we may and do assume that f maps into [1,2]. Put δ = ε
C

and ψγ (x) = φγ (x
δ
) for all x ∈ X, γ ∈ Γ . It follows, that {ψγ }γ∈Γ is a Ck-smooth and

M/δ-Lipschitz sup-partition of unity subordinated to U(δ). Since the sets {γ ∈ Γ ;
ψγ (x) > 0} are finite, (ψγ (x))γ∈Γ ∈ c0(Γ ) for each x ∈ X. For each γ ∈ Γ there is a point
xγ ∈ X such that suppψγ ⊂ U(xγ , δ). The boundedness of the function f guarantees that also
(f (xγ )ψγ (x))γ∈Γ ∈ c0(Γ ) for each x ∈ X. Therefore we can define the function g : X → R by

g(x) = ‖(f (xγ )ψγ (x))γ∈Γ ‖
‖(ψγ (x))γ∈Γ ‖ .

As

∥∥(
ψγ (x)

)∥∥ �
∥∥(

ψγ (x)
)∥∥∞ = sup

γ∈Γ

ψγ (x) = 1 for each x ∈ X, (3)

the function g is well defined on all of X.
The mapping x 
→ (ψγ (x)) and, by the boundedness of f , also the mapping x 
→

(f (xγ )ψγ (x)) are Lipschitz mappings from X into c0(Γ ) \ U(0,1). (Notice that for each
x ∈ X there is γ ∈ Γ such that ψγ (x) = 1 and f (xγ )ψγ (x) � 1.) Since ‖ · ‖ is C∞-smooth
and depends locally on finitely many coordinates away from the origin, and since ψγ ∈ Ck(X)

and f (xγ )ψγ ∈ Ck(X) for each γ ∈ Γ , similarly as in the proof of (iii) ⇒ (i) we infer that
g ∈ Ck(X).

To see that the function g is K-Lipschitz, choose any two points x, y ∈ X. Then, using (3)
and the facts that ψγ maps into [0,1], f maps into [1,2], and ψγ are M/δ-Lipschitz, we can
estimate

∣∣g(x) − g(y)
∣∣ = |‖(f (xγ )ψγ (x))‖‖(ψγ (y))‖ − ‖(f (xγ )ψγ (y))‖‖(ψγ (x))‖|

‖(ψγ (x))‖‖(ψγ (y))‖
�

∣∣∥∥(
f (xγ )ψγ (x)

)∥∥∥∥(
ψγ (y)

)∥∥ − ∥∥(
f (xγ )ψγ (y)

)∥∥∥∥(
ψγ (x)

)∥∥∣∣
�

∥∥(
ψγ (y)

)∥∥∣∣∥∥(
f (xγ )ψγ (x)

)∥∥ − ∥∥(
f (xγ )ψγ (y)

)∥∥∣∣
+ ∥∥(

f (xγ )ψγ (y)
)∥∥∣∣∥∥(

ψγ (y)
)∥∥ − ∥∥(

ψγ (x)
)∥∥∣∣

� C
∥∥(

f (xγ )
(
ψγ (x) − ψγ (y)

))∥∥ + 2C
∥∥(

ψγ (y) − ψγ (x)
)∥∥

� C2
∥∥(

f (xγ )
(
ψγ (x) − ψγ (y)

))∥∥∞ + 2C2
∥∥(

ψγ (y) − ψγ (x)
)∥∥∞

� 4C2 sup
∣∣ψγ (y) − ψγ (x)

∣∣ � 4C2 M

δ
‖x − y‖ = K‖x − y‖.
γ∈Γ
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Finally, to show that g approximates f , choose an arbitrary x ∈ X. Applying successively the
inequality (3) and the facts that suppψγ ⊂ U(xγ , δ) and f is 1-Lipschitz, we obtain

∣∣g(x) − f (x)
∣∣ =

∣∣∣∣‖(f (xγ )ψγ (x))‖
‖(ψγ (x))‖ − f (x)

‖(ψγ (x))‖
‖(ψγ (x))‖

∣∣∣∣
� ‖((f (xγ ) − f (x))ψγ (x))‖

‖(ψγ (x))‖ � C
∥∥((

f (xγ ) − f (x)
)
ψγ (x)

)∥∥∞

= C sup
γ∈Γ

{∣∣f (xγ ) − f (x)
∣∣ψγ (x)

} = C sup
γ∈Γ

x∈U(xγ ,δ)

{∣∣f (xγ ) − f (x)
∣∣ψγ (x)

}

� C sup
γ∈Γ

x∈U(xγ ,δ)

{‖xγ − x‖} � Cδ = ε.

(ii) ⇒ (i): It is not difficult to construct a point-finite base of the uniform coverings of c0(Γ )

and pull it back onto X via the uniform homeomorphism (see e.g. [14, Proposition 2.3]). So let
V = {Vγ }γ∈Γ be an open point-finite uniform refinement of the covering U(1) of X. (We note
that such refinement can be chosen so that |V| = |Γ | and so we can indeed index it by Γ .) Let
0 < δ � 1 be such that U(δ) refines V. For each γ ∈ Γ we define the function fγ : X → [0,1] by
fγ (x) = min{dist(x,X \ Vγ ), δ}.

Choose an arbitrary 0 < θ < δ
2 . For each γ ∈ Γ , the function fγ is 1-Lipschitz and so,

by (ii), there is a K-Lipschitz function gγ ∈ Ck(X) such that supx∈X |gγ (x) − fγ (x)| � θ . Let
q ∈ Ck(R, [0,1]) be a C-Lipschitz function for some C ∈ R, such that q(t) = 0 for t � θ and
q(t) = 1 for t � δ − θ . Finally, we let φγ (x) = q(gγ (x)) for each γ ∈ Γ . Clearly, each function
φγ belongs to Ck(X, [0,1]) and is M-Lipschitz, where M = CK . Further, for any x ∈ X there is
α ∈ Γ such that U(x, δ) ⊂ Vα , hence fα(x) = δ and consequently φα(x) = 1. As suppφγ ⊂ Vγ

for all γ ∈ Γ and V is point-finite, {φγ }γ∈Γ is a sup-partition of unity subordinated to U(1). �
We note, that the proof could be made considerably shorter by proving (iii) ⇒ (ii) directly

using Theorem G (see the proof of Theorem 7) instead of (i) ⇒ (ii) and (iii) ⇒ (i). However,
the reasons for our strategy of the proof were two: First, we do not need the full generality (and
associated machinery) of Theorem G and second, the proof of (i) ⇒ (ii) shows an interesting
technique for constructing smooth Lipschitz approximations (due to Fry [4]), and in fact shows
the reason for the definition of the notion of sup-partition of unity.

Corollary 4. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz bump
function, k ∈ N ∪ {∞}. Then there is a bi-Lipschitz homeomorphism ϕ : X → c0 such that the
coordinate functions e∗

j  ϕ ∈ Ck(X) for every j ∈ N.

Proof. Fry in [4] has constructed a Ck-smooth M-Lipschitz sup-partition of unity {ψj }∞j=1 on
X that is subordinated to U(1), so Theorem 3 applies. �

We note that this corollary is a Lipschitz counterpart to the separable case of [3, Theo-
rem VIII.3.2, (vi) ⇒ (v)], see also [3, p. 360].
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3. Approximation of mappings

To be able to use Theorem G, we need to “extend” Lipschitz mappings from subsets of c0(Γ ).
To this end we introduce some additional notions.

Let (X,ρ) be a metric space, A ⊂ X. For ε > 0, a mapping rε : X → A such that
ρ(rε(x), x) < ε for each x ∈ A is called an ε-retraction.

A is called a Lipschitz approximate retract (LAR), if there is K > 0 such that for any ε > 0
there is a K-Lipschitz ε-retraction of X into A. A is called a Lipschitz approximate uniform
neighbourhood retract (LAUNR), if there is K > 0 such that for any ε > 0 there is a uniform
open neighbourhood U ⊂ X of A and a K-Lipschitz ε-retraction of U into A.

A metric space is called an absolute Lipschitz approximate uniform neighbourhood retract
(ALAUNR) if it is a LAUNR of every metric space containing it as a subspace.

The following proposition shows how the notion of ALAUNR relates to “approximate exten-
sions” of Lipschitz mappings.

Proposition 5. Let (X,ρ) be a metric space. The following are equivalent:

(i) X is an ALAUNR.
(ii) There is K > 0 such that for each ε > 0 there is δ > 0 such that for any metric space P ,

X ⊂ P , there is U ⊂ P a δ-uniform open neighbourhood of X such that X is a K-Lipschitz
ε-retraction of U (i.e. the Lipschitz constant K and the “sizes” of the uniform neighbour-
hoods do not depend on the metric space which X is a subspace of ).

(iii) There is K > 0 such that for each ε > 0 there is δ > 0 such that for any metric spaces
Q ⊂ P and every L-Lipschitz mapping f : Q → X there is U ⊂ P a δ/L-uniform open
neighbourhood of Q and a KL-Lipschitz mapping g : U → X such that ρ(f (x), g(x)) < ε

for all x ∈ Q.
(iv) For any metric spaces Q ⊂ P and every L-Lipschitz mapping f : Q → X there is K > 0

such that for any ε > 0 there is U ⊂ P a uniform open neighbourhood of Q and a
KL-Lipschitz mapping g : U → X such that ρ(f (x), g(x)) < ε for all x ∈ Q.

(v) There is K > 0 such that for each ε > 0 there is δ > 0 such that for any metric space P ,
X ⊂ P , there is U ⊂ P a δ-uniform open neighbourhood of X such that for any metric
space (Q,σ) and every L-Lipschitz mapping f : X → Q there is a KL-Lipschitz mapping
g : U → Q such that σ(f (x), g(x)) < Lε for all x ∈ X.

(vi) For any metric spaces P and (Q,σ), X ⊂ P , and every L-Lipschitz mapping f : X → Q

there is K > 0 such that for any ε > 0 there is U ⊂ P a uniform open neighbourhood of X

and a KL-Lipschitz mapping g : U → Q such that σ(f (x), g(x)) < ε for all x ∈ X.

Proof. (ii) ⇒ (i), (iii) ⇒ (iv), and (v) ⇒ (vi) are trivial.
(i) ⇒ (iii): Embed X isometrically into �∞(Γ ). There is K > 0 such that X is a K-Lipschitz

approximate neighbourhood retract of �∞(Γ ). Choose ε > 0 and let δ > 0 be such that there
is a K-Lipschitz ε-retraction r : V → X for some δ-uniform open neighbourhood V of X in
�∞(Γ ). Let Q ⊂ P be metric spaces and f : Q → X be an L-Lipschitz mapping. Since �∞(Γ )

is an absolute Lipschitz retract, there is an L-Lipschitz extension h : P → �∞(Γ ) of f : Q →
X ⊂ �∞(Γ ). Put U = h−1(V ). Then U is open in P , and it is a δ/L-uniform neighbourhood
of Q. Indeed, if y ∈ U(z, δ/L) for some z ∈ Q, then h(y) ∈ U(h(z), δ), where h(z) ∈ X; hence
h(y) ∈ V . Finally, put g(x) = r(h(x)) for any x ∈ U . Then ρ(f (x), g(x)) = ρ(f (x), r(h(x))) =
ρ(f (x), r(f (x))) < ε whenever x ∈ Q.
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(iii) ⇒ (ii), (v) ⇒ (ii) (and (iv) ⇒ (i), (vi) ⇒ (i) similarly): Let X be a subspace of a metric
space P , we put Q = X and f = id. For any ε > 0, the K-Lipschitz mapping g is the desired
retraction rε .

(ii) ⇒ (v): Let ε > 0. Find δ > 0 from (ii). Let X ⊂ P and r : U → X be the K-Lipschitz ε-
retraction from some δ-uniform neighbourhood U ⊂ P of X. Put g = f  r . Then
σ(f (x), g(x)) = σ(f (x), f (r(x))) � Lρ(x, r(x)) < Lε for any x ∈ X. �
Corollary 6. Let (X,ρ) be an ALAUNR.

(a) If (Z,σ ) is bi-Lipschitz homeomorphic to X, then Z is an ALAUNR.
(b) If Z is a LAUNR of X, then Z is an ALAUNR.

Proof. (a) Let ϕ : Z → X be a bi-Lipschitz homeomorphism and A,B > 0 be such that
Aσ(x, y) � ρ(ϕ(x),ϕ(y)) � Bσ(x, y). We show that (iv) of Proposition 5 holds. Let Q ⊂ P

be metric spaces and f : Q → Z an L-Lipschitz mapping. Let f̃ : Q → X be defined as
f̃ = ϕ  f and let K0 be the constant in Proposition 5(iv) for f̃ . Put K = K0B/A. Choose
any ε > 0. There is a uniform open neighbourhood U ⊂ P of Q and a K0BL-Lipschitz
mapping g̃ : U → X such that ρ(f̃ (x), g̃(x)) < Aε for all x ∈ Q. Then g : U → Z,
g = ϕ−1  g̃ is a K0BL/A-Lipschitz mapping such that σ(f (x), g(x)) = σ(f (x),ϕ−1(g̃(x))) =
σ(ϕ−1(f̃ (x)), ϕ−1(g̃(x))) � (1/A)ρ(f̃ (x), g̃(x)) < Aε/A = ε whenever x ∈ Q.

(b) Let K0 be the Lipschitz constant of the ε-retractions into X (as X is ALAUNR) and
K1 be the Lipschitz constant of the ε-retractions from U ⊂ X into Z. We show that (iv) of
Proposition 5 holds. Let Q ⊂ P be metric spaces and f : Q → Z ⊂ X an L-Lipschitz map-
ping. Put K = K1K0. Choose any ε > 0. There is a δ-uniform open neighbourhood V ⊂ X of
Z and a K1-Lipschitz (ε/2)-retraction r : V → Z. Further, there is an η-uniform open neigh-
bourhood W ⊂ P of Q and a K0L-Lipschitz mapping h : W → X such that ρ(f (x),h(x)) <

min{ε/(2K1), δ/2} for all x ∈ Q.
Let U = h−1(V ). Then U ⊂ W is open in W and hence in P , and it is a uniform neighbour-

hood of Q. Indeed, let ζ = min{δ/(2K0L),η}. If y ∈ U(z, ζ ) for some z ∈ Q, then y ∈ W and
so h(y) ∈ U(h(z), δ/2). From this we obtain h(y) ∈ U(f (z), δ), and since f (z) ∈ Z, it follows
that h(y) ∈ V .

Finally, put g(x) = r(h(x)) for any x ∈ U . Then the mapping g : U → Z is a K1K0L-
Lipschitz mapping such that ρ(f (x), g(x)) = ρ(f (x), r(h(x))) � ρ(f (x), r(f (x))) +
ρ(r(f (x)), r(h(x))) < ε/2 + K1ρ(f (x),h(x)) < ε whenever x ∈ Q. �

Finally we can prove one of our main approximation theorems.

Theorem 7. Let Y be a Banach space, k ∈ N ∪ {∞}, and X be a normed linear space such that
there is a set Γ and a bi-Lipschitz homeomorphism ϕ : X → c0(Γ ) such that the coordinate
functions e∗

γ  ϕ ∈ Ck(X) for every γ ∈ Γ . Assume further that X or Y is an ALAUNR. There is
a constant C ∈ R such that if f : X → Y is L-Lipschitz and ε > 0, then there is a CL-Lipschitz
mapping g ∈ Ck(X,Y ) such that supx∈X ‖f (x) − g(x)‖ � ε.

Moreover, if C1,C2 ∈ R are such that ϕ is C1-Lipschitz and ϕ−1 is C2-Lipschitz, and if K is
the Lipschitz constant of the ALAUNR, then C = C1C2K .

Proof. We define f̃ : ϕ(X) → Y by f̃ (z) = f (ϕ−1(z)) for any z ∈ ϕ(X). The mapping f̃ is
C2L-Lipschitz. If Y is a K-Lipschitz ALAUNR, then by Proposition 5(iii) there is a uniform open
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neighbourhood U of ϕ(X) in c0(Γ ) and a mapping f̂ : U → Y such that f̂ is KC2L-Lipschitz
and ‖f̂ (z) − f̃ (z)‖ < ε

2 for each z ∈ ϕ(X). In case that X is a K-Lipschitz ALAUNR, we
come to the same conclusion by using Proposition 5(iii) to a mapping ϕ−1 to obtain a uniform
open neighbourhood U of ϕ(X) in c0(Γ ) and a KC2 Lipschitz mapping q : U → X such that
‖q(z) − ϕ−1(z)‖ < ε

2L
for all z ∈ ϕ(X), and then putting f̂ = f  q . (Using Corollary 6 and

Proposition 5(v) to f̃ instead, we would arrive to a worse Lipschitz constant KC1C
2
2L.)

By Theorem G there is a mapping ĝ ∈ C∞(c0(Γ ),Y ) locally dependent on finitely many co-
ordinates and such that it is C2KL-Lipschitz on ϕ(X) and ‖ĝ(z)− f̂ (z)‖ � ε

2 for all z ∈ ϕ(X). We
define the mapping g : X → Y by g = ĝ  ϕ. Similarly as in the proof of Theorem 3, (iii) ⇒ (i),
we obtain that g ∈ Ck(X,Y ). Clearly, g is C1C2KL-Lipschitz. To see that g approximates f ,
choose any x ∈ X. Then

∥∥g(x) − f (x)
∥∥ = ∥∥ĝ

(
ϕ(x)

) − f
(
ϕ−1(ϕ(x)

))∥∥ = ∥∥ĝ
(
ϕ(x)

) − f̃
(
ϕ(x)

)∥∥
�

∥∥ĝ
(
ϕ(x)

) − f̂
(
ϕ(x)

)∥∥ + ∥∥f̂
(
ϕ(x)

) − f̃
(
ϕ(x)

)∥∥ <
ε

2
+ ε

2
= ε. �

We note that the notion of ALAUNR is necessary for our approach to Theorem 7 (at least in the
case of the source space X): For any Banach space Y and any Lipschitz mapping f : ϕ(X) → Y

we need to find a Lipschitz “approximate extension” to a uniform neighbourhood U of ϕ(X).
Now, consider Y = X and a mapping ϕ−1 : ϕ(X) → X, find an “approximate extension”
q : U → X and put r = ϕ  q . Then r is a Lipschitz ε-retraction of U into ϕ(X).

Let V be a topological space, let v0 ∈ V . By B0(V ) we denote the space of all bounded real-
valued functions f on V for which f (v) → 0 whenever v → v0, considered with the supremum
norm. Let P be a metric space, by Cu(P ) we denote the space of all bounded, uniformly con-
tinuous, real-valued functions on P with the supremum norm. By the result of Lindenstrauss
[12, Theorem 6] (see also [1]), both B0(V ) and Cu(P ) are absolute Lipschitz retracts.

Now using Corollary 4 and Theorem 7 we obtain the following:

Corollary 8. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz bump
function, k ∈ N ∪ {∞}. Let Y be a Banach space. If at least one of the spaces X or Y is equal
to either B0(V ) for some topological space V , or Cu(P ) for some metric space P , then there
is a constant C ∈ R such that for any L-Lipschitz mapping f : X → Y and any ε > 0 there is a
CL-Lipschitz mapping g ∈ Ck(X,Y ) for which supx∈X ‖f (x) − g(x)‖ � ε.

The above approach can be modified to deal with uniformly continuous mappings. However,
we must be somewhat careful in the formulation of the result (notice the necessity of a sub-
additive modulus of the embedding in Theorem 9). We skip the details, as the proofs are almost
identical to the ones already given.

A modulus is a non-decreasing function ω : [0,+∞) → [0,+∞) continuous at 0 such that
ω(0) = 0. The set of all moduli will be denoted by M. The subset of M of all moduli that are
sub-additive will be denoted by Ms ⊂ M. A modulus of continuity of a mapping f is denoted
by ωf .

Theorem 9. Let Y be a Banach space, k ∈ N ∪ {∞}, and X be a normed linear space such
that there is a set Γ and a uniform homeomorphism ϕ : X → c0(Γ ) such that ωϕ−1 � ω1 ∈ Ms

and the coordinate functions e∗  ϕ ∈ Ck(X) for every γ ∈ Γ . Assume further that X or Y is
γ
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an absolute uniform approximate uniform neighbourhood retract. If f : X → Y is uniformly
continuous and ε > 0, then there is a function ω ∈ M and a mapping g ∈ Ck(X,Y ) such that
ωg � ω and supx∈X ‖f (x) − g(x)‖ � ε.

Moreover, if X is AUAUNR with modulus ω0, then ω = ωf  ω0  ω1  ωϕ . If Y is AUAUNR
with modulus ω0, then ω = ω0  ωf  ω1  ωϕ .

By the result of Lindenstrauss [12, Theorem 8] (see also [1]), super-reflexive Banach spaces
are absolute uniform uniform (sic) neighbourhood retracts. Hence, using Corollary 4 and Theo-
rem 9 we obtain the following:

Corollary 10. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz
bump function, k ∈ N ∪ {∞}. Let Y be a Banach space. If X or Y is a super-reflexive Ba-
nach space, then there is a constant C ∈ R and a modulus ω0 ∈ M such that for any uniformly
continuous mapping f : X → Y and any ε > 0 there is a mapping g ∈ Ck(X,Y ) for which
supx∈X ‖f (x) − g(x)‖ � ε and ωg(δ) � ωf (ω0(Cδ)) (if X is super-reflexive) or ωg(δ) �
ω0(ωf (Cδ)) (if Y is super-reflexive) for δ ∈ [0,+∞).

4. Smooth Lipschitz partitions of unity

Recall that a (locally finite) partition of unity on a topological space X is a collection {ψα}α∈Λ

of functions on X if

• ψα : X → [0,1] for all α ∈ Λ,
• ∑

α∈Λ ψα(x) = 1 for each x ∈ X,
• for each x ∈ X there is a neighbourhood U ⊂ X of x such that the set {α ∈ Λ;

suppψα ∩ U �= ∅} is finite.

Let U be a covering of X. We say that a partition of unity {ψα}α∈Λ is subordinated to U if
{suppψα}α∈Λ refines U.

A family of subsets of a topological space is called discrete if for each point x ∈ X there is a
neighbourhood of x that meets at most one member of this family. We say that a partition of unity
{ψα}α∈Λ is σ -discrete if the family {suppψα}α∈Λ is σ -discrete, that is it can be decomposed into
countably many discrete families.

First we need some finer information about refinements of open coverings.

Lemma 11. (See M.E. Rudin [15].) Let P be a metric space and U = {Uα}α∈Λ be an open
covering of P . Then there are open refinements {Vnα}n∈N, α∈Λ, {Wnα}n∈N, α∈Λ of U that satisfy
the following:

• Vnα ⊂ Wnα ⊂ Uα for all n ∈ N, α ∈ Λ,
• dist(Vnα,P \ Wnα) � 2−n for all n ∈ N, α ∈ Λ,
• dist(Wnα,Wnβ) � 2−n for any n ∈ N and α,β ∈ Λ, α �= β ,
• for each x ∈ P there is an open ball Ux ∈ P with centre x and a number nx ∈ N such that

(i) if i > nx , then Ux ∩ Wiα = ∅ for any α ∈ Λ,
(ii) if i � nx , then Ux ∩ Wiα �= ∅ for at most one α ∈ Λ.

Using some refinement of the ideas in [9] we can prove the following key lemma:
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Lemma 12. Let X be a normed linear space and k ∈ N ∪ {∞}. Suppose that there is an L ∈ R

such that for any V ⊂ X bounded there is an L-Lipschitz function ϕ ∈ Ck(X, [0,1]) satisfying
V ⊂ ϕ−1({1}) and ϕ(x) = 0 whenever dist(x,V ) � 1. Let Ω ⊂ X be open. Then for any open
covering U of Ω there is a Lipschitz and Ck-smooth σ -discrete partition of unity on Ω subordi-
nated to U.

Proof. Without loss of generality we may assume that all the sets in U = {Uα}α∈Λ are bounded,
Uα ⊂ Ω for each α ∈ Λ, and L � 1. By Lemma 11 there are open refinements {Vnα}n∈N, α∈Λ,
{Wnα}n∈N, α∈Λ of U such that Vnα ⊂ Wnα ⊂ Uα , dist(Vnα,Ω \ Wnα) � 2−n, dist(Wnα,Wnβ) �
2−n for α �= β , the family {Wnα}α∈Λ is discrete in Ω for all n ∈ N, and the family {Wnα}n∈N, α∈Λ

is locally finite in Ω . By the assumption (using a scaling argument) for each n ∈ N, α ∈ Λ

there is an Ln-Lipschitz function ϕ̃nα ∈ Ck(X, [0,1]) satisfying Vnα ⊂ ϕ̃−1
nα ({1}) and ϕ̃nα(x) = 0

whenever dist(x,Vnα) � 2−n, where Ln = 2nL. Put ϕnα = ϕ̃nα�Ω . Then ϕnα ∈ Ck(Ω, [0,1]),
Vnα ⊂ ϕ−1

nα ({1}), and suppϕnα ⊂ Wnα for all n ∈ N, α ∈ Λ. Moreover, each function ϕnα is
Ln-Lipschitz.

For each n ∈ N define ϕn : Ω → [0,1] by ϕn(x) = ϕnα(x) whenever there is α ∈ Λ such that
x ∈ Wnα , ϕn(x) = 0 otherwise. Notice that by the discreteness of {Wnα}α∈Λ the functions ϕn

are well defined and also Ck-smooth. It is easy to check that for each n ∈ N the function ϕn is
Ln-Lipschitz. Indeed, let x, y ∈ Ω and suppose there are α,β ∈ Λ, α �= β such that x ∈ Wnα ,
y ∈ Wnβ . Then ‖x − y‖ � 2−n and hence |ϕn(x) − ϕn(y)| � 1 � 2n‖x − y‖ � Ln‖x − y‖. The
other cases follow from the fact that ϕnα are Ln-Lipschitz.

Now for n ∈ N let ψn = ϕn

∏n−1
j=1(1 − ϕj ). Then ψn ∈ Ck(Ω, [0,1]) and each function ψn is

Lipschitz. Further, {ψn}n∈N is a (locally finite) partition of unity on Ω . Indeed, for any x ∈ Ω

there is m ∈ N and β ∈ Λ such that x ∈ Vmβ . Choose any y ∈ Vmβ . Then ϕm(y) = ϕmβ(y) = 1
and hence ψn(y) = 0 for n > m. Since

(1 − ϕ1)(1 − ϕ2) · · · (1 − ϕm) = 1 − ψ1 − · · · − ψm,

it follows that
∑∞

n=1 ψn(y) = ∑m
n=1 ψn(y) = 1.

Finally, for n ∈ N and α ∈ Λ let ψnα = χWnα · ψn. Using the fact that suppψn ⊂ suppϕn ⊂⋃
α∈Λ Wnα and the discreteness of {Wnα}α∈Λ it follows that all the functions ψnα are Ck-smooth

and Lipschitz (using similar argument as above), and that
∑

α∈Λ ψnα = ψn. As moreover
suppψnα ⊂ Wnα , we can conclude that {ψnα}n∈N, α∈Λ is a locally finite, σ -discrete Lipschitz
Ck-smooth partition of unity on Ω subordinated to U. �

Notice that to satisfy the requirements of Lemma 12 it suffices that we are able to approximate
the distance functions by smooth Lipschitz functions. Namely we obtain the following corollary:

Corollary 13. Let X, Y be normed linear spaces and k ∈ N ∪ {∞}. Suppose that there is a
constant C ∈ R such that for each 1-Lipschitz mapping f : 2UX → Y and ε > 0 there is a
C-Lipschitz mapping g ∈ Ck(UX,Y ) satisfying supx∈UX

‖f (x)−g(x)‖ � ε. Let Ω ⊂ X be open.
Then for any open covering U of Ω there is a Lipschitz and Ck-smooth σ -discrete partition of
unity on Ω subordinated to U.

Proof. It is sufficient to notice that approximation of mappings into Y gives us also approxima-
tions of functions. Indeed, if f : 2UX → R is 1-Lipschitz, then choose some y ∈ SY and consider
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the mapping f̃ : 2UX → Y , f̃ (x) = f (x) · y. Let g̃ ∈ Ck(UX,Y ) be an approximation of f̃ pro-
vided by our assumption and F ∈ Y ∗ be a Hahn–Banach extension of the norm-one functional
ty 
→ t defined on span{y}. Then g = F  g̃ is the desired approximation of the function f . �
5. Approximation of Lipschitz mappings revisited

In subsequent proofs we use the following convention: If X, Y are normed linear spaces,
F ∈ X∗, and y ∈ Y , we denote by y · F or yF the bounded linear operator yF ∈ B(X,Y ) given
by (yF )h = (Fh) · y for h ∈ X. Let g : X → Y , ψ : X → R, and both g and ψ be Fréchet
differentiable at x ∈ X. Then the mapping gψ = g · ψ is Fréchet differentiable at x and using
the convention above, the formula for the derivative of the product can be written as (gψ)′(x) =
ψ(x)g′(x) + g(x)ψ ′(x).

Armed with the Lipschitz partitions of unity constructed in the previous section we can ex-
tend our results a little bit further. First we prove a result that allows us to pass from uniform
approximations to fine approximations.

Theorem 14. Let X, Y be normed linear spaces and k ∈ N∪{∞}. Suppose that there is a constant
C � 1 such that for each L-Lipschitz mapping f : 2UX → Y and ε > 0 there is a CL-Lipschitz
mapping g ∈ Ck(UX,Y ) satisfying supx∈UX

‖f (x) − g(x)‖ � ε. Let Ω ⊂ X be open. Then for
any L-Lipschitz mapping f : Ω → Y , any continuous function ε : Ω → (0,+∞), and any η > 1
there is an ηCL-Lipschitz mapping g ∈ Ck(Ω,Y ) such that ‖f (x)−g(x)‖ < ε(x) for all x ∈ Ω .

Proof. First notice that from approximations on UX by translating and scaling we immedi-
ately obtain approximations on any open ball in X. For each x ∈ Ω find r(x) > 0 such that
U(x,4r(x)) ⊂ Ω and

ε(y) >
ε(x)

3
for each y ∈ U

(
x, r(x)

)
. (4)

By Corollary 13 there is a σ -discrete Lipschitz Ck-smooth partition of unity on Ω subordinated
to {U(x, r(x)); x ∈ Ω}. We may assume that the partition of unity is of the form {ψnα}n∈N, α∈Λ,
where for each n ∈ N the family {suppψnα}α∈Λ is discrete in Ω . For each n ∈ N and α ∈ Λ let
Unα = U(xnα, r(xnα)) be such that suppψnα ⊂ Unα . Let Lnα be the Lipschitz constant of ψnα ,
and without loss of generality assume that Lnα � 1. Further, denote Vnα = U(xnα,2r(xnα)).

For each n ∈ N and α ∈ Λ we approximate f on Vnα by CL-Lipschitz mapping
gnα ∈ Ck(Vnα,Y ) such that

∥∥f (x) − gnα(x)
∥∥ � min

{
(η − 1)CL

2nLnα

,
ε(xnα)

3

}
< ε(x) for each x ∈ Unα . (5)

(The second inequality follows from (4).) Define the mapping g̃nα : Ω → Y by g̃nα(x) = gnα(x)

for x ∈ Vnα , g̃nα(x) = 0 otherwise.
Finally, we define the mapping g : Ω → Y by

g(x) =
∑

g̃nα(x)ψnα(x).
n∈N, α∈Λ
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Since suppψnα ⊂ Unα , gnα ∈ Ck(Vnα,Y ), and the sum is locally finite, the mapping is well
defined and moreover g ∈ Ck(Ω,Y ).

Choose x ∈ Ω and let us compute how far g(x) is from f (x):

∥∥f (x) − g(x)
∥∥ =

∥∥∥∥
∑

n∈N, α∈Λ

(
f (x) − g̃nα(x)

)
ψnα(x)

∥∥∥∥
�

∑
n∈N

α∈Λ: x∈Unα

∥∥f (x) − gnα(x)
∥∥ψnα(x)

< ε(x)
∑
n∈N

α∈Λ: x∈Unα

ψnα(x) = ε(x),

where the last inequality follows from (5).
To estimate the derivative of g at some fixed x ∈ Ω , notice that by the discreteness of

{suppψnα}α∈Λ, for each n ∈ N there is at most one α ∈ Λ such that ψ ′
nα(x) �= 0. Put M =

{n ∈ N; ∃α ∈ Λ: ψ ′
nα(x) �= 0}. Then there is a mapping β : M → Λ such that for each n ∈ M ,

ψ ′
nα(x) = 0 whenever α �= β(n) and moreover x ∈ Unβ(n). (Notice that if ψ ′

nα(x) �= 0 then nec-
essarily x ∈ Unα .) Further, since

∑
ψnα = 1, it follows that

∑
ψ ′

nα = 0. Hence,

∥∥g′(x)
∥∥ =

∥∥∥∥
∑

n∈N, α∈Λ

(g̃nαψnα)′(x)

∥∥∥∥ =
∥∥∥∥

∑
n∈N

α∈Λ: x∈Unα

(g̃nαψnα)′(x)

∥∥∥∥

=
∥∥∥∥

∑
n∈N

α∈Λ: x∈Unα

ψnα(x)g′
nα(x) +

∑
n∈N

α∈Λ: x∈Unα

gnα(x)ψ ′
nα(x)

∥∥∥∥

=
∥∥∥∥

∑
n∈N

α∈Λ: x∈Unα

ψnα(x)g′
nα(x) +

∑
n∈N

α∈Λ: x∈Unα

(
gnα(x) − f (x)

)
ψ ′

nα(x)

∥∥∥∥

�
∑
n∈N

α∈Λ: x∈Unα

∥∥g′
nα(x)

∥∥ψnα(x) +
∑
n∈M

∥∥gnβ(n)(x) − f (x)
∥∥∥∥ψ ′

nβ(n)(x)
∥∥

�
∑
n∈N

α∈Λ: x∈Unα

CLψnα(x) +
∑
n∈M

∥∥gnβ(n)(x) − f (x)
∥∥Lnβ(n)

� CL +
∑
n∈M

(η − 1)CL

2nLnβ(n)

Lnβ(n) � ηCL,

where the last but one inequality follows from (5).
To finish the proof we show that g is ηCL-Lipschitz on Ω . Without loss of generality we

assume that ε(x) � (ηC − 1)Ldist(x,X \ Ω) for every x ∈ Ω . Now fix x, y ∈ Ω . If the
line segment l with end points x and y lies in Ω , then the standard argument yields that
‖g(x) − g(y)‖ � ηCL‖x − y‖. Otherwise there is z ∈ l ∩ (X \ Ω). Then
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∥∥g(x) − g(y)
∥∥ �

∥∥g(x) − f (x)
∥∥ + ∥∥f (x) − f (y)

∥∥ + ∥∥f (y) − g(y)
∥∥

< ε(x) + L‖x − y‖ + ε(y)

� (ηC − 1)L‖x − z‖ + L‖x − y‖ + (ηC − 1)L‖y − z‖
= ηCL‖x − y‖. �

Combining Theorem 14 with Theorem H and Corollary 8 we obtain the following corollary.

Corollary 15. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz
bump function, k ∈ N ∪ {∞}. Let Y be a Banach space. Suppose further that one of the following
conditions is satisfied:

• X is a Banach space with an unconditional Schauder basis, or
• at least one of the spaces X or Y is equal to B0(V ) for some topological space V , or
• at least one of the spaces X or Y is equal to Cu(P ) for some metric space P .

Then there is a constant C ∈ R such that for any open Ω ⊂ X, any L-Lipschitz mapping
f : Ω → Y and any continuous function ε : Ω → (0,+∞) there is a CL-Lipschitz mapping
g ∈ Ck(Ω,Y ) for which ‖f (x) − g(x)‖ < ε(x) for all x ∈ Ω .

Proof. It suffices to notice that under our assumptions the hypothesis of Theorem 14 is satisfied.
Indeed, since BX is a 2-Lipschitz retract of X, every L-Lipschitz mapping defined on BX can
be extended to a 2L-Lipschitz mapping defined on X. Thus we may apply either Theorem H or
Corollary 8. �

Further, Theorem 14 together with Theorem D gives us the next corollary.

Corollary 16. Let X be a Hilbert space and Ω ⊂ X be an open subset. Then for any L-Lipschitz
function f : Ω → R, any continuous function ε : Ω → (0,+∞), and any η > 1 there is an
ηL-Lipschitz function g ∈ C1(Ω) such that |f (x) − g(x)| < ε(x) for all x ∈ Ω .

6. Approximation of C1-smooth mappings

In this section we extend the result of Moulis (Theorem C) about the relation of Lipschitz
approximation and the approximation of mappings together with its derivatives to non-separable
case.

To refrain from repeating the same argument over and over again in various contexts, we prove
the following proposition, whose statement is necessarily more technically involved. One of the
main ideas is based on the same argument as the proof of Theorem 14.

Proposition 17. Let X, Y be normed linear spaces, k ∈ N ∪ {∞}, and Ω ⊂ X be open. Suppose
that for any open covering U of Ω there is a Lipschitz Ck-smooth σ -discrete partition of unity
on Ω subordinated to U. Suppose further that {Yγ }γ∈Γ is a collection of closed subspaces of
Y such that for each γ ∈ Γ there is a constant Cγ ∈ R such that for any L-Lipschitz mapping
f ∈ C1(2UX,Yγ ) and any ε > 0 there is a Cγ L-Lipschitz mapping g ∈ Ck(UX,Y ) satisfying
supx∈U ‖f (x)−g(x)‖ � ε. Let f ∈ C1(Ω,Y ) be such that it is locally a mapping into some Yγ ,
X
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γ ∈ Γ . Then for any continuous function ε : Ω → (0,+∞) there is g ∈ Ck(Ω,Y ) such that
‖f (x) − g(x)‖ < ε(x) and ‖f ′(x) − g′(x)‖ < ε(x) for all x ∈ Ω .

Proof. First notice that from approximations on UX by translating and scaling we immediately
obtain approximations on any open ball in X. For each x ∈ Ω find r(x) > 0 and γ (x) ∈ Γ such
that U(x,4r(x)) ⊂ Ω , f (U(x,4r(x))) ⊂ Yγ (x),

ε(y) >
ε(x)

3
for each y ∈ U

(
x,4r(x)

)
, (6)

and

∥∥f ′(x) − f ′(y)
∥∥ <

ε(x)

9Cγ(x)

for each y ∈ U
(
x,4r(x)

)
. (7)

By our assumption there is a σ -discrete Lipschitz Ck-smooth partition of unity on Ω sub-
ordinated to {U(x, r(x)); x ∈ Ω}. We may assume that the partition of unity is of the form
{ψnα}n∈N, α∈Λ, where for each n ∈ N the family {suppψnα}α∈Λ is discrete in Ω . For each n ∈ N

and α ∈ Λ let Unα = U(xnα, r(xnα)) be such that suppψnα ⊂ Unα . Let Lnα be the Lipschitz
constant of ψnα . Further, denote Cnα = Cγ(xnα) and Vnα = U(xnα,2r(xnα)). Without loss of
generality assume that Lnα � 1 and Cnα � 1.

For each n ∈ N and α ∈ Λ let us define the mapping fnα : U(xnα,4r(xnα)) → Yγ (xnα) by
fnα(x) = f (x) − f ′(xnα)x. Then, by (7) and (6),

∥∥f ′
nα(x)

∥∥ <
ε(xnα)

9Cnα

<
ε(x)

3Cnα

� ε(x)

3
for each x ∈ U

(
xnα,4r(xnα)

)
. (8)

Further, for each n ∈ N and α ∈ Λ according to our assumption we can approximate fnα on
Vnα by gnα ∈ Ck(Vnα,Y ) such that

∥∥g′
nα(x)

∥∥ � ε(xnα)

9
<

ε(x)

3
for each x ∈ Vnα , (9)

∥∥fnα(x) − gnα(x)
∥∥ � ε(xnα)

9 · 2nLnα

<
ε(x)

3 · 2nLnα

< ε(x) for each x ∈ Vnα . (10)

(The second inequalities follow from (6).) Define the mapping g̃nα : Ω → Y by g̃nα(x) = gnα(x)

for x ∈ Vnα , g̃nα(x) = 0 otherwise.
Finally, we define the mapping g : Ω → Y by

g(x) =
∑

n∈N, α∈Λ

(
g̃nα(x) + f ′(xnα)x

)
ψnα(x).

Since suppψnα ⊂ Unα , gnα ∈ Ck(Vnα,Y ), and the sum is locally finite, the mapping is well
defined and moreover g ∈ Ck(Ω,Y ).
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Choose x ∈ Ω and let us compute how far g(x) is from f (x):

∥∥f (x) − g(x)
∥∥ =

∥∥∥∥
∑

n∈N, α∈Λ

(
f (x) − g̃nα(x) − f ′(xnα)x

)
ψnα(x)

∥∥∥∥

=
∥∥∥∥

∑
n∈N

α∈Λ: x∈Unα

(
fnα(x) − gnα(x)

)
ψnα(x)

∥∥∥∥

�
∑
n∈N

α∈Λ: x∈Unα

∥∥fnα(x) − gnα(x)
∥∥ψnα(x)

< ε(x)
∑
n∈N

α∈Λ: x∈Unα

ψnα(x) = ε(x),

where the last inequality follows from (10).
To estimate the distance between the derivatives at some fixed x ∈ Ω , notice that by the

discreteness of {suppψnα}α∈Λ, for each n ∈ N there is at most one α ∈ Λ such that ψ ′
nα(x) �= 0.

Put M = {n ∈ N; ∃α ∈ Λ: ψ ′
nα(x) �= 0}. Then there is a mapping β : M → Λ such that for each

n ∈ M , ψ ′
nα(x) = 0 whenever α �= β(n) and moreover x ∈ Unβ(n). (Notice that if ψ ′

nα(x) �= 0
then necessarily x ∈ Unα .) Hence,

∥∥f ′(x) − g′(x)
∥∥ = ∥∥(f − g)′(x)

∥∥ =
∥∥∥∥

∑
n∈N, α∈Λ

((
f − g̃nα − f ′(xnα)

)
ψnα

)′
(x)

∥∥∥∥

=
∥∥∥∥

∑
n∈N

α∈Λ: x∈Unα

((
f − gnα − f ′(xnα)

)
ψnα

)′
(x)

∥∥∥∥

=
∥∥∥∥

∑
n∈N

α∈Λ: x∈Unα

(
(fnα − gnα)ψnα

)′
(x)

∥∥∥∥

=
∥∥∥∥

∑
n∈N

α∈Λ: x∈Unα

ψnα(x)(fnα − gnα)′(x)

+
∑
n∈N

α∈Λ: x∈Unα

(
fnα(x) − gnα(x)

)
ψ ′

nα(x)

∥∥∥∥

�
∑
n∈N

α∈Λ: x∈Unα

∥∥f ′
nα(x) − g′

nα(x)
∥∥ψnα(x)

+
∑
n∈M

∥∥fnβ(n)(x) − gnβ(n)(x)
∥∥∥∥ψ ′

nβ(n)(x)
∥∥

�
∑
n∈N

(∥∥f ′
nα(x)

∥∥ + ∥∥g′
nα(x)

∥∥)
ψnα(x)
α∈Λ: x∈Unα
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+
∑
n∈M

∥∥fnβ(n)(x) − gnβ(n)(x)
∥∥Lnβ(n)

<

(
ε(x)

3
+ ε(x)

3

) ∑
n∈N

α∈Λ: x∈Unα

ψnα(x) +
∑
n∈M

ε(x)

3 · 2nLnβ(n)

Lnβ(n) � ε(x),

where the last but one inequality follows from (8), (9) and (10). �
Theorem 18. Let X, Y be normed linear spaces, k ∈ N∪{∞}. Consider the following statements:

(i) There is C ∈ R such that for any L-Lipschitz mapping f : 2UX → Y and any ε > 0 there is
a CL-Lipschitz mapping g ∈ Ck(UX,Y ) such that supx∈UX

‖f (x) − g(x)‖ � ε.
(ii) For any open Ω ⊂ X and any open covering U of Ω there is a Lipschitz Ck-smooth σ -

discrete partition of unity on Ω subordinated to U. There is C ∈ R such that for any
L-Lipschitz mapping f ∈ C1(2UX,Y ) and any ε > 0 there is a CL-Lipschitz mapping
g ∈ Ck(UX,Y ) such that supx∈UX

‖f (x) − g(x)‖ � ε.
(iii) For any open Ω ⊂ X, any mapping f ∈ C1(Ω,Y ), and any continuous function ε : Ω →

(0,+∞) there is g ∈ Ck(Ω,Y ) such that ‖f (x)−g(x)‖ < ε(x) and ‖f ′(x)−g′(x)‖ < ε(x)

for all x ∈ Ω .
(iv) For any open Ω ⊂ X, any L-Lipschitz mapping f ∈ C1(Ω,Y ), any continuous function

ε : Ω → (0,+∞), and any η > 1 there is an ηL-Lipschitz mapping g ∈ Ck(Ω,Y ) such that
‖f (x) − g(x)‖ < ε(x) for all x ∈ Ω .

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof. (i) ⇒ (ii) follows from Corollary 13, (ii) ⇒ (iii) follows from Proposition 17 (consider
the collection of subspaces of Y consisting only of the space Y itself), and for (iii) ⇒ (iv) see the
end of the proof of Theorem 14. �
Corollary 19. Let X be a separable normed linear space that admits a Ck-smooth Lipschitz
bump function, k ∈ N ∪ {∞}. Let Y be a Banach space. Suppose further that one of the following
conditions is satisfied:

• at least one of the spaces X or Y is equal to B0(V ) for some topological space V , or
• at least one of the spaces X or Y is equal to Cu(P ) for some metric space P , or
• X is a Banach space with an unconditional Schauder basis, or
• Y is a Banach space with an unconditional Schauder basis and with a separable dual.

Then for any open Ω ⊂ X, any mapping f ∈ C1(Ω,Y ), and any continuous function ε : Ω →
(0,+∞) there is g ∈ Ck(Ω,Y ) such that ‖f (x)− g(x)‖ < ε(x) and ‖f ′(x)− g′(x)‖ < ε(x) for
all x ∈ Ω .

For the proof we will need the following lemma, the proof of which can be found in
[13, pp. 297–300].

Lemma 20 (Moulis). Let X be a Banach space with an unconditional Schauder basis {ei}∞i=1 that
admits a Ck-smooth Lipschitz bump function. Denote Xn = span{ei}n . Then there is a constant
i=1
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K > 0 such that for any ε > 0 there is a K-Lipschitz mapping ψ ∈ Ck(X,X) such that for each
x ∈ X there is a neighbourhood U of x and n ∈ N such that ψ(U) ⊂ Xn and ‖x − ψ(x)‖ < ε.

Proof of Corollary 19. Suppose that one of the first three conditions is satisfied. Then our corol-
lary follows from Theorem 18. It suffices to notice that under our assumptions the statement (i)
of Theorem 18 holds. Indeed, since BX is a 2-Lipschitz retract of X, every L-Lipschitz mapping
defined on BX can be extended to a 2L-Lipschitz mapping defined on X. Thus we may apply
either Corollary 8 or Theorem H.

It remains to prove the case that Y has an unconditional Schauder basis {ei} and has a sep-
arable dual (which means that Y admits a C1-smooth Lipschitz bump function). We will show
that statement (ii) in Theorem 18 is satisfied, which will prove our claim. Since X is separable,
it is not overly difficult to construct the required partitions of unity directly. Or, we may use
Theorem F together with Lemma 12.

To prove the second assertion in statement (ii) of Theorem 18 let K be the constant from
Lemma 20 used on the space Y . Put C = 2K . Let f ∈ C1(UX,Y ) be L-Lipschitz and ε > 0.
Denote Yn = span{ei}ni=1. By Lemma 20 there is a K-Lipschitz mapping ψ ∈ C1(Y,Y ) which
locally maps into some Yn and such that ‖y − ψ(y)‖ < ε/2 for every y ∈ Y . Put h = ψ  f .
Then h ∈ C1(UX,Y ) is a KL-Lipschitz mapping which locally maps into some Yn and such that
supx∈UX

‖f (x) − h(x)‖ � ε/2. Since the spaces Yn, n ∈ N, are finite-dimensional, by Corol-
lary 8 there are constants Cn such that any M-Lipschitz mapping from UX into Yn can be
approximated by CnM-Lipschitz Ck-smooth mapping. Therefore we can use Proposition 17 to
find a CL-Lipschitz mapping g ∈ Ck(UX,Y ) such that supx∈UX

‖g(x) − h(x)‖ � ε/2. Because
supx∈UX

‖f (x)−g(x)‖ � ε, we have just shown that the statement (ii) in Theorem 18 holds. �
We remind that in Corollary 19 the case when X has an unconditional Schauder basis was

(basically) proven already by Moulis (Theorem A).
Finally, combining Theorem G and Theorem 18 we obtain the following corollary.

Corollary 21. Let Γ be an arbitrary set, Y be a Banach space, Ω ⊂ c0(Γ ) open, f ∈
C1(Ω,Y ) and ε : Ω → (0,+∞) a continuous function. Then there is g ∈ C∞(Ω,Y ) such that
‖f (x) − g(x)‖ < ε(x) and ‖f ′(x) − g′(x)‖ < ε(x) for all x ∈ Ω .
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