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Abstract

We generalize a theorem of Nymann that the density of points in Z
d that are visible from the origin

is 1/ζ(d), where ζ(a) is the Riemann zeta function
∑∞

i=1 1/ia . A subset S ⊂ Z
d is called primitive if

it is a Z-basis for the lattice Z
d ∩ spanR(S), or, equivalently, if S can be completed to a Z-basis of Z

d .
We prove that if m points in Z

d are chosen uniformly and independently at random from a large box,
then as the size of the box goes to infinity, the probability that the points form a primitive set approaches
1/(ζ(d)ζ(d − 1) · · · ζ(d − m + 1)).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A classic result in number theory is that, if a point in Z
2 is chosen “at random,” the probability

that the point is visible from the origin (that is, not the origin nor hidden by another point in Z
2)

is 1
ζ(2)

, where ζ(a) is the Riemann zeta function
∑∞

i=1
1
ia

(see [1] for a proof using Euler’s totient
function). More precisely, for a given n, if we choose an integer point (a, b) uniformly at random
from the box [−n,n]× [−n,n] and compute the probability that (a, b) is visible from the origin,
then as n approaches infinity, this probability approaches 1

ζ(2)
.

J.E. Nymann generalized this result to higher dimensions [7]: if a point in Z
d is chosen at

random, then the probability that the point is visible from the origin is 1
ζ(d)

. This theorem is true
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for d � 2 and is, in effect, true for d = 1: the only points in Z
1 that are visible from the origin

are ±1, so the probability is zero, and ζ(1) diverges so that 1
ζ(1)

= 0.

An obvious way to restate the condition that a point s = (a1, a2, . . . , ad) ∈ Z
d is visible from

the origin is that gcd(a1, . . . , ad) = 1. We will restate the condition in a lattice theoretic context,
so that it may be generalized to picking more than one point in Z

d . A point s is visible from
the origin if and only if {s} is a Z-basis for the lattice spanR(s) ∩ Z

d . In general, given a set
S = {s1, s2, . . . , sm} ⊂ Z

d , where 1 � m � d , we say that S is primitive if S is a Z-basis for the
lattice spanR(S) ∩ Z

d . An equivalent definition [6] is that S is primitive if and only if S can be
completed to a Z-basis of all of Z

d .
In this paper we prove that if S is chosen “at random,” then the probability that S is primitive

is

1

ζ(d)ζ(d − 1) · · · ζ(d − m + 1)
.

To be precise, we prove the following theorem.

Theorem 1. Let d and m be given, with m � d . For n ∈ Z+, 1 � k � m, and 1 � i � d , let
bn,k,i ∈ Z. For a given n, choose integers ski uniformly (and independently) at random from the
set bn,k,i � ski < bn,k,i + n. Let sk = (sk1, . . . , skd) and let S = {s1, s2, . . . , sm}.

If m < d and |bn,k,i | is bounded by a polynomial in n, then, as n approaches infinity, the
probability that S is a primitive set approaches

1

ζ(d)ζ(d − 1) · · · ζ(d − m + 1)
,

where ζ(a) is the Riemann zeta function
∑∞

i=1
1
ia

.
If m = d , then, as n approaches infinity, the probability that S is a primitive set approaches

zero.

When m = 1, this theorem gives the classic result (d = 2) and Nymann’s result. The state-
ments for m < d and m = d are consistent, because for m = d the value of

1

ζ(d)ζ(d − 1) · · · ζ(1)

is zero in the sense that ζ(1) diverges.
The statement of the theorem uses more general boxes than [−n,n]d to pick the sk from. We

do this because the more general result is needed in [4]. That paper was the original inspiration for
this theorem: we discovered the theorem in an attempt to prove a fact in computational biology
and Bayesian network theory. Since the concept of primitive sets is important in the geometry of
numbers, we are proving this theorem in this separate paper.

Note that some bound on the bn,k,i in terms of n is needed; otherwise one could construct
arbitrarily large boxes from which no primitive sets could be selected (even for d = 2, m = 1),
as the following proposition shows.
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Proposition 2. Given n ∈ Z+, there exist integers bn,1,1 and bn,1,2 such that no integer vectors
(s11, s12) chosen from the box

bn,1,1 � s11 < bn,1,1 + n and bn,1,2 � s12 < bn,1,2 + n

are visible from the origin.

Proof. Given n, choose n2 distinct primes, pij , for 0 � i, j < n. For 0 � i < n, let Pi =∏n−1
j=0 pij . For 0 � j < n, let Qj = ∏n−1

i=0 pij . Since the Pi are relatively prime, we may use
the Chinese Remainder Theorem to choose a bn,1,1 such that

bn,1,1 ≡ −i mod Pi, for 0 � i < n,

in other words, so that Pi divides bn,1,1 + i. Similarly, choose a bn,1,2 so that Qj divides
bn,1,2 + j , for 0 � j < n. Then for any choice of (s11, s12) = (bn,1,1 + i, bn,1,2 + j) from the
box, pij divides s11 and s12, and the point is not visible from the origin. �

In Section 2, we present an outline of the proof of Theorem 1. The outline is a full proof in
every respect, except that we ignore the error estimations in our probabilities. In that sense, it is
the “moral” proof of the result. In Section 3, we fill the holes by proving that the error estimates
approach zero as n approaches infinity. The methods in Section 3 are themselves of interest, using
concepts from triangulations of point sets, the metric geometry of polytopes (cross-sections of
d-cubes), analytic number theory (consequences of the Prime Number Theorem), and the geom-
etry of numbers.

2. Outline of the proof

We first prove the more difficult case m < d . At the end of this section, we will prove the
m = d case. We proceed by induction on m.

If m = 0, the theorem is trivially true. Assume that the theorem is true for m − 1, and we will
prove it for m. The probability that S = {s1, s2, . . . , sm} is primitive is the product

ProbPn

({s1, . . . , sm−1} is primitive
)

· ProbPn

(
S is primitive, given that {s1, . . . , sm−1} is primitive

)
,

where Pn is the probability distribution, for a given n, from which we are choosing S. The first
term in the product approaches

1

ζ(d)ζ(d − 1) · · · ζ(d − m + 2)
,

as n → ∞, by the inductive hypothesis, so we must show that the second term approaches
1

ζ(d−m+1)
.

Indeed, suppose {s1, . . . , sm−1} is given and is primitive, and we choose sm = (sm1, . . . , smd)

(independently from the other si ) according to the probability distribution Pn. Let A be the
(m − 1) × d integer matrix whose rows are s1, . . . , sm−1. We will need the following lemma, to
find a simpler matrix whose rows also form a primitive set.
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Lemma 3. Let A be a matrix in Z
p×q , and let U be a unimodular matrix (i.e., det(U) = ±1) in

Z
q×q . The rows of A form a primitive set if and only if the rows of AU also form a primitive set.

Proof. Suppose the rows of A form a primitive set. Let a ∈ Z
q be in the R-span of the rows of

AU , that is, a = xAU , where x is a matrix in R
1×p . In order to show that the rows of AU form a

primitive set, we must show that x is actually integral. Indeed, aU−1 = xA ∈ Z
q is in the R-span

of the rows of A, and since the rows of A form a primitive set, x must integral. This also proves
the converse, as U−1 is unimodular and A = (AU)U−1. �

The matrix U we will choose is a matrix that puts AU into Hermite normal form.

Definition 4. A matrix B ∈ Z
p×q is in Hermite normal form if

(1) Bij = 0 for all j > i,
(2) Bii > 0 for all i, and
(3) 0 � Bij < Bii for all j < i.

Given any integer matrix B of full row rank, there exists a unimodular matrix U such that BU

is in Hermite normal form (see, e.g., [5]; U will not, in general, be unique). This fact, together
with the following lemma, gives a convenient characterization of when S is a primitive set.

Lemma 5. Let {s1, . . . , sm−1} ⊂ Z
d be a primitive set, and let sm ∈ Z

d be given. Let A be the
(full row rank) matrix with rows s1, . . . , sm−1, and let U be a matrix such that AU is in Hermite
normal form. Let U(i) be the ith column of U . Then {s1, . . . , sm} is a primitive set if and only if
the smU(i), for m � i � d , are relatively prime.

Proof. By Lemma 3, the rows of AU form a primitive set. It follows that (AU)ii = 1, for 1 �
i � m−1 (otherwise ei , the ith standard basis vector, would be in the R-span of the rows of AU ,
but not in the Z-span). Then, from the definition of Hermite normal form, (AU)ij = 0 for i 	= j .
Let A′ be the matrix with rows s1, . . . , sm (that is, A′ is A with the additional row sm appended).
By Lemma 3, {s1, . . . , sm} is a primitive set if and only if the rows of A′U form a primitive set.
We see that this is true if and only if the (A′U)mi , for m � i � d , are relatively prime (indeed,
the index of the lattice spanZ{s1, . . . , sm} within Z

d ∩ spanR{s1, . . . , sm} is gcd{(A′U)mi : m �
i � d}). Since (A′U)mi = smU(i), the lemma follows. �

Let μ : Z+ → {−1,0,1} be the Möbius function defined to be

μ(D) =
{

(−1)i if D is the product of i distinct primes,

0 if D is divisible by the square of a prime.

Given D ∈ Z+, let pnD be the probability that D divides smU(i) for all m � i � d .
Note that pnD is independent of our choice of U , because, as we noted in the proof of
Lemma 5, gcd{smU(i): m � i � d} is the index of the lattice spanZ{s1, . . . , sm} within
Z

d ∩ spanR{s1, . . . , sm}, which is independent of U . Then, using inclusion–exclusion, the prob-
ability that the smU(i), for m � i � d , are relatively prime is

∞∑
μ(D)pnD.
D=1
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We expect each pnD to be approximately D−(d−m+1). In Section 3, we will show that

lim
n→∞

∞∑
D=1

μ(D)pnD =
∞∑

D=1

μ(D)D−(d−m+1). (1)

Given that we have verified (1), the following well-known lemma (see [1, Section 11.4] for a
proof), applied to a = d − m + 1, finishes the proof of the theorem for the m < d case.

Lemma 6. For any integer a � 2,

∞∑
D=1

μ(D)D−a = 1

ζ(a)
.

To conclude this section, we prove the m = d case. Suppose we have chosen S′ =
{s1, s2, . . . , sd−1}. If S′ is not primitive, then there is no choice of sd that will make the full set
S = {s1, s2, . . . , sd} primitive. If S′ is primitive, then consider the hyperplane W = spanR(S′).
Choose a vector a ∈ Zd , whose coordinates are relatively prime, such that

W = {
x ∈ R

d : 〈a, x〉 = 0
}

(where 〈·,·〉 is the standard dot product).
Then S will be primitive (a Z-basis for Z

d ) if and only if 〈a, sd〉 = ±1. As n approaches
infinity, we would expect, of the nd possible choices for sd , the number that lie on these two
hyperplanes to be O(nd−1). And indeed it is: the precise error estimation follows by Claim 2a′
in the proof of Lemma 9.

Since the number of possible choices for sd is nd and the number that makes S primitive is
O(nd−1), the probability that S is primitive approaches zero.

3. Error estimates

The remaining piece of the proof, in the m < d case, is to demonstrate Eq. (1), that is, that

∣∣∣∣∣
∞∑

D=1

μ(D)pnD −
∞∑

D=1

μ(D)D−(d−m+1)

∣∣∣∣∣ → 0

as n → ∞.
We will need a bound on the entries of U , which the following lemma will help us get.

Lemma 7. Given a matrix A ∈ Z
p×q of full row rank and a bound M0 such that |Aij | < M0 for

all i, j , there exists a unimodular matrix U such that

(1) AU is in Hermite normal form and
(2) |Uij | � p!qM

p

0 for all i, j .

Proof. Let B be the q ×q matrix obtained by appending to A the rows e1, e2, . . . , eq−p (where ei

is the ith standard basis vector). Without loss of generality, we can assume that B is a nonsingular
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matrix (otherwise, we could have appended different ei ). Let U be a unimodular matrix such that
BU is in Hermite normal form. Note that AU is also in Hermite normal form.

We will use the fact that

U = B−1(BU) = 1

det(B)
adj(B)(BU), (2)

where adj(B) is the adjugate (classical adjoint) of B , in order to bound the entries of U . Since
BU is lower triangular,

∣∣det(B)
∣∣ = det(BU) =

q∏
i=1

(BU)ii .

Therefore (BU)ii � |det(B)| for all i, and, by the definition of Hermite normal form, we con-
clude that (BU)ij � |det(B)| for all i, j .

Since the first p rows of B have entries bounded by M0 and the remaining rows are standard
basis vectors, the entries of adj(B) are bounded by p!Mp

0 . Combining these two bounds, we see
that the entries of adj(B)(BU) are bounded by q · p!Mp

0 · |det(B)|. Using (2) we conclude that

|Uij | � 1

|det(B)|q · p!Mp

0 · ∣∣det(B)
∣∣ = p!qM

p

0

for all i, j , as desired. �
Since the absolute value of the entries of A are bounded by |bn,k,i | + n, which we assume to

be bounded by a polynomial in n, Lemma 7 shows that the unimodular matrix U can be chosen
such that the absolute value of each entry of U is bounded by a polynomial in n. This in turn
implies that |smU(i)| is also bounded by a polynomial in n (where U(i) is the ith column of U ).
Let M = M(n) be our bound on |smU(i)|; say M is O(nk) for some k. Clearly, for D > M ,
pnD = 0.

We have that∣∣∣∣∣
∞∑

D=1

μ(D)pnD −
∞∑

D=1

μ(D)D−(d−m+1)

∣∣∣∣∣

�
∣∣∣∣∣

n∑
D=1

μ(D)
(
pnD − D−(d−m+1)

)∣∣∣∣∣ +
∣∣∣∣∣

M∑
D=n+1

μ(D)pnD

∣∣∣∣∣

+
∣∣∣∣∣

∞∑
D=M+1

μ(D)pnD

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
D=n+1

μ(D)D−(d−m+1)

∣∣∣∣∣

�
n∑

D=1

∣∣pnD − D−(d−m+1)
∣∣ +

M∑
D=n+1

pnD + 0 +
∞∑

D=n+1

D−(d−m+1). (3)

Of the three nonzero terms in the last expression,
∑∞

D=n+1 D−(d−m+1) certainly converges
to zero as n approaches infinity, so it suffices to show that the first two terms,

∑n
D=1 |pnD −

D−(d−m+1)| and
∑M

D=n+1 pnD , do as well. We break our error computation into these two cases.
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Before we handle the two error sums in Lemmas 8 and 9, we set some common terminology.
Let Bn be the d-dimensional box of integers {sm ∈ Z

d : bn,m,i � smi < bn,m,i + n, for all i},
which is the box from which sm is chosen with uniform probability. Given D ∈ Z+, let ΛD ⊂ Z

d

be the lattice of integer vectors x ∈ Z
d such that D divides x · U(i), for m � i � d . ΛD is a

sublattice of Z
d of index Dd−m+1. Let SnD = Bn ∩ ΛD . Then

pnD = |SnD|
nd

. (4)

Lemma 8. As defined above,

n∑
D=1

∣∣pnD − D−(d−m+1)
∣∣

converges to zero as n → ∞.

Proof. Suppose 1 � D � n. Let LD ⊂ Z
d be the lattice of integer vectors (x1, . . . , xd) ∈ Z

d

such that D divides each xi . LD is a sublattice of Z
d of index Dd . In fact, we see that LD is a

sublattice of ΛD , and therefore its index in ΛD is Dd/Dd−m+1 = Dm−1.
This means that if we look at any D×· · ·×D cube, C = {(x1, . . . , xd) ∈ Z

d : ri � xi < ri +D}
for some ri ∈ Z (that is, a translate of a fundamental parallelepiped of LD), then C contains
exactly Dm−1 elements of ΛD . Since Bn can be covered by ( n

D
+ 1)d such boxes, we have that

|SnD| � Dm−1( n
D

+ 1)d , and so

pnD �
Dm−1( n

D
+ 1)d

nd
= Dm−1−d

(
1 + D

n

)d

.

Similarly, ( n
D

− 1)d disjoint D × · · · × D cubes can be placed inside Bn, and so

pnD � Dm−1−d

(
1 − D

n

)d

.

Combining these two inequalities, for some c with |c| � 1 we have that

pnD = Dm−1−d

(
1 + c

D

n

)d

= Dm−1−d

(
1 + O

(
dD

n

))
.

It follows that ∣∣∣∣pnD − 1

Dd−m+1

∣∣∣∣ � Dm−dO

(
d

n

)

and so

n∑
D=1

∣∣pnD − D−(d−m+1)
∣∣ � O

(
d

n

) n∑
D=1

Dm−d,

which converges to zero as n → ∞, proving the lemma. �
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Lemma 9. As defined above,

M∑
D=n+1

pnD,

converges to zero as n → ∞.

Proof. Let

Tn =
M⋃

D=n+1

SnD.

Let Nn be the maximum, over all sm ∈ Bn, of

#{D: n < D � M and sm ∈ SnD}.
Then

M∑
D=n+1

pnD = n−d

M∑
D=n+1

|SnD|

� n−d |Tn| · Nn.

We need to approximate Nn and |Tn|. We will repeatedly use the following fact (see [1,
p. 294]), which can be derived from the Prime Number Theorem: for any ε > 0 and for any
r � M , the number of factors of r is O(nε) (more precisely, for any δ > 0 and sufficiently
large r , the number of factors of r is less than r(1+δ) log 2/ log log r ; now we use that r � M is
O(nk) for some k).

Claim 1. Nn is O(nε).

This follows immediately, as any element of the set

{D: n < D � M and sm ∈ SnD}
must be a factor of, say, smU(m), and this number has O(nε) factors.

Claim 2. |Tn| is O(nd− 1
2 +ε).

Let a = gcd(U
(i)
1 : m � i � d), where U(m),U(m+1), . . . ,U(d) are the last d − m + 1

columns of U . Let R be the set of integers greater than n that are factors of at least one of
a,2a,3a, . . . , √n�a. Each of the √n� numbers i · a such that 1 � i � √n� has O(nε) fac-

tors, so |R| is O(n
1
2 +ε).

We divide Tn into two parts. Let

Tn1 =
⋃

SnD
D∈R
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and let Tn2 = Tn \ Tn1. We will show that both |Tn1| and |Tn2| are O(nd− 1
2 +ε), and so it will

follow that |Tn| = |Tn1| + |Tn2| is also O(nd− 1
2 +ε).

Claim 2a. |Tn1| is O(nd− 1
2 +ε).

Given a D ∈ R, we want to estimate how large SnD is. Suppose first that conv(SnD) is a full-
dimensional polytope in Z

d , that is, its affine hull is all of R
d . Triangulate conv(SnD) into at least

|SnD| − d simplices whose vertices are in SnD (this can always be done, see for example [3]).
Each simplex in the triangulation has volume at least 1

d!D
d−m+1, because the lattice Λn (which

includes every point in SnD) has index Dd−m+1 in Z
d . But conv(SnD) has volume at most nd ,

because it lies in Bn. Putting this together,

1

d!D
d−m+1(|SnD| − d

)
� nd,

and so

|SnD| � d + d! nd

Dd−m+1
� d + d!nm−1,

which is O(nm−1).
On the other hand, if conv(SnD) is not full-dimensional, then Claim 2a′, following, demon-

strates that |SnD| is O(nd−1). Therefore, in either case, |SnD| is O(nd−1), and since |R| is
O(n

1
2 +ε), |Tn1| is O(nd−1 · n 1

2 +ε) = O(nd− 1
2 +ε), and Claim 2a follows.

Claim 2a′′′. Let X ⊂ Z
d ∩Bn (where Bn is the box we are choosing sm from). If the affine hull of

X is k-dimensional, then |X| is O(nk).

Let H be the k-dimensional affine space such that X ⊂ H . The k-dimensional Euclidean

volume of H ∩Bn is at most
√

2
d−k

nk , as proved in [2]. Again we can triangulate conv(X) into
at least |X| − k simplices that are k-dimensional. The best we can know this time is that each
simplex has volume at least 1

k! . Putting this together,

1

k!
(|X| − k

)
�

√
2

d−k
nk,

and so |X| is O(nk), proving Claim 2a′.

Claim 2b. |Tn2| is O(nd− 1
2 +ε).

Recall that a = gcd(U
(i)
1 : m � i � d). Without loss of generality, we may assume that

U
(m)
1 = a and U

(i)
1 = 0, for m + 1 � i � d (if not, we may perform elementary column oper-

ations on the last d − m + 1 columns of U in order to put them in that form; the matrix AU will
remain in Hermite normal form, because the last d − m + 1 columns of AU are all zeros). Note
that a < M .
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Now suppose sm2, sm3, . . . , smd are given, such that bn,m,i � smi < bn,m,i + n. Given j such
that bn,m,1 � j < bn,m,1 + n, define

t (j) = (j, sm2, sm3, . . . , smd).

We will show that O(n
1
2 +ε) of the t (j) are in Tn2 (for given sm2, . . . , smd ).

Since U
(m+1)
1 = 0, s′ := t (j)U(m+1) is independent of j . If t (j) ∈ SnD for a particular D, then

D must be a factor of s′, which has O(nε) factors. Therefore there are only O(nε) possible D

for which any of the t (j) could be a member of SnD .
Now let us consider, for a given D /∈ R, how many of the t (j) could be in SnD . If t (j) and t (k)

are in SnD , then D divides t (j)U(m) and t (k)U(m). Therefore D divides the difference t (j)U(m) −
t (k)U(m), which is (j −k) ·a, since U

(m)
1 = a. Since D /∈ R, D does not divide a,2a, . . . , √n�a,

and so |j − k| > √
n. Therefore the number of j such that t (j) ∈ SnD is at most n/

√
n = √

n.
Since there are O(nε) possibilities for D, and since, for a given D /∈ R, the number of t (j) in

SnD is O(n
1
2 ), we conclude that O(n

1
2 +ε) of the t (j) are in Tn2.

Since there are nd−1 choices for sm2, . . . , smd , we have that |Tn2| is

O
(
nd−1n

1
2 +ε

) = O
(
nd− 1

2 +ε
)
,

proving Claim 2b.
Combining our estimates of Nn and |Tn| from Claims 1 and 2, we have that

M∑
D=n+1

pnD � n−d |Tn| · Nn

= n−dO
(
nd− 1

2 +ε
)
O

(
nε

)

= O
(
n− 1

2 +2ε
)
,

and therefore
∑M

D=n+1 pnD converges to zero as n approaches infinity. �
Combining Lemmas 8 and 9 with Eq. (3), we have shown that

∣∣∣∣∣
∞∑

D=1

μ(D)pnD −
∞∑

D=1

D−(d−m+1)

∣∣∣∣∣ → 0

as n → ∞. This completes our error analysis and, together with Section 2, provides a complete
proof of Theorem 1.
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