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q-analogue of the linear dual R[G]∗ of the coordinate algebra of a
corresponding linear algebraic group G .
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Introduction

Beilinson, Lusztig, and MacPherson [2] constructed a quantized enveloping algebra U correspond-
ing to the general linear Lie algebra gln within the inverse limit of an inverse system constructed
from q-Schur algebras. The modified form U̇ of U was also obtained within the inverse limit. Using
a slightly different inverse system, consisting of all the generalized q-Schur algebras connected to a
given root datum, we construct both U and U̇ as subalgebras of the resulting inverse limit. This ap-
proach, which is analogous to the inverse limit construction of profinite groups, works uniformly for
any root datum of finite type, not just for type A. In particular, this clarifies the relation between
U and U̇. All of this is for the generic case, i.e., working over the field Q(v) of rational functions
in v , v an indeterminate. However, the construction is compatible with the so-called “restricted” in-
tegral form of Lusztig, and (in a certain sense made precise in Section 5) is also compatible with
specializations defined in terms of the restricted integral form.

Generalized Schur algebras were introduced by Donkin [3], motivated by [7]. In [5] a uniform
system of generators and relations was found for them and their q-analogues (this was known earlier
[4] in type A) and it was proved that the generalized q-Schur algebras are quasihereditary in any
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specialization to a field. The generators and relations of [5] allow a definition of the generalized q-
Schur algebras independent of the theory of quantized enveloping algebras; they also lead directly to
the inverse system considered here.

Similar inverse systems appeared in [8] (in a more general context) and in [10] (in the classical
case for types A–D). It turns out that the inverse limit we construct is a “procellular” completion
of U̇, in the sense of [8]. In particular, its elements may be described as formal, possibly infinite,
linear combinations of the canonical basis of U̇.

1. Notation

We fix our notational conventions, which are similar to those of [11].

1.1. Cartan datum. Let a Cartan datum be given. By definition, a Cartan datum consists of a finite set
I and a symmetric bilinear form ( , ) on the free abelian group Z[I] taking values in Z, such that:

(a) (i, i) ∈ {2,4,6, . . .} for any i in I .
(b) 2(i, j)/(i, i) ∈ {0,−1,−2, . . .} for any i �= j in I .

1.2. Root datum. A root datum associated to the given Cartan datum consists of two finitely generated
free abelian groups X , Y and a perfect2 bilinear pairing 〈 , 〉 : Y × X → Z along with embeddings
I → Y (i �→ hi) and I → X (i �→ αi ) such that

〈hi,α j〉 = 2
(i, j)

(i, i)

for all i, j in I . The image of the embedding I → Y is the set {hi} of simple coroots and the image of
the embedding I → X is the set {αi} of simple roots.

1.3. The assumptions on the root datum imply that:

(a) 〈hi,αi〉 = 2 for all i ∈ I;
(b) 〈hi,α j〉 ∈ {0,−1,−2, . . .} for all i �= j ∈ I .

In other words, the matrix (〈hi,α j〉) indexed by I × I is a symmetrizable generalized Cartan matrix.
For each i ∈ I we set di = (i, i)/2. Then the matrix (di〈hi,α j〉) indexed by I × I is symmetric.

1.4. Let v be an indeterminate. Set vi = vdi for each i ∈ I . More generally, given any rational function
P ∈ Q(v) we let Pi denote the rational function obtained from P by replacing v by vi .

Set A = Z[v, v−1]. For a ∈ Z, t ∈ N we set

[
a

t

]
=

t∏
s=1

va−s+1 − v−a+s−1

vs − v−s
.

A priori this is an element of Q(v), but actually it lies in A (see [11, §1.3.1(d)]). We set

[n] =
[

n

1

]
= vn − v−n

v − v−1
(n ∈ Z)

and

[n]! = [1] · · · [n − 1][n] (n ∈ N).

2 A ‘perfect’ pairing is one for which the natural maps X → HomZ(Y ,Z) (given by x → 〈−, x〉) and Y → HomZ(X,Z) (given
by y → 〈y,−〉) are isomorphisms.
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Then it follows that

[
a

t

]
= [a]!

[t]![a − t]! for all 0 � t � a.

1.5. The Cartan datum is of finite type if the symmetric matrix ((i, j)) indexed by I × I is positive
definite. This is equivalent to the requirement that the Weyl group associated to the Cartan datum is
a finite group.

A root datum is X-regular (resp., Y -regular) if {αi} (resp., {hi}) is linearly independent in X
(resp., Y ). If the underlying Cartan datum is of finite type then the root datum is automatically both
X-regular and Y -regular.

In case a root datum is X-regular, there is a partial order on X given by: λ � λ′ if and only if
λ′ − λ ∈ ∑

i Nαi . In case a root datum is Y -regular, we define

X+ = {
λ ∈ X

∣∣ 〈hi, λ〉 ∈ N, for all i ∈ I
}
,

the set of dominant weights.

1.6. Corresponding to a given root datum is a quantized enveloping algebra U over Q(v). According to
[11, Corollary 33.1.5], the algebra U is the associative algebra with 1 over Q(v) given by the generators
Ei , E−i (i ∈ I), Kh (h ∈ Y ) subject to the defining relations

(a) Kh Kh′ = Kh+h′ ; K0 = 1;

(b) Kh E±i = v±〈h,αi〉E±i Kh;

(c) Ei E− j − E− j Ei = δi j
K̃ i − K̃−i

vi − v−1
i

where K̃±i := K±dihi ;

(d)
∑

s+s′=1−〈hi ,α j〉
(−1)s′

[
1 − 〈hi,α j〉

s

]
i
Es

±i E± j Es′
±i = 0 (i �= j)

holding for any i, j ∈ I , and any h,h′ ∈ Y .
We define, for an element E , the quantized divided power E(m) of E by

E(m) := Em

[m]!i
for any m ∈ N. With this convention, one may rewrite relation (d) in the equivalent form

(d′)
∑

s+s′=1−〈hi ,α j〉
(−1)s′ E(s)

±i E± j E(s′)
±i = 0 (i �= j).

As in [11, §3.4], let C be the category whose objects are U-modules M admitting a weight space
decomposition M = ⊕

λ∈X Mλ (as Q(v)-vector spaces) where the weight space Mλ is given by

Mλ = {
m ∈ M

∣∣ Khm = v〈h,λ〉m, all h ∈ Y
}
.

The morphisms in C are U-module homomorphisms.
From now on we assume the root datum is of finite type. Thus it is both X- and Y -regular. We

denote by �(λ) the simple object (see [11, Corollary 6.2.3, Proposition 3.5.6]) of C of highest weight
λ ∈ X+ , for any λ ∈ X+ .
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2. The algebra ̂U

Fix a root datum (X, {αi}, Y , {hi}) of finite type. We define the finite dimensional algebras S(π) (the
generalized q-Schur algebras) and construct the algebra Û as an inverse limit.

2.1. A nonempty subset π of X+ is saturated if λ � μ for λ ∈ X+ , μ ∈ π implies λ ∈ π .
Saturated subsets of X+ exist in abundance. For instance, given any μ ∈ X+ , the set X+[� μ] =

{λ ∈ X+ | λ � μ} is saturated. In general, a saturated subset of X+ is a union of such subsets.

2.2. The algebra S(π).
Given a finite saturated set π ⊂ X+ we define an algebra S(π) to be the associative Q(v)-algebra

with 1 given by the generators

Ei, E−i (i ∈ I), 1λ (λ ∈ W π)

and the relations

(a) 1λ1λ′ = δλ,λ′ 1λ,
∑

λ∈W π

1λ = 1;

(b) E±i1λ =
{

1λ±αi E±i if λ ± αi ∈ W π,

0 otherwise;

(b′) 1λE±i =
{

E±i1λ∓αi if λ ∓ αi ∈ W π,

0 otherwise;

(c) Ei E− j − E− j Ei = δi j

∑
λ∈W π

[〈hi, λ〉]i1λ;

(d)
∑

s+s′=1−〈hi ,α j〉
(−1)s′ E(s)

±i E± j E(s′)
±i = 0 (i �= j)

for all i, j ∈ I and all λ,λ′ ∈ W π . In relation (d), E(s)
±i is the quantized divided power E(s)

±i = Es
±i/([s]!i).

The algebra S(π) is known as a generalized q-Schur algebra (see [5]). It is a consequence of the
defining relations that the generators E±i are nilpotent elements of S(π); it follows that S(π) is finite
dimensional over Q(v).

For any π we define elements Kh ∈ S(π) for each h ∈ Y by the formula

Kh =
∑

λ∈W π

v〈h,λ〉1λ.

This depends on π as well as h; we rely on the context to make clear in which S(π) a given Kh is to
be interpreted. We note that the identities Kh Kh′ = Kh+h′ , K0 = 1 and K−h = K −1

h hold in S(π) for all
h,h′ ∈ Y .

2.3. It will be convenient for ease of notation to extend the meaning of the symbols 1λ to all λ ∈ X
by making the convention 1λ = 0 in S(π) for any λ /∈ W π . With this convention S(π) becomes the
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associative Q(v)-algebra given by generators

Ei, E−i (i ∈ I), 1λ (λ ∈ W π)

with the relations

(a) 1λ1λ′ = δλ,λ′ 1λ ,
∑

λ∈X 1λ = 1;

(b) E±i1λ = 1λ±αi E±i ;

(c) Ei E− j − E− j Ei = δi j
∑

λ∈X [〈hi, λ〉]i1λ;

(d)
∑

s+s′=1−〈hi ,α j〉(−1)s′ E(s)
±i E± j E(s′)

±i = 0 (i �= j)

for all i, j ∈ I and all λ,λ′ ∈ X . Note that the sums in (a), (c) are finite since by definition all but
finitely many 1λ are zero in S(π).

2.4. The form of the presentation of S(π) given in 2.3 makes it clear that for any finite saturated
subsets π,π ′ of X+ with π ⊂ π ′ we have a surjective algebra map

fπ,π ′ : S(π ′) → S(π)

sending E±i → E±i , 1λ → 1λ (any i ∈ I , λ ∈ W π ′). Since fπ,π = 1 and for any finite saturated subsets
π,π ′,π ′′ of X+ with π ⊂ π ′ ⊂ π ′′ we have fπ,π ′ fπ ′,π ′′ = fπ,π ′′ , the collection

{
S(π); fπ,π ′

}
forms an inverse system of algebras. We denote by Û = lim←− S(π) the inverse limit of this inverse
system, taken over the collection of all finite saturated subsets of X+ . This is isomorphic with

{
(aπ )π ∈

∏
π

S(π)

∣∣∣ aπ = fπ,π ′(aπ ′ ), for any π ⊂ π ′
}

with addition and multiplication of such sequences defined componentwise. We set

1̂λ := (1λ)π ∈ Û

and note that because of the convention introduced in 2.3 a number of the components of this se-
quence may be zero. However, only finitely many components are zero, so the sequence is eventually
constant. We similarly set

Ê±i := (E±i)π ∈ Û

for any i ∈ I . Finally, for any h ∈ Y we set

K̂h := (Kh)π ∈ Û.

2.5. Let p̂π : Û → S(π) be projection onto the π th component. Let U be the quantized enveloping
algebra determined by the given root datum (see 1.6) and for each λ ∈ X+ let �(λ) be the simple
U-module of highest weight λ. According to [5, Corollary 3.13], S(π) is the quotient of U by the ideal
consisting of all u ∈ U annihilating every simple module �(λ) such that λ ∈ π . Let pπ : U → S(π) be
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the corresponding quotient map, which sends E±i ∈ U to E±i ∈ S(π), Kh ∈ U to Kh ∈ S(π) for all i ∈ I ,
h ∈ Y . These maps fit into a commutative diagram

Û
p̂π ′

p̂π

U
pπ ′

pπ

θ

S(π ′)

fπ,π ′

S(π)

for any finite saturated subsets π,π ′ of X+ with π ⊂ π ′ . The universal property of inverse limits
guarantees the existence of a unique algebra map θ : U → Û making the diagram commute.

2.6. Theorem. The map θ gives an algebra embedding of U into Û sending E±i to Ê±i and Kh to K̂h for all

i ∈ I , h ∈ Y . Hence, the subalgebra of Û generated by the Ê±i (i ∈ I), K̂h (h ∈ Y ) is isomorphic with U.

Proof. Suppose u ∈ U maps to zero under θ . Then pπ (u) = 0 for every finite saturated subset π ,
which means that u annihilates every simple U-module in the category C . By [11, Prop. 3.5.4] it
follows that u = 0, so the kernel of θ is trivial. The rest of the assertions of the theorem are clear. �
2.7. Proposition. In Û we have the identity K̂h = ∑

λ∈X v〈h,λ〉̂1λ for any h ∈ Y .

Proof. We have only to check that this holds when the projection p̂π is applied to both sides. This is
valid by the definition of Kh ∈ S(π) given in 2.2. �
2.8. From the preceding result it follows by easy calculations that in Û we have the identities

(a) K̂h K̂h′ = K̂h+h′ ,
(b) K̂0 = 1,
(c) K̂−h = K̂ −1

h

for any h,h′ ∈ Y .

2.9. Proposition. The elements Ê±i (i ∈ I); 1̂λ (λ ∈ X) of Û satisfy the relations

(a) 1̂λ1̂λ′ = δλ,λ′ 1̂λ ,
∑

λ∈X 1̂λ = 1;

(b) Ê±i 1̂λ = 1̂λ±αi Ê±i ;

(c) Ê i Ê− j − Ê− j Ê i = δi j
∑

λ∈X [〈hi, λ〉]i 1̂λ;

(d)
∑

s+s′=1−〈hi ,α j〉(−1)s′ Ê (s)
±i Ê± j Ê (s′)

±i = 0 (i �= j).

Proof. The argument is similar to the proof of Proposition 2.7. �
Note that the relations in the preceding result are the same relations as in 2.3 but in this case the

sums in (a), (c) are infinite, since 1λ ∈ Û is nonzero for any λ ∈ X .
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2.10. Remark. It is clear from Theorem 2.6 that the elements Ê±i , K̂h of Û satisfy the usual defining
relations (see 1.6(a)–(d)) for the quantized enveloping algebra U.

On the other hand, if one simply starts with S(π) defined by the presentation given in 2.2 and
forms the inverse limit Û without knowledge of U, defining elements Ê±i , K̂h in Û as we have done
above, then the defining relations 1.6(a)–(d) (with Ê±i , K̂h in place of E±i , Kh , respectively) may
easily be derived from the defining relations for S(π). Then U could be defined as the subalgebra
of Û generated by the Ê±i (i ∈ I), K̂h (h ∈ Y ). In fact, this is clear from Proposition 2.9 in light of
Proposition 2.7. For instance, one has

K̂h Ê±i =
∑
λ

v〈h,λ〉1λ Ê±i =
∑
λ

v〈h,λ〉 Ê±i1λ∓αi

= Ê±i

∑
λ

v〈h,λ±αi〉1λ = v±〈h,αi〉 Ê±i K̂h

where in the sums λ runs over X . This proves the analogue of relation 1.6(b). The analogue of relation
1.6(c) is proved by a similar calculation, which we leave to the reader. In other words, the defining
structure of the quantized enveloping algebra U is an easy consequence of the defining structure for
the S(π).

2.11. Remark. The inverse system used here is indexed by the family consisting of all finite saturated
subsets of X+ . One could just as well have used the family consisting of all subsets of the form
X+[� λ] = {μ ∈ X+: μ � λ}, for various λ ∈ X+ , or even the family of complements of all the X+[�
λ] = {μ ∈ X+: μ � λ}. All these families of finite saturated subsets of X+ lead to the same inverse
limit Û.

3. Relation with the modified form U̇

In this section we explore the relation between the algebra Û and Lusztig’s modified form U̇ of U.
We show that U̇ may be identified with a subalgebra of Û.

3.1. The modified form U̇ is defined (see [11, Chapter 23]) as follows. For λ,λ′ ∈ X set

λUλ′ = U/

(∑
h∈Y

(
Kh − v〈h,λ〉)U +

∑
h∈Y

U
(

Kh − v〈h,λ′〉))

regarded as a quotient of vector spaces over Q(v). Then define

U̇ := ⊕
λ,λ′∈X (λUλ′ ).

Let πλ,λ′ : U → λUλ′ be the canonical projection. One has a direct sum decomposition U = ⊕
ν U(ν)

where ν runs over the root lattice
∑

Zαi , and where U(ν) is defined by the requirements U(ν)U(ν ′) ⊆
U(ν + ν ′), Kh ∈ U(0), E±i ∈ U(±αi) for all i ∈ I , h ∈ Y . Then U̇ inherits a natural associative Q(v)-
algebra structure from that of U, as follows: for any λ1, λ2, λ

′
1, λ

′
2 ∈ X and any t ∈ U(λ1 − λ′

1), s ∈
U(λ2 − λ′

2), the product πλ1,λ′
1
(t)πλ2,λ′

2
(s) is equal to πλ1,λ′

2
(ts) if λ′

1 = λ2 and is zero otherwise.

For any λ ∈ X , set 1λ = πλ,λ(1). Then the elements 1λ ∈ U̇ satisfy the relations

1λ1λ′ = δλ,λ′ 1λ

and we have λUλ′ = 1λU̇1λ′ . The algebra U̇ may be regarded as an U-bimodule by setting, for t ∈ U(ν),
s ∈ U, and t′ ∈ U(ν ′), the product tπλ,λ′ (s)t′ = πλ+ν,λ′−ν ′ (tst′) for any λ,λ′ ∈ X . It follows that the
products 1λE±i (i ∈ I , λ ∈ X ) are well defined elements of U̇. In fact U̇ is generated by those elements.



1232 S. Doty / Journal of Algebra 321 (2009) 1225–1238
3.2. For a given saturated subset π of X+ we shall write π c for the set theoretic complement X+ −π .
In [5] it is shown that S(π) is isomorphic with the quotient algebra U̇/U̇[π c] for any finite saturated
subset π of X+ . The ideal U̇[π c] and corresponding quotient both appear in [11, §29.2]; the ideal may
be characterized as the set of all elements u ∈ U̇ such that u annihilates every �(λ) with λ ∈ π . We
note for future reference that

⋂
π

U̇
[
π c] = (0)

(see [11, Chapter 29]).
The proof of [5, Theorem 4.2] shows that the quotient map ṗπ : U̇ → S(π) (with kernel U̇[π c]) is

defined by sending E±i1λ ∈ U̇ to E±i1λ ∈ S(π). Clearly the quotient maps ṗπ fit into a commutative
diagram

Û
p̂π ′

p̂π

U̇
ṗπ ′

ṗπ

θ̇

S(π ′)

fπ,π ′

S(π)

for any finite saturated subsets π,π ′ of X+ with π ⊂ π ′ . Again the universal property of inverse
limits guarantees the existence of a unique algebra map θ̇ : U̇ → Û making the diagram commute.

We are now prepared to prove the following result.

3.3. Theorem. The map θ̇ is an algebra embedding of U̇ into Û sending E±i1λ to Ê±i 1̂λ for all i ∈ I , λ ∈ X.

Hence, the subalgebra of Û generated by the products Ê±i 1̂λ (i ∈ I , λ ∈ X ) is isomorphic with U̇.

Proof. Suppose θ̇ (u) = 0 for u ∈ U̇. Then ṗπ (u) = 0 for each finite saturated subset π of X+ . Hence
u ∈ ⋂

π U̇[π c]; whence u = 0. Thus the kernel of θ̇ is trivial. The rest of the claims are clear. �
3.4. Henceforth we identify U̇ with the subalgebra of Û generated by all Ê±i 1̂λ . Note that the elements
Ê±i of Û are not elements of U̇ since their expression in terms of the generators of U̇ involves infinite
sums.

3.5. For convenience, choose a total ordering π1,π2, . . . on the finite saturated sets π which is com-
patible with the partial order given by set inclusion, in the following sense: i � j implies that πi ⊆ π j .
Then the completion of U̇ with respect to the descending sequence of ideals

U̇ ⊇ U̇
[
π c

1

] ⊇ U̇
[
π c

2

] ⊇ · · ·

is isomorphic with Û.
As in [8], we put a topology on the ring U̇ by letting the collection {U̇[π c]}, as π varies over the

finite saturated subsets of X+ , define a neighborhood base of 0. Then Û may be regarded as the set
of equivalence classes of Cauchy sequences (xn)∞n=1 of elements of U̇ under usual Cauchy equivalence.
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Here a sequence (xn) is Cauchy if for each neighborhood U̇[π c] there exists some positive integer
N(π) such that

xm − xn ∈ U̇
[
π c] for all m,n � N(π),

and given sequences (xn), (yn) are Cauchy equivalent if xn − yn → 0 as n → ∞. The proof is standard
(see e.g. [1, Chapter 10]). Given a Cauchy sequence (xn) its image in S(π) is eventually constant,
say aπ . The resulting sequence (aπ ) ∈ ∏

π S(π) satisfies aπ = fπ,π ′(aπ ′ ) for any π ⊂ π ′ , so (aπ ) ∈ Û.
On the other hand, given any (aπ ) ∈ Û we can define a corresponding Cauchy sequence by setting xn
equal to any element of the coset ṗπn (aπn ) ∈ U̇/U̇[π c

n ], where π = πn .
Thus, Û is a complete topological algebra. It is Hausdorff, thanks to the triviality of the intersection

of the elements of the neighborhood base of 0.

3.6. We say that a basis B of U̇ is coherent if the set of nonzero elements of ṗπ (B) is a basis of S(π),
for each finite saturated π ⊂ X+ .

Assume that B is any such basis. Write B[π ] for the set of nonzero elements of ṗπ (B). The fol-
lowing result is a consequence of [8, Corollary 2.2.5].

3.7. Proposition. Given any coherent basis B of U̇, the completion Û may be identified with the algebra of all
formal infinite linear combinations of elements of B.

Proof. Any formal sum of the form a = ∑
b∈B abb (for ab ∈ Q(v)) determines an element aπ =∑

b∈B[π ] abb of S(π). Clearly, the sequence (aπ ) is an element of Û.

We must show that every element of Û is expressible in such a form. Let a = (aπ ) be an element
of Û. Each aπ ∈ S(π) may be written in the form aπ = ∑

b∈B[π ] abb where ab ∈ Q(v). Moreover, the
coefficient ab of any b ∈ B will always be the same value, for any π ′ such that b ∈ B[π ′]. To see this,
let π ′′ be any finite saturated subset of X+ containing both π and π ′ (such must exist) and consider
the projections fπ,π ′ and fπ,π ′′ . Since ∪π B[π ] = B this shows that a determines a well-defined
infinite sum

∑
b∈B abb. �

3.8. In [11, Chapter 25] it is proved that the canonical basis can be lifted from the positive part of
U to a canonical basis Ḃ of U̇. (This was a primary motivation for the introduction of U̇.) Moreover,
Ḃ is coherent with respect to the inverse system {S(π)}; see [11, §29.2.3]. Thus it follows from the
preceding proposition that elements of Û may be regarded as formal infinite linear combinations of Ḃ.

3.9. Remark. It is easy to see that Û is a procellular algebra in the sense of R.M. Green [8]. This is a
consequence of Lusztig’s refined Peter–Weyl theorem [11, Theorem 29.3.3], which implies that Ḃ is a
cellular basis of U̇. (See [6] for the definition of cellular basis.)

3.10. Lemma. The algebra Û is topologically generated by the elements Ê±i (i ∈ I), 1̂λ (λ ∈ X ) in the sense that
every element of Û is expressible as a formal (possibly infinite) linear combination of finite products of those
elements.

Proof. By 3.8 every element of Û is a formal linear combination of elements of Ḃ. But elements of Ḃ
are themselves expressible as finite linear combinations of finite products of the elements Ê±i (i ∈ I),
1̂λ (λ ∈ X ), since U̇ is generated by elements of the form Ê±i 1̂λ for various i ∈ I , λ ∈ X (see [11,
Chapter 23]). �
3.11. Theorem. The algebra Û is the associative algebra with 1 given by the generators Ê±i (i ∈ I), 1̂λ (λ ∈ X )
with the relations (a)–(d) of Proposition 2.9, in the following sense:

Û � Q(v)
〈〈

Ê±i, 1̂λ

〉〉
/ J
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where Q(v)〈〈̂E±i, 1̂λ〉〉 is the free complete algebra on the generators Ê±i, 1̂λ (consisting of all formal linear
combinations of finite products of generators) and J is the ideal generated by relations 2.9(a)–(d).

Proof. Let P be the algebra Q(v)〈〈̂E±i, 1̂λ〉〉/ J . Notice (see 2.3) that by definition S(π) is the quotient
of P by the ideal generated by all 1̂λ with λ /∈ W π . Thus we have surjective quotient maps

qπ : P → S(π) (π finite saturated)

such that fπ,π ′qπ ′ = qπ whenever π ⊂ π ′ . These maps fit into a commutative diagram similar to
the one appearing in 2.5, and by the universal property of inverse limits there is an algebra map
Ψ : P → Û sending Ê±i to Ê±i , and 1̂λ to 1̂λ .

The map Ψ is injective since the intersection of the kernels of the various qπ is trivial. On the
other hand, by the preceding lemma combined with Proposition 2.9 Ψ must also be surjective, since
the generators of Û satisfy the defining relations of P. �
3.12. Remark. The topology on Û is induced from the topology on U̇. The basic neighborhoods of 0
are of the form Û[π c] for the various finite saturated subsets π of X+ , where Û[π c] is the set of
all formal Q(v)-linear combinations of elements of Ḃ[π c], where the notation Ḃ[π c] is as defined in
[11, §29.2.3].

4. Integral forms

We will now extend the results obtained thus far to integral forms (over the ring A = Z[v, v−1]
of Laurent polynomials in v).

4.1. One has an integral form AS(π) in S(π). It is by definition the A-subalgebra of S(π) generated
by all E(m)

±i (i ∈ I , m ∈ N) and 1λ (λ ∈ W π ). There is an algebra isomorphism

S(π) � Q(v) ⊗A
(

AS(π)
)

which carries E(m)
±i to 1 ⊗ E(m)

±i and 1λ to 1 ⊗ 1λ . Note that the elements Kh (h ∈ Y ) in S(π) in fact
belong to the subalgebra AS(π).

It is easy to see (see [5, §5.1]) that AS(π) is isomorphic with a quotient of the Lusztig A-form A U
of U, which is by definition [11, §3.1.13] the A-subalgebra of U generated by all E(m)

±i (i ∈ I , m � 0)

and Kh (h ∈ Y ). The quotient map AU→ AS(π) sends E(m)
±i to E(m)

±i and Kh to Kh (i ∈ I , m � 0, h ∈ Y ).
Hence it is just the restriction of pπ to AU; we denote it also by pπ .

Clearly the integral form on S(π) is compatible with the maps fπ,π ′ in the sense that the re-
striction of fπ,π ′ to A S(π ′) is a surjective map of A-algebras from AS(π ′) onto AS(π). Recall the
identification

Û =
{
(aπ )π ∈

∏
π

S(π)

∣∣∣ fπ,π ′(aπ ′ ) = aπ whenever π ⊂ π ′
}
.

Inside this algebra we have an A-subalgebra

AÛ =
{
(aπ )π ∈

∏
π

(
AS(π)

) ∣∣∣ fπ,π ′(aπ ′ ) = aπ whenever π ⊂ π ′
}
.

It is clear that AÛ is isomorphic with lim(A S(π)) (an isomorphism of A-algebras).
←−
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4.2. Theorem. The map θ (see 2.5) restricts to an algebra embedding (also denoted θ ) of AU into A Û sending
E(m)

±i → Ê (m)
±i and Kh to K̂h for all i ∈ I , m � 0, h ∈ Y . Hence, AU is isomorphic with the A-subalgebra of AÛ

generated by all Ê (m)
±i , K̂h (i ∈ I , m � 0, h ∈ Y ).

Proof. If p̂π denotes projection to the π th component as before, we have a commutative diagram of
A-algebras similar to the commutative diagram considered in 2.5, where the algebras are replaced by
their integral forms and each map is just the restriction to the integral form of the corresponding map
in the diagram given in 2.5. The existence of the map θ is guaranteed by the universal property of
inverse limits, and by considering its effect on generators we see that it must in fact be the restriction
to AU of the map θ given already in 2.5. Since θ is a restriction of an injective map, it is itself
injective. �
4.3. Now consider the A-subalgebra AU̇ of U̇ generated by all products of the form E(m)

±i 1λ (i ∈ I ,

m � 0, λ ∈ X ). This integral form of U̇ was studied in [11, §23.2].
The restriction of the quotient map ṗπ (see 3.2) to AU̇ gives a surjective map (also denoted by ṗπ )

from AU̇ to AS(π). This is clear from the definition of AS(π) given in 4.1. There is a commutative
diagram similar to the diagram considered in 3.2, in which all the algebras are replaced by their
integral forms, and the maps are just the restrictions of the maps considered in the diagram 3.2.
As before, the universal property of inverse limits guarantees the existence of a unique algebra map
θ̇ : A U̇ → AÛ making the diagram commute.

4.4. Theorem. The map θ̇ is an algebra embedding of A U̇ into A Û sending E(m)
±i 1λ to Ê (m)

±i 1̂λ for all i ∈ I ,

m � 0, λ ∈ X. Hence, the A-subalgebra of AÛ generated by the Ê(m)
±i 1̂λ (i ∈ I , m � 0, λ ∈ X ) is isomorphic

with AU̇.

Proof. The map θ̇ is the restriction to A U̇ of the injective map θ̇ considered in the proof of 3.3, thus
injective. �
4.5. As before, fix a total ordering π1,π2, . . . on the finite saturated sets π compatible with the partial
order given by set inclusion. Then the completion of AU̇ with respect to the descending sequence of
ideals

AU̇ ⊇ AU̇
[
π c

1

] ⊇ AU̇
[
π c

2

] ⊇ · · ·

is isomorphic with AÛ.
One may put a topology on AU̇ exactly as in 3.5, by letting the collection {AU̇[π c]}, as π varies

over the finite saturated subsets of X+ , define a neighborhood base of 0. Here AU̇[π c] = AU̇ ∩ U̇[π c]
is the kernel of the surjection ṗπ : AU̇ → AS(π).

Since the canonical basis Ḃ is an A-basis of AU̇, it follows that elements of AÛ may be regarded
as formal (possibly infinite) A-linear combinations of Ḃ. Then the subalgebra AU̇ may be regarded as
the set of all finite A-linear combinations of Ḃ.

5. Specialization

By specializing to a commutative ring R (via the ring homomorphism A → R determined by v → ξ

for an invertible ξ ∈ R) one obtains generalized q-Schur algebras R S(π) over R for each saturated π .
These algebras form an inverse system; we study the corresponding inverse limit R Û.
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5.1. Let R be a given commutative ring with 1, and ξ ∈ R a given invertible element. Regard R as
an A-algebra via the ring homomorphism A → R such that vn → ξn for all n ∈ Z. Consider the
R-algebras

(a) R U = R ⊗A (A U), R U̇ = R ⊗A (A U̇).

In the literature, these algebras are sometimes denoted by alternative notations such as Uξ , U̇ξ . We
note that one has isomorphisms Q(v)U � U, Q(v)U̇ � U̇ given by the obvious maps.

For a finite saturated subset π of X+ set R S(π) = R ⊗A (AS(π)), a generalized q-Schur algebra
specialized at v → ξ . Note that Q(v)S(π) � S(π). The elements E(m)

±i , 1λ , Kh ∈ AS(π) give rise to
corresponding elements

1 ⊗ E(m)
±i , 1 ⊗ 1λ, 1 ⊗ Kh ∈ R S(π)

for i ∈ I , m � 0, λ ∈ X , h ∈ Y . These elements of R S(π) will be respectively denoted again by E(m)
±i , 1λ ,

Kh , since the intended meaning will be clear from the context.
Since tensoring is right exact, we have a surjective quotient map

(b) 1 ⊗ ṗπ : R U̇ → R S(π),

arising (by tensoring with the identity map on R) from the corresponding quotient map ṗπ : AU̇ →
A S(π) over A.

5.2. Lemma. The kernel of the map 1 ⊗ ṗπ is R U̇[π c] = R ⊗A (A U̇[π c]).

Proof. This is a consequence of the fact that the canonical basis of AU̇ is a “cellular” basis (in the
sense of [6]) and the kernel AU̇[π c] of the map ṗπ : AU̇ → AS(π) is the cell ideal spanned by the
canonical basis elements in Ḃ[π c]. See [5, §5] for details. �

5.3. Whenever π ⊂ π ′ (for finite saturated subsets of X+) there is a surjective algebra map
1 ⊗ fπ,π ′ : R S(π ′) → R S(π) obtained from the map fπ,π ′ : AS(π ′) → AS(π) by tensoring with the
identity map on R . Thus we have an inverse system

(a)
{

R S(π); 1 ⊗ fπ,π ′
}
.

We define R Û to be the inverse limit lim←− R S(π) of this inverse system. In R Û we have elements

(b) Ê (m)
±i := (

E(m)
±i

)
π
, 1̂λ := (1λ)π , K̂h := (Kh)π

of R Û defined by the corresponding constant sequences, for i ∈ I , m � 0, λ ∈ X , h ∈ Y . Actually, the
sequence defining 1λ is not necessarily constant, but it is eventually constant.

5.4. Theorem. There is an embedding R U̇ → R Û of R-algebras sending E(m)
±i 1λ to Ê (m)

±i 1̂λ ∈ R Û for all i ∈ I ,

m � 0, λ ∈ X. Thus R U̇ may be identified with the R-subalgebra of R Û generated by all Ê (m)
±i 1̂λ (i ∈ I , m � 0,

λ ∈ X ).
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Proof. Consider the commutative diagram of R-algebra maps

R Û
1⊗p̂π ′

1⊗p̂π

R U̇
1⊗ṗπ ′

1⊗ṗπ

R θ̇

R S(π ′)

1⊗ fπ,π ′

R S(π)

for any finite saturated π ⊂ π ′ . The universal property of inverse limits guarantees the existence of a
unique algebra map R θ̇ : R U̇ → R Û making the diagram commute. This map has the desired properties.

By Lemma 5.2, the kernel of R θ̇ is the intersection over π of all R U̇[π c]. From Lusztig’s results [11,
Chapter 29] it follows that this intersection is the zero ideal (0). Indeed, the intersection is contained
in the intersection of all R U̇[� λ] as λ runs through all dominant weights, and by known properties
of the canonical basis the latter intersection is (0). This proves the injectivity of R θ̇ , as desired. �
5.5. As before, fix a total ordering π1,π2, . . . on the finite saturated sets π which is compatible with
the partial order given by set inclusion. Then the completion of R U̇ with respect to the descending
sequence of ideals

R U̇ ⊇ R U̇
[
π c

1

] ⊇ R U̇
[
π c

2

] ⊇ · · ·

is isomorphic with R Û.
One may put a topology on R U̇, by letting the collection {R U̇[π c]}, as π varies over the finite

saturated subsets of X+ , define a neighborhood base of 0. Elements of R Û may be regarded as formal
(possibly infinite) R-linear combinations of Ḃ. Then the subalgebra R U̇ may be regarded as the set of
all finite R-linear combinations of Ḃ. The topology on R Û is induced from the topology on R U̇; i.e.,
the basic neighborhoods of 0 are of the form R Û[π c] for the various finite saturated sets π , where
R Û[π c] is the set of all formal R-linear combinations of elements of Ḃ[π c].

5.6. Remark. It is not immediately clear how the completion R Û is related to R ⊗A (AÛ). We note
that there is a well-defined homomorphism of R-algebras

(a) R ⊗A (AÛ) → R Û

sending 1 ⊗ (aπ ) to (1 ⊗ aπ ), where (aπ ) ∈ ∏
π (A S(π)) satisfies the condition fπ ′,π (aπ ′ ) = aπ when-

ever π ⊂ π ′ . It seems unlikely that this map is an isomorphism.

5.7. Remark. Does the algebra R U embed in R Û? There is an R-algebra homomorphism

(a) R U → R Û

defined on generators by sending E(m)
±i to Ê (m)

±i (for i ∈ I , m � 0), and sending Kh to K̂h (for h ∈ Y ).
But it is not clear that this map is injective.

One would like to prove the injectivity of this map, since then one may identify R U with a subal-
gebra of the completion R Û.
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We sketch a possible approach to this question. To prove the injectivity, one needs to show that the
intersection of the kernels of the quotient maps R U → R S(π) is (0). The quotient map R U → R S(π) is
the map 1 ⊗ pπ obtained from the quotient map pπ : AU → AS(π) defined in 4.1, by tensoring with
the identity map on R .

Suppose some u ∈ R U belongs to the intersection of the kernels of the quotient maps R U → R S(π),
as π varies over the finite saturated subsets of X+ . Then one can show that u acts as zero on any
finite dimensional R U-module, since such a module will be a well-defined module for R S(π) for
some (large enough) saturated set π . Now if [9, Proposition 5.11] can be generalized to our setting,
we would be able to conclude that u = 0, and the desired injectivity statement would be established.
However, such a generalization is not available in the published literature on quantum groups, to the
author’s knowledge.
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