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Abstract

We prove global well-posedness for the Cauchy problem associated with the Kadomtsev—Petviashvili—
Burgers equation (KPBII) in R? when the initial value belongs to the anisotropic Sobolev space H*1-52 (R?)
for all s1 > —% and s > 0. On the other hand, we prove in some sense that our result is sharp.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

We shall study the initial value problem of the Kadomtsev—Petviashvili-Burgers (KPBII)

in R%:
(Oru + uxxx _uxx+uux)x+uyy=0a (1.1)
u(0,x,y) =9, y). '
This equation is a dissipative version of the Kadomtsev—Petviashvili-II equation (KPII):
{(atu+uxxx+uux)x+uyyzos (1.2)
u(0,x,y) =(x, y). '
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The (KP) equation is a universal model for nearly one directional weakly nonlinear dispersive
waves with weak transverse effects. It is a natural two-dimensional extension of the celebrated
(KdV) equation:

Us + Uyxx +uuy =0.

In some typical situations, it is not possible to neglect dissipative effects (due to viscosity effects
in magneto sonic waves damped by electron—ion collisions for example), and this can lead to the
KdV-Burgers equation (cf. [11]):

Ol + Uy + Uty — Uy =0.

It is then widely accepted that the (KPBII) equation is a natural model for the propagation of
the two-dimensional damped waves. Note that as we are interested in nearly one directional
propagation, the dissipative term only acts in the main direction of propagation in (1.1).

Bourgain had developed a new method, clarified by Ginibre in [4], for the study of Cauchy
problem associated with dispersive nonlinear equations. This method was successfully applied to
Schrodinger, (KdV) as well as (KPII) equation (cf. [1-3,6]). It was shown by Molinet and Ribaud
[8] that the Bourgain spaces can be used to study the Cauchy problems associated to semi-linear
equations with a linear part containing both dispersive and dissipative terms (and consequently
this applies to (KPB) equations).

For the Cauchy problem associated to (KPII) equation, the local existence is proved by Bour-
gain [1] when the initial value is in the space Lz(Rz) and by Takaoka and Tzvetkov [13] when
the initial value ¢ € H*!*2 (R2) with s > —% and so > 0.

By introducing a Bourgain space associated to the usual (KPII) equation (related only to the
dispersive part of the linear symbol of (1.1)), Molinet and Ribaud [8] had proved global existence
for the Cauchy problem associated to the (KPBII) equation when the initial value is in L2(R?).

In this paper, we prove local existence for (1.1) with initial value ¢ € H**2 (R?) when
s > —1and s2 2 0. Following [9] (see also [7]), we introduce a Bourgain space associated to
the (KPBII) equation. This space is in fact the intersection of the space introduced in [1] and of a
Sobolev space. The advantage of this space is that it contains both the dissipative and dispersive
parts of the linear symbol of (1.1).

We prove also that our local existence theorem is optimal by constructing a counterexam-
ple showing that the application ¢ — u from H**2 to C([0, T]; H**2) cannot be regular
for 51 < —% and s, =0.

This paper is organized as follows. In Section 2, we introduce our notations and we give
an extension of the semi-group of the (KPBII) equation by a linear operator defined on all the
real axis. In Section 3 we derive linear estimates and some smoothing properties for the opera-
tor L defined by (3.7) in the Bourgain spaces. In Section 4 we state Strichartz type estimates for
the (KP) equation which yield bilinear estimates in Section 5. In Section 6, using bilinear esti-
mates, a standard fixed point argument and some smoothing properties, we prove uniqueness and
global existence of the solution of (1.1) in anisotropic Sobolev space H*1-2(R?) with s; > —%
and s, > 0. Finally, we construct in Section 7 a sequence of initial values which ensures that our
local existence result is optimal if one requires the smoothness of the flow-map. Note that there
is no scaling for (1.1) and that, on the other hand, H —1/2.0 §s critical for the scaling of (1.2).
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2. Notations and main results

We will use C to denote various time independent constants, usually depending only upon s.
In case a constant depends upon other quantities, we will try to make it explicit. We use A < B
to denote an estimate of the form A < C B. Similarly, we will write A ~ B to mean A < B and
B < A. We write () := (14 - |2)!/2 ~ 14 -|. The notation a* denotes a + ¢ for an arbitrarily
small €. Similarly a— denotes a — €. For b € R, we denote respectively by H?(R) and Hb(R)
the nonhomogeneous and homogeneous Sobolev spaces which are endowed with the following
norms:

= [ @aof e iy, = [ 1P @1
R R
where 7 denotes the Fourier transform from S’(R?) to S’(R?%) which is defined by
ﬂ@:fwxazfﬂMVQML VfeS (RY).
R2

Moreover, we introduce the corresponding space (respectively space—time) Sobolev spaces
H*1%2 (respectively H?91:2) which are defined by

HSl,Sz (Rz) = {I/t c S’(Rz)’ ”M”HS]-SZ (Rz) < +OO}, (22)
HPS12(R?) = {u € S'(R?); [lull yo.sy.sr (RY) < 400}, (2.3)
where
el = / (€ )2 |a)|dv. 24)
R2
||u||§{b'%s2 = / <T>h<§.)2ﬂ <n>2sz|ﬁ(7’,’ U)|2 dvdr, (2.5)
R2

and v = (&, ). Let U (-) be the unitary group in H*!"*2, 51, 5o € R, defining the free evolution of
the (KPII) equation, which is given by

U(t) =exp(it P(Dy, Dy)), (2.6)

where P(Dy, Dy) is the Fourier multiplier with symbol P(&§,n) =& 3 — n%/&. By the Fourier
transform, (2.6) can be written like

Fo(U(t)¢) =exp(itP(E, n)p, VoeS(R?), reR. (2.7)
Also, by the Fourier transform, the linear part Eq. (1.1) can be written as

i(t—& —n*/e)+&2=1i(t — P(n, &) + &2 2.8)
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Following [8], we introduce a Bourgain space which is in relation with both the dissipative and
dispersive parts of (1.1) at the same time, we define this space by

X052 = {u € S'(R?), llullgps;.y < 00} (2.9)
equipped with the norm
lullosron = || (i + &2 ) )2 (. )] 2 - (2.10)

where 0 =7 — P(v), v = (£, ) € R2.

Remark 2.1. It is worth noticing that X?%1-%2 is the intersection of the Bourgain space as-
sociated with the dispersive part of Eq. (1.1) and Sobolev space. Indeed, by noticing that
FU(—tu)(r,v) = F(u)(t + P(v),v) and next by performing the change of variable v —
T — P(v), one sees that

el gorr = (i + 82 € )2 (x + P(v), ) 2, )
= [liT+ & € 2 FU W)@ 12 @)
~ @ 2 F U Eou)E | s
+ &R FUEou) @) sy

= ” U(_I)Ll H Hb,sl,s2 + ||M ” LtZHxl-%—Zb,sz .

For T > 0, we define the restricted spaces X ?’S' "2 by the norm

lull sy = inf {llwllgbsys; w(t) =u(@) on [0, TT}. (2.11)
T weX? 2

xbs1.8
We denote by W (+) the semi-group associated with the free evolution of (1.1),
Fo(W0)p) =exp(itP(E, ) — E1°1),  Vp e S'(R?), t >0. (2.12)
Also, we can extend W to a linear operator defined on the whole real axis by setting
Fe(Wn)p) =exp(it P(£, ) — 1€1°[t])p, VYo eS'(R?), 1 eR. (2.13)

By the Duhamel integral formulation, Eq. (1.1) can be written

t
u@®)=wae)p — %/ Wt —1t')d, (uz(t/))dt’, t>0. (2.14)
0
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To prove the local existence result, we will apply a fixed point argument to a truncated version
of (2.14) which is defined on all the real axis by

t
u(t) =y () {W(rw - Xﬂ‘%m / Wt — 1), (V7 (¢ Hu*(t)) dr’} (2.15)
0

where ¢t € R and v indicates a time cutoff function:
¥ € CP(R), supyr C [—2,2], v=1 on[-1,1], (2.16)
and Y7 () =y (/7).

Remark 2.2. It is clear that if u solves (2.15) then u is a solution of (2.14) on [0, T], T < 1. Thus
it is sufficient to solve (2.15) for a small time (7 < 1 is enough).

Let us now state our results:

Theorem 2.1. Let s; > —1/2, 52 >0, scl € 1—1/2, min(0, s1)] and ¢ € H*1>*2. Then there exist a
time T = T(||¢||HA,L1_0) > 0 and a unique solution u of (1.1) in

Yr = C([0, T]; H*"%) n X)/>*1%, (2.17)
Moreover, u € C(Ry; H1%2) N C (R ; H**2) and the map ¢ +—> u is C* from H*"*2 to Yr.
Theorem 2.2. Let s < —1/2. Then it does not exist a time T > 0 such that Eq. (1.1) admits a
unique solution in C ([0, T[, H*°) for any initial data in some ball of H**(R?) centered at the
origin and such that the map
¢ u (2.18)
is Cz-diﬁ‘erentiable at the origin from H*Y 10 C([0, T, H*Y).
3. Linear estimates in X?-51-%2
In this section we study both the free and the forcing terms of the integral equation (2.15) to
obtain certain estimates necessary to apply a fixed point argument. The results of this section are
essentially contained in [8]. The following lemma will be of constant use in this section:
Lemma 3.1. Let b e R and » > 0. Then
[£@0] g = G722V f O o (3.1
| £ D] o =22 £ O - (3.2)

Proposition 3.2. Let 51, s € R and 0 < b < 1/2. For all ¢ € H"*2 we have

[ @OOW @G go51.55 < Cllll sy 26-1.55- (3.3)
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Proof. By definition of W (-) and X”*152, and by performing the change of variable 7 - o :=

T — P(v) we have

[ OW OB g1 = [io +EX &V )2 F (¥ ()e E PO G0)) (@),
= (i + 2 & 2 F (Y e EGW) @) 2
< e 2 m2gm | £ @O )@ 2,
o G RIR IO [ ACIO LB TG P

(3.4)

Let 0 < b < 1/2. For & fixed, we take G¢(t) = ()P F, (¥ (1)e™"6%) (7). Noticing that, as in [8],

we have the following estimate:
IGell2(R) < CE)*!, vo<bh<1/2.
By combining these two last inequalities, we obtain the desired result. O

Now, for £ fixed, we introduce the following time-Sobolev space:
v ={ueS ®): luly =: (it +8) )] 120, < oo}

In order to obtain certain estimates in X152 for the following operator
t
Lif v e v [ Wa=o)f@)ar
0
we shall study in YEb the following linear operator:
1
K:fs v / e =1E £ (¢ dt.
0
Proposition 3.3. Let £ € R fixed and f € S(R?), 0 < § < 1/2. We consider the operator
t
1> Ke(t) = W(t)/e_"_”ng(t’) dr'.
0

Then the following estimate holds:

[Ke @]y < C<s>—25||f||ygm+s.

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)
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Proof. A simple calculation in [8] gives

o lr1g2
Ke(t) = w(z)/ 7f(r)dt. @3.11)

We can break up K¢ in K¢ = K9 + K 00 + K2,0 + K2 o0, Where

itt
Kl,oz:w)/ Ezf(r)dr Kloo—wm/ 2f(r)dr
MES! T[>1
o l11E? e lE®
K=y [ - S fma Ko=) [ £ =Tt
[71<1 |T|>1

Contribution of K1 . In this case, while using the asymptotic expansion, we have

Ko=voY | (mszf()dr (3.12)

+
n>1|r|<1

it results that

v (£00)

n!

. 2
lfiz +8%)' P FE K10 oy < 3

n>1 L%(R)
X / B |l:_|$2 |f(‘l,')|d1'
HS
AL tl//(t)
<<§ P S + 15| Lg)
x /| sy |f(D)]dx. (3.13)
LS

Using the inequality ||#"¢ (#)|gz» < Cn for b € {0,1/2}, n > 1, together with the Cauchy—
Schwarz inequality, we obtain

Fr) |2 12 2, ) 12
||K1,o||Y;/z<c(1+|é|)( / %w) </%d’>

lzI<1 lzI<1

22 12
<C<s>( / %dr) ()"

lzI<1

2N2 12
<o( [ geeme) a1

Izl
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Finally, since for 0 <8 < 1/2 we have (it + £%) > (it + £2)1723(£)* it results that

2 2 1/2
||K1,o||yg/z<0<s>2‘3( / (iflﬁ%fﬁ)

lzI<1

SCE) NSy

Contribution of K, .. Note that

lfiz + &%) Fi (K200 12y < liw +E)F WO 2 )
“ ( / F@1 dr)_
(it +£2)
lr|1>1
Using the inequality (3.5), we get now that

lfit+ &%) 2 F (w0 1) | 2, <C

therefore, by the Cauchy—Schwarz inequality we obtain

|f(0)]
||K2,oo||ygl/2 < C( m dT)
[z]>1
<C(f |f ()2 dr)“( / (it +82)~2 dr)”z
- (it +£2)1 7% (it +&2) '
R [T|>1

For |&]| > 1, the following change of variable 7 r&? gives

|.I?(T)|2 )1/2 —25(/ 1 )1/2
K7 <C ——d d
" ”Y;/z <]1! (it +§2)1_26 ’ ) (ryl+2 '

R
SCE) NSy v

since we have [, Wﬁ dr < oo.
In the other case when |£] < 1 it follows (&) 2% ~ 1. Therefore

. f@P 2 1 2
K2\ 12 S (E) 23(/ dt) (/ dr)
I 14 Hy;/Z J it +£2)172 J (7)1+20

—28
S (6) 1y -1
Y

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Contribution of K o. Note that

IK20ly1e < it +&2) P FE @O0 - )@ /

Izl

lit +&2|
Case 1: |&| > 1. Using the inequality (3.5) in the proof of Proposition 3.2, we obtain

1= |lie+8) PR (o1 - M) @)
< Jr@( =N @] e+ @ F @O0 =)@ 12
< C(1+(8) <Ce),

therefore,

.|f<r>| J
lit + &2

s

Kaolype <) [

lrI<1
now, we apply the Cauchy—Schwarz inequality to obtain

|FoP 12 (i +E2) 1/2
||K2,o||y;/2<c(§)( / md7> (/mdf)

Izt LN

A2 1/2
|f (o)l dr)

-1
<CiE)E| ( T

lzI<1

22 1/2
gc(/ !.f(f)l dr)
(it +£2)

lzI<1

_ |f ()2 12
<cw™( [ i)

lzI<1

<CE)y? £y v

Case 2: |&€| < 1. In this case we note that

1<po( - @] e+ @R @O - @],

n 2n
<yt - )@ e < [ EPEE

n>1

Hi

2n 1
<Y By o] e < 1Y <kl

n>1 ’ n>1

PAC IS

219

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Substituting this inequality in (3.21), then as in Case 1, we obtain using Cauchy—Schwarz in-
equality,

i 1@ )“2
IK20ly1 < CIENE] (/7(1.”52)‘”

lzIs1

SCE) ULy v (3.26)

Contribution of K1 . By the identity F(u % v) = @it and the triangle inequality (it + &2) <
(t1) + li(t — 71) + £2|, we see that

f)

U (1) * (mX{|n>n>

lity + &2

(it +£%)' (1)

1K1,00lly 12 =
& L%

< H [(x) /29 (1) * (

X{|n>1}>(f)

L?

+ HW}(TI” * (%X{m%})(f) (3.27)

it +§2|

L2

Due to the convolution inequality [lu * v|[;2 < |lu|l 1 ]lv]l; 2, we obtain
T T T

£ (D)
|iT + $2| X{lzI>1}
£ (o)

IK1ocllyie < [@d®]

L2

+[v©] .

L?

|f(0)]

EECTUES

<c® it +&)7 " F ol
SCE NSl (3.28)

L?

This completes the proof of the proposition. O

Now, by use of Proposition 3.3, we prove some smoothing properties in the Bourgain spaces
for the operator L defined by (3.7).

Proposition 3.4. Let 0 < § < 1/2 and 51,57 € R, there exists C = C(§) > 0 such that, for all
feX Vrsi=28.5 e haye

M =: K Csll f Nl x-1/2+8.51-28.5 - (3.29)

Xl/Z,sl.xz

t
xR, (DY (1) f W@ —1t)f')dt
0
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Proof. By definition of X /25152 we see that M is equal to

, (3.30)
L2

T,V

t
H & 2 (i(r = P0)) +E) P F (m N40) / Wt —1)f() dr’) (T, v)
0

we note that

t
Firx (Xﬂh(l)lﬂ(t)/ W —1)f(t) dt) ()
0
t
=F (m 020 / e M G PO F (1) v) dr’) (0)
0
t
=% (m O (®) / eI IE PO E (U £ (1, 1) dt’) (®)
0

t
=F (m+ OY0) / eI =i PON (!, v)dr’) (= P).
0

then by performing the change of variable t — t — P(v), we obtain

t
M= | () ()2 F (m+ Y40 f eI IE I PON £ (1) (1! ) dr’)
0

1/2
L2,

(3.31)

t
=& M= F (XRJr(t)w(t)/e|tt/szfv(U(_t/)f)(t/vV)dt/)
0

1/2
L2}

Now, let us set w(z, v) = F,(U(—t") f)(z, v). To apply Proposition 3.3, we need to assume that
f e S(R?). It is clear that w € S(R3), and we take

t
Ke: fr> w(t)/e*"*"'fzw(t/) dr, (3.32)
0

therefore,

M = [[{&)" ()2 Fi(xm, () Kz (1)) ||L%(Y;/z)
<@ 2 xe, OKe | 2| 12

+ & 02 xw, OKe ] 2] 2 (3.33)
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Since K¢ (0) = 0, then we have

lxe, K@ gy <K@y Jxme OKe@] 2 < [Ke@]] -

Consequently, by noticing that ||]|;2 = ||i]| go, it results by interpolation between H 0 and H!
that

| xr, (1) Ke (1) ”H,'/z < | Ke) ”HJ”' (3.34)

Hence

M <@ 0= [ Ke@] el s + 1€ 02 | K] o1

< C| &) ()2 Fi(Ke (1)) ||L%(Y5u2). (3.35)

Now, we can apply Proposition 3.3 to obtain

M <P 2wl 6) 2

—1/2+8

=clE 2 m=ic + 82T Fwo) | 2

=l 2 m2fic +82) PRV EDFE )2

—1/2+48

=C|&)" 2 ()2 (it + &) FlE+P.v)|, . (3.36)

finally, by performing the change of variable 7 — t — P(v) we can deduce that M <
CIl fll x-1/2+5.5)-28.5, , this for any f € S(R3). The result for f € X~ V251-20.5 follows by
density. O

Proposition 3.5. Let 51, so € R and 0 < 8 < 1/2. Forall f € X~ V/218:51725.52 o haye
t
L:tr / W —1)f(t")dt' € C(Ry, H'?), (3.37)
0

—1/2+468,51 268,52

moreover, if (f) is a sequence with f,, — 0in X as n — oo, then

-0. (3.38)

t
f Wt —1t)f,(t)H)dY
0

L®(R,y,H12)



B. Kojok / J. Differential Equations 242 (2007) 211-247 223

Proof. By Fubini theorem, and by the definition of W(.) we have

t
L(t)= / Fyl (e 8 i PO E (£ () di
0

t
= / e P / e ey (U FE)) ) de!
R2 0
t
_ 42
=U (r)f(x}y)[ / eI E (8, D)) () dt/:|, (3.39)

0

where g(t,v) = (U(—1t) f(¢))(v). As noticed in [5] since U (-) is a strongly continuous unitary
group in L2(R?), itis enough to prove that t > U (—1)L(t) € C(Ry, H%2), then it is equivalent
to show that

t
Fitrs (£)5(n)% / eI Frey (0, ) ) dt’ (3.40)
0

is continuous from R in Lz(Rz), for f € X V2H8s1=285 () < 5 < 1/2. Note that by the Fubini
theorem we have

t

F(t) = (£)" ()2 / ¢ Foe (e, D)y dt!
0

t
:(E)Sl(n)”e—tmz/§(r,v)/e(”+|§|2)’/dt/dr
R 0

Pt _ e—|§|2z

= (&)’ () 2/g(r,v)Wdr. (3.41)
R

One fixes t1, t € R4, then

F(t) — F() = () () f BV it — it — (75 _ ~P)] o
=: (&) <n>s2/1t1,tz(r)dr- (3.42)

We deal first with the case |£| > 1. Using Cauchy—Schwarz inequality we obtain



224 B. Kojok / J. Differential Equations 242 (2007) 211-247

5 [ 18 VI
lit + &2
R

178 18(t, v)|? 1/2 (it +£2)1-2 172
R R

Since in this case we have |iT 4 &2| ~ (iT 4 £2), then the change of variable T > r£? leads to

. 2 12 J 12
F() - F()| < c<s>“<n>SZ< %m) |§|2‘3</ mﬁdf)
R R

|F(t) — F(t)| <4€)* (n)

<@ 2 e fic + )80 ] . (3.44)

In the other case when |§| < 1, we assume that |f; — | is small enough. We can write
|F(t1) — F(2)| < I + I, where

CIE\ST (S 8(r.v) 5 it
I =: (&))" (n)*? /”Jrsz[el”—e‘ﬂ]dt, (3.45)
R
RPRY s 8(T,v) —£2¢ —£2¢
I =: (§)" ()™ /m[e L—e5 " ]dr|. (3.46)
R
We first estimate /. By Cauchy—Schwarz inequality, we see that
g(t,v) / g(t,v)
L= (&) ()2 |0 —¢ dt+2 d
R [I1 2'/""n Glare2 [ 82 ar
IrI<1 [TI>1
2/; 2y1-25 1/2
) \—1/245 A [T|“(it +§°)
§C<§>SI<W>S2”<IT+$> g("v)”L%[( / W
ITI<1
|i‘[+§2|1_26 )1/2]
+ ————drt . 347
( / lit+ &2 (47

lzI>1

Since for |£] < 1, we have (it +£2)! 720 ~ (r)1723_ Using this approximation in the first integral
of (3.47) together with the change of variable T > r£? in the second one, we obtain

n<cE w2 lic+€) e

- 172 1 1/2
x(( / (t)1 25dr> +<R/—(r)1+28 dr) )

lrI<1

<cErrm= (it +&) 0w .. (3.48)
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Note that in this case (£) 2% ~ 1, therefore
- . —1/248
n<CE (it +€3) 80w (3.49)

Now, we pass to estimate /5. By Cauchy—Schwarz inequality it results that

S s . —1/246 4 (it +&5)1=% 12
L <CE) m)2Ig P (it + &%) 2(, v>||Lg(R/ Tiraep ) - G50
Since we have
(it +$2)1—25 _ (it+é§2)l—25 (ir+§2>1—28
e T f e T / irrep 7
[7I<1 |r|>1
<C(IEI™ +1817%), 3.51)
then
L <@ leP(8172 +18172) iz +82) 720w
<c@ Bm|lic +&37 e . (3.52)
Finally, gathering (3.44), (3.49), (3.52), one infers that
|F) = Fa <@ e+ a2,
= C|l fll x-1/2+5.51-25.5, - (3.53)

It is clear that the integrand in (3.42) tends to 0 pointwise in (t, v) as soon as |f; — 2| — 0 and
is bounded uniformly in | — #2| by the right member of (3.53). The result follows then from
Lebesgue dominated convergence theorem.

To show (3.38) it suffices to notice that one has

sup || Fa () | 2 g2y < Cll fall x-12051 2552
teR4

where F, is defined as F with g,(.) = F,(U(—t) f,(¢)) instead of g. This completes the
proof. O

4. Strichartz and multilinear estimates for the KP-equation

The goal in this section is to prepare certain Strichartz and multilinear estimates by using
result derived by Molinet and Ribaud in [8] and Saut in [12]. This type of estimates is necessary
to treat in the next section the nonlinear term d(?) in X?152_ The following lemma is prepared
by Molinet and Ribaud in [8].
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Lemma 4.1. Let v € L>(R?) with suppv C {(t,x,y): |t| < T} and let € >0, §(r) =1 —2/r.
Then for all (r, B, 0) with

0
2<r<o0, 0<K<B<1/2, Og(S(r)gl_IB/3 4.1
there exists i = pu(e) > 0 such that
|71 (15 (= P)) T e, )| s < CT M0l 28, 4.2)
where q is defined by
2/g=1—=8/3)(r)+ (1 —0). 4.3)

Now, we will use Lemma 4.1 to derive a first multilinear estimate.

Lemma 4.2. Let u, v with compact support in {(x, y,t): |t| < T}. For b > 0 small enough, there
exists ;u > 0 such that

o
< CTHull gz vll2 w2 44)
where o, o1 and oy are defined by
o=1t— P(), o =11 — P(v1), oo=1—11— P —11). 4.5)
Proof. By the Plancherel theorem we see that
1= / o ('w(f/zv)lJ)f ( ('”;T' ;3/'4 : ';A’l(;;_';))M)(r, vdrdv,  (46)

by using the fact that ;) (h % f) = F; (h) * F;. (f) then by applying Holder inequality in
space and next in time we obtain that / is bounded by the product of the three terms

_1 1oz, V) _1f iz, v)l BYARUICAY]

where

, @

q3.3
Lt.x

q1:71 q2:72
Lt,x Lt,x

3

lgi=1. Y 1/ri=1. (4.8)

i=1 i=1

WE
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Our goal now is to estimate the three terms of (4.7) by using Lemma 4.1. Let b be small enough.
We take first €] = €2 = €3 = €, where € = €(b) will be a small parameter. Also we choose

1-2b 2b 1—-b/12
9, = , 9, = , O3 = —1 "~ 4.9
'y 2T 1xe 3T 1 xe 49
we choose 1 = B3 = 0. From (4.3), it remains to find 8>, ¢; and r; with
2 2 S(r
20, = =80+ (1— 6y — 2202
q1 q2 3
2
— =68(r3) + (1 —63), (4.10)
q3
b
B28(r2) = 3 4.11)

such that (4.1) remains valid for i = 1,2,3. It is simple to check that Z?:lZ/qi =2,
Z?:l 8(ri) =3 — 22,-321 1/ri =1, Z?Zl 6; = 22212 Hence, adding the three equations in

1+e
(4.10), we see necessarily that ;%//g, =Y 8r)+3->6 — M Thanks to (4.11) this
. . . — b -
relation is equivalent to 2 =4 — Tre — ¢ 1€
b/24 b
erbpa_ b (4.12)
1+e€ 12

Therefore, for b small enough, it is clear that € = €(b) = ﬁ = 0T. Now, we choose

(r1.72.73) = (135 125+ 145)- It is simple to see that }_1/r; = 1 and (8(r1), 8(r2). 8(r3)) =
(1/2—-0b/2,b,1/2 — b/2) and the relations of (4.10) can be written

Yai=12-bp2+ T2 g mppr- 0
= l+e’ 2= l+e 6
b/12
2agy=1/2— b2+ T2 (4.13)
1+e€

Now, due to the fact that € = ﬁ, we infer that

2/q1=1/2—b/2+ 49b —4b? _ 1/2 + T4~ (4.14)
n= %U—b 204—b)° :
2b(24 — 2b) —168b + 192
2/gy=145b/6 — = , 4.15
/92 +5b/ Y 604 —b) (4.15)
2/qg3=1/2—b/2+ 18h — b? —1/2+ ~27b+ b2 (4.16)
B= 6(24—2b) 324—b) :

Therefore by the relations (4.14)—(4.16), it is clear for b small enough that (2/g1,2/g2,2/q3) =
(%+, 1-, %7), ie. (q1,92,93) = (47,2%,4%) and by construction we have Y 1/q; = 1. It re-
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mains to check that (4.1) is valid for our parameter. Indeed, by definition of 6; in (4.9) it is clear
that 0 < 6; < 1 fori = 1,2, 3. Since (8(r2), 62) = (b, 2 ) we see that

' Tte
b 1 24 —2b 2b 0
0<fr= =, 0<8(r)=b<2b = =< — (417)
28(r)) 2 24—b 14e¢ 1—B8/3

Moreover, since we have the equality (8(r1),8(r3)) = (5, 17) and (61,63) = (1722, 15242), it
is simple to see for i =1, 3 that

0< B <1/2, 0<8(ri) <6 < i (4.18)

I P X s o)l ———5. .
’ N WK

By combining Egs. (4.17) and (4.18) we have (4.1), and now we can apply Lemma 4.1 to obtain

—1 |12)(7:’ U)'
- - < M
‘ Fi <<0>1/2_h L9171 ST ”w”L’zva’ (4.19)
t,x
_1f iz, v)l
F N —=7 <CTH : 4.2
‘ (<<r>b|s|b/4 pan ST MLz, (4.20)
—1 |i>(t’ V)|
’ F <W Lo S Clvlizz - 4.21)
t,x

This completes the proof. O

Lemma 4.3. Let u, v € L*(R3) with compact support in {(x, y,1): |t| < T}. Forb>0andc >0
small enough there exists i > 0 such that

la (e, v)ll0(T — 1, v — V)[R (T, V)|

drdrtidvdv
(01) 12161 PPH o) 120 e
RO
<CT™ullz ol w2 (422)
where o, o1 and oy are defined by
o=1—P©W), oy =11 — P(v1), op=t—1— P —1)). (4.23)

Proof. By Plancherel theorem and by Holder inequality in space and time we see that the right-
hand side of (4.22) is bounded by
_1 19(z, )|
ft,X<(o.)1/2—b I

i laz,v)|
'fr,xl (W) lwllz2, (4.24)

ar.r 2.2
Ll,U t,v

provided

1/r1+1/rn=1/2, 1/q1+1/q2=1)2. (4.25)
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To apply Lemma 4.1 to each of the first two terms in (4.24), for b and ¢ small enough we take
€1 =€ =€, where € = €(b, ¢), we set

1 1-2b
= , 6y = , 4.26
1+e 2T 1 ¥e (4.26)

01

and we choose 8, = 0 and 1 such that m =3b + c. From (4.3), it remains to find S, ¢; and
r; with

B16(r1)
3 b

2 2
—=0(r)+1-61)— — =08(r) +(1—62) (4.27)
q1 q2

such that (4.1) remains valid for i = 1, 2. It is simple to see that Y"2_, 2/g; =1, Y 2_, 8(r;) = 1
and Z?:lei = 2-2b Hence, adding the two equations of (4.27), we see necessarily that,

— 1+
I=1+2- %) — %. This relation is equivalent to # = %, ie.
c
‘T3 db-c 429

Therefore, for b and ¢ small enough, it is clear that € = €(b, ¢) = 0. Now we choose (11, r2) =
(4,4). It follows that > 1/r; = 1 and (§(r1), 8§ (r2)) = (1/2, 1/2) and the relations of (4.10) can
be written

€ 6b + 2c 2b+ ¢
— , 2/gr=1/2 . 4.29
1+e 3 /a2 =172+ (4.29)

2/q1=1/2+

From (4.28), we get that (2/q1,2/q2) = (%7, %Jr), i.e. (q1,92) = (47,47) and by construction
we have > 1/g; = 1/2. Moreover (4.1) is valid for our parameter. Indeed, for b and ¢ small we
have that

6b+2
@0 =717, po=2T  piac—0t<1/2
3(r2)
and
Sri)~1/2<1"=6;< i
ri) ~ <1"=6; < ———.
’ CT1-8/3

Now we apply Lemma 4.1 to give a suitable bound for each of the first two terms in (4.24). This
ends the proof of Lemma 4.3. 0O

Lemma 4.4. Let 2 < g <4 andu € LZ(RZ) with compact support in {(x,y,t): |t| < T}. For
e>0andb=(1—- 2/q)(1%), there exists i = u(€) > 0 such that

|77 (o) " |acx, “)D”LZV SCTullyz,. (4.30)
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Proof. For any ¢ € L?(R?) the Strichartz inequality in [12] (see Proposition 2.3) yields
HU(I)¢HL;{U < lllg2s (4.31)
where
Fin(U)¢) = eXP<lt<E3 g ))qs(s M. n=:L.

Using (4.31) together with Lemma 3.3 of [4], we see for all € > O that

Ju. v s <Clo) > @ ], (4.32)

Since we have |lull;> = llullxo00, therefore by interpolation between (L}, X1/2+e/4.0.0y
Ry k)

and (L, v XO’O’O), for 0 <0 < 1, we obtain
Ju 0 <C@) VP (4.33)
where
1-6
2/q=6/4+ — (4.34)

Next, using the assumption on the support of u and the results in [5], we get that there exists
u = u(e) such that

Ju o <CTH [ V2P v 2 (4.35)
from (4.34), the desired result is deduced. O

Using Lemma 4.4 together with the proof of Lemma 2.2 of [13], we obtain the following
lemma.

Lemma 4.5. Let u, v, w € L>(R?) with compact support in {(x,y,1): |t| < T} and a, B,y €
[0, 1/2 + €]. For any € > O there exists = ju(€) > 0 such that

/lu(n,m)llv(f—fl’ —WIRDE I e aan,

“(o1)B (02)Y

<CT™fullz ol w2 (4.36)

proven fora + B +y =1+ 2e.
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5. Bilinear estimates

In this section we will prepare certain bilinear estimates on d,(xv) in the Bourgain
space X252, These bilinear estimates will be the main tools in the next section to apply a
fixed point argument which will give the local existence result.
Proposition 5.1. Let § > 0 small enough, s; > 0 and 51 € [%] +88,0]. Forall u,v € XY/%s51:52

with compact support in time and included in the subset {(t,x,y): t € [T, T]}, there exists
> 0 such that the following bilinear estimate holds

” Oy (uv) ||X—l/2+5,s1—28+e,s2 S CTHull 172505 101 172505 (5.1)
for some € > 0 such that € K 6.

Proof. We proceed by duality. It is equivalent to show that for § > 0 small enough and € <« § for
all w e X1/2-8.—s1+28—¢,—52

(0 (), w)] < CTH[uell 172,515 101 1725050 1w 1725,y 42555 (5.2)

Let f, g and h respectively defined by

f@ v =(i(t — Pw) + &) 7€) ()i, v), (5.3)
2(t,v) =(i(r — P0)) + £ (&) )2 (x, v), (5.4)
hr,v) =(i(x = P)) +£2)"2F () =ty =25z, v). (5.5)
It is clear that
llyrrzsse =12, Wollgiss =lglz s w1 =kl -
Thus by Plancherel theorem, (5.2) is equivalent
/ &A1, v)IIg(r — 1, v — vD) (T, V)| ()17 2+
(io +E)V20(ioy + &)1/ 2(ioy + (E — £1)2)1/2 (& — &1)S1(&1)%
X Ldr dtidvdv;
(n —n1)*2(n1)*
SCT*ullz Nvllzz wllyz - (5.6)

Moreover, we can assume that s, = 0 since in the case sp > 0 we have

(n)*

W <C, Vn,meR. (5.7

Therefore, setting s = —s1 € [0, 1/2 — 86], it is enough to estimate,
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1:-/ (e v)lI§ (e = 71, v = v)llA(z, )]
J {io + 8N oy + &) P lioy + (€ — D)2

RO

51 — &1)° (61)°
x 25— SLF Sl

(Eyre drdrtidvdv.

To estimate I we will use an algebraic relation between o, o1 and o5

En—&m)?

—o=3 _
o1+oy—o =386 - &)+ Prr——

(see [1]), which ensures that

loy+02 — 0

. LS leaie - 8.

max(o |, o1]. |oa]) >

(5.8)

(5.9)

(5.10)

A symmetry argument shows that it is enough to estimate the contribution to / of the subset
of RS, 2 = {(z, 71, v, v1) € R®: |o7| > |02]}. To do this we split £2 in £2 = £2; U £2, where

21=20{( 7,0, v) €R% [§] < Co, Co> 1},
=20 {( 7,0, ) €R% [§] > Co, Co> 1}.

Case 1. Contribution of £21 to /. We divide £2; in three regions:

2] =210 {(r, 71, v, 1) €R% |&] <2C},
2f =210 {(z, 7, v,v1) €R% o] > |oul, |&1] > 2Co},

2} =210 {7, v,v) €R® |o1] > o], &1] >2Co}.

It is clear that £21 = .Q]] U .{222 U 5?13

Case 1.1. Contribution of §2 11 to /. Denote by 1 11 the contribution of this region to /. In this case

we have |& — &1| < |£| 4+ |&1] < C and we see that

516 — &1)" (1)

<§>s+287e <C

and hence,

11<C/ |A(r v)IIE (@ = 11w — ) [lA(z, v)|
P o 1891230y 8120y + (5 —51)2)12

dtdrtidvdv.

R
_ C/ (e v)llg( =71, v — o)l v)|
b (0)11273(01)12(0) 1/2
RO

dtdrtidvdv;
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Now, we can apply Lemma 4.5 to deduce

1
< I3
I <CT ullg2 oll2 lwlle -

Case 1.2. Contribution of [212 to /. Denote by [ 12 the contribution of this region to /. Since we
have, in this case, |£| < 1/2|&;], it follows that || ~ | — &1 |. Therefore

1€ — &0)* (51)° s
Wgas—mz 1.

Moreover, since |o| = max(|o|, |o1], |o2]), by the relation between o, o1 and o7 in (5.9) it results
that |o'| > |&[|&1]1& — &1]. Therefore

ol > EFIE1IE —&1I° > 18 — & 7€

and hence,

25 1£1515 s P
h — — h
112§C 1§ — &= IE17 |h (T, v)Ig (T — 71, v —v))|A(T, v”drdr] dvdv;

(o +E1)12ioy + E1)1/2ion + (§ — §1)2)1/2

h(x, — v —vp)llh
/| (11 v1)||8(f 1, v —vllAc, v)|drdr1dvdv1,

1/2 s— 8( )1/2( )1/2

since s € [0, 1/2 — 868], we see that (1/2 —s —§) +1/2+ 1/2 > 1 4 76, therefore a use of
Lemma 4.5 provides a good bound for / 11.

Case 1.3. Contribution of [213 to I. We denote by [ 13 the contribution of this region to /. In this
case |01 | dominates and |&| ~ |&€ — &1|. Because of (5.9), we obtain

51(6 — &1)"(61)°

<€:>s+28—e

< ClE—& ¥ &) < (o).

As in Case 1.2, we obtain by Lemma 4.5 that

/Ih(tl,m)llg(f—fl v —v)lh(z, V)|

1735 (589 () 112 dtdtidvdv;

< CT"IIfIIL;X lgll,z WAl

Case 2. Contribution of §2, to /. We divide £2; into three subdomains Q. i=1,2,3,such that
§2) = [221 U .{222 U .Qg’, where

2, =20 {(x, 11, v,v1) €R®: min(&1 ], &) < 1},

23 =20 {7, v,m) €R% o] > o1, min(j&], [&2) > 1},

25 =20 {1, v,v) €R® og| > o, min(|§], 1£]) > 1.
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Case 2.1. Contribution of 7 in [221 We denote by 121 the contribution of this region to . We
first assume that min(|&1], |§ — &1|) = |&1]| and thus |§ — &1| < 1+ |&] < (1 + Cp)|&|, therefore
|E] ~ |& — &1]. It follows

[E1(6 — &1)*(61)°

(E)s+287€ < C|§|1726+6'

Since (io +&2)1/270 > |E|172 (ioy + (£ — £)%)1/% > (02)1/27%1& — &|€ and |&] < 1, it results
that

dtdtidvdv;

. (e, w18 — 1, v — v)|lA(z, )|
hs C/ (01172 (a3) 2

h(ti, —7,v—w)llh
/I (. v)lIg (T — 71, v — v llA(z, v)|drdr1dvdv1.

(o1)1/21E1[4 (o) /272

Now a use of Lemma 4.3 provides a bound for 121. The other case where min(|&{[, |§ — &1]) =
|& — &1], follows exactly in the same manner since in this case we did not use the supposition:
|o1| = |o2|, that was allowed by symmetry.

Case 2.2. Contribution of .(222 to /. In this case we need to divide .{222 in two regions defined by

. 1

' =220 {(r, 1, v, v1) € R min(|&], &) < C—0|é'|},
. 1

P =2In {(r, t1, v, v1) € RO min(|&], |£2]) > C—O|§|}.

Case 2.21. Contribution of 9221 to /. We denote by 1221 the contribution of this region to /.
By symmetry argument we can assume that |£1| < |€ — &;]. It follows |&] < CLO|§| (Co>1).

Therefore |§ — &| < €] + 1&1] < Cl§| and [§] <611+ 1§ — &1 < &€l + 15 — &l ie. [§] <

ﬁ@' — &1| and thus |§ — &1| ~ |&]. It results that
€16 —&1)°(51)° _
W < C|$|1 25+€|$1|S,
and hence

|dtdtidvdvy.

<C/ 61" 16 (. vDlI1g(r — 71, v = v llA(z, v)|
| {io + )12 ioy +87) 1 ior + (6 — )1 2700 — &1 °
R

Since in this case |o| dominates, we obtain

. nl/2— 8
i +E%)/270 > (o) /270 > g 1/270 g |12 — |12 > g 10y 120
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therefore,

2t e [ 1 vlEE — v — vyl v)|
2 6111727075 (1) 12(0) 11279
RO

drdrtidvdv.

It is clear that 1/2 — 6 — s > 46 for s € [0, 1/2 — 85]. Now we can apply Lemma 4.3 to esti-
mate 1221.

Case 2.22. Contribution of [2222 to 1. We denote by 1222 the contribution of this region to /. In
this case, we notice that |&| < |&1] and |&]| < |€ — &, it results that

JENE Z 8P  cpgpimotzs-ojg e — gy

<%->s+26—e
1+5+28—€ 2 1-2 §— .
SClE|T 35 ]3I0 Mg e — gy
14+s+28—€ 1+54+25—€ 14+s+28—€
SCIET 3 &l 3 1E=&1 3
l+s+328—5

< (o) ;

and hence

dtdrtidvdv,

2 C/ (e vDI1E(r =1, v = vp)llh(z,v)|
2 0= _ Ids428—e
g @ PTTET 0) 2 oy) 2

since s € [0, 1/2 — 88] we see, for € « 8, that 1/2 — % —8§= % > §, therefore
we can apply Lemma 4.5 to estimate 1222.

Case 2.3. Contribution of .(223 to 1. We divide .(223 in two parts:

. 1
2'=023n {(r, t1, v, v1) € R min(|&], |£]) < C—0|s|},
. 1
22 =023n {(r, t1,v,v1) € R®: min(|&1], |&]) > C—Om}.

Case 2.31. Contribution of 52231 to /. Because there is no symmetry between |£1| and |§ — &{|
we distinguish between two regions of .QSI:

23" = 23" n{(x. 11, v, v1) €R% min(|&1, 162]) = &1}
252 =23' n{(x. 11, v, v1) €R% min(|&1], |62]) = & — &1}

Case 2.311. Contribution of .(223 1 to 1. We denote by 12311 the contribution of this region to /.
In this case we have |&]| < Cio|é| and thus |&€ — &;| ~ |&|. Therefore
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(6 — &1)*(51)°

R < CLE"PH g

1-2
<ClE—&|720F g
and it results that

_ g 1-28+€ s1h S5+ _ h
Bl<c [3 §1| €11 |.(T1,V12)||g(f. 1, v —vllh(e, v)|drdn dvdv,.
(io + £330y + &)1 2(ioy + (5 — £1)2)1/?

RO
Note that
lioa + (€ —£)%)% > (02) 2=l — &,
On the other hand, since |o| dominates, we see that
fion+87)* > (1) (1) 27

> (01)°|E]V2 701|120 — gy 120

> (01)°1& — & 1722

By combining the two last inequalities, we infer that

Bl < [h(t1, vDII&(T — T1, v — v)]|A(T, V)]

S (0.)1/2—8 (0’1)5|§1|1/2—5—S (0_2>1/2_E/2 dtdrtidvdv.

RO

Since 1/2 —§ — s > f—P it follows by virtue of Lemma 4.2, for € < § (¢ < §/12 is enough), that

h(ty, — 1,V — h
PR /I (z1, vDIIg(x — 71, v — v)||h(z, U)ldtdtldvdvl

o)1 (1) 61| (02) /20124

< CT“IIfIILth gl Al -

Case 2.312. Contribution of .{2312 to 1. We denote by 15’12 the contribution of this region to /.
In this case we have |§ — &1| < Ci0|€| and thus |&1| ~ |&|. It results that

E1(6 — &1)"(61)°

e~ SCEITE - (5.11)

Since |o| dominates in this case, for € < § we obtain

. 1/2 . b _
fion +&3)"2 > (ioy +£2) (o) /2
&€ (o) 07/ |E |1 /27015y |20 — gy )1 /2 0

>
> (01)2 72 |E — £ |V/2 0| B
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and since |oq| > |o|, it results, for s € [0, 1/2 — 8§] and € < §, that
. 1/2 _ _ _
ion +82)% > (0)0 7215 — |12 120, (5.12)

By combining (5.11) and (5.12), we can deduce that

dtdrtdvdv

P2 o [ @ DlIgE =7 — )z, v)
2= A (0’)1/2_6|$—$1|1/2_S_5((72)1/2
R
. C/ (e vDlIE( =71, v = v)llh(z,v)|

<0)1/2_5|€:_§1|4€(0—2>1/2 drdrtidvdv.

RO
Now Lemma 4.3 provides a bound for 12312.

Case 2.33. Contribution of .{2233 to /. We indicate by 1233 the contribution of this region to /. In
this case |0 | dominates and we have |§ — &| > CLO|$|, |&1] > CLO|§|. Hence

M < C|$|1—(S+25—€)|§1|5|g -5/

<§)s+2875
I+s+25—€ 1+s5+26—€ I+s+25—€
SCIE 3 &l 3 E=&1
I+5426—€
<o 3,

it follows

drdrtidvdv.

ey C/ A wlIg@ — 7w — vl V)|
20X (0>1/2_6(01>1/271+S+32576 (02>1/2

RO

It is clear that, for € < 6, (% -8+ (% - %) = % + w > %Jr. Therefore we can
apply Lemma 4.5 to estimate 1233 .
This completes the proof of Proposition 5.1. O

Actually, we will mainly use the following version, which is a direct consequence of Proposi-
tion 5.1, together with the two triangle inequality

1 1 1 .l
Vsi = sl (E)T < (E) (£1)517% + (£)% (£ — &)1 7%, (5.13)
("2 < ()™ + (n—n1)™. (5.14)
Proposition 5.2. Let sLl. €1-1/2,0], so = 0. Forall s; > scl, and u,v € XV/25052 yith compact

support in time and included in the subset {(¢t,x,y): t € [T, T1]}, there exists u > 0 such that
the following bilinear estimate holds:
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” 0x (uv) ” X —1/2+8.5—25+e.5;
< CT“(||L¢||X1/2'S(1H0 ol 17200 + Nl xi2s.0 0l 100 + Nullxr2s 0V,

1l 1,0 101 x1/2:510) (5.15)
this for some & > 0 small enough and € > 0 such that € <K 4.
6. Proof of Theorem 2.1
6.1. Existence result

Let ¢ € H*"2 with s1 > —1/2, s > 0 and sg € ]—1/2, min(0, s1)]. We suppose that T < 1,
if u is a solution of the integral equation u = L(u) with

t
xR, (1)
L(u) = w(t)|:W(t)¢ — # / Wt —1)dx (V7 Hu*(t)) dﬂ}, (6.1)
0
then u solve (KPBII) equation on [0, T /2].We introduce the Bourgain spaces defined by
Zy={ue X202 |z, = llull 12500 + villull y126.5 (6.2)
Zy={ue X" lu|lz, = el 12500 + vallull 12510}, (6.3)
where
DIl gys1.0 81,500
e (6.4)
Pl Frs1-s2 Pl gysi.0

The goal to introduce two Bourgain spaces is to show in a first time that there exists 77 =
T (||l gys1.0) and a solution u of Eq. (6.1) in a ball of Zy, and then to solve (6.1) in Z; in or-
der to check that the time of existence 7 = T (]| ¢ || Hsﬂno) with sc1 e]-1/2,0].

Step 1. Resolution of (6.1) in Z;. By Propositions 3.2 and 3.4, it results that

|L@)|| 4172500 < Cllplgsro + C |8 (W7 Ou?) || 120551 -251c0+ (6.5)
1L | g1/251.50 < Clidllgsisn + C||e (WFOUP) | y—1/2485) 2505, - (6.6)

By Propositions 5.1 and 5.2, we can deduce
12| 1200 < CUGllger.0 + CT |7 | 172,100 ©6.7)
L@ | 125000 < Clllzsisn + CTH|[Yrr (@] gas2y 0|7 @] 172515 - (6.8)

By Leibniz rule for fractional derivative and Sobolev inequalities in time we have, for all € > 0
and 0 < T < 1, that

H Yr(t)u ” g1z < CeT ™ lull 1255, -
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Taking € = 11/4 we obtain

IL@|| g1/2500 < Cligll oo + CTH[ull 3125, 0 (6.9)

1L | 17210 < CUBllzsr2 + CTH el 2. 0l 12005 (6.10)
By combining two estimates (6.9) and (6.10) we obtain
L@, < C(Ill g0+ vill¢llmsn) + CTH 2 ull, . (6.11)
Since we can write 9y (u%) — 8(v2) = 8, [(u — v)(u + v)], in the same way we get
”L(u) — L(v) H 1/2 510 < CT“/ZHM — V|l y12sp.0 | + V|l y1/2.51.0, (6.12)
L u)— L v LST1,8
| L) ()||X1T/212
< CT“/2(||M =Vl y12s0lle + vl 17255 + lu+ vl g1/2.5.0lu — U”Xl/l.rl.xz). (6.13)
Consequently, it results that

|Za) = L) 5, <CT"2llu = vliz, lu+ vz, (6.14)

Hence, setting 71 = (4C2(||¢||Hs1,o + Y1ll@ll gs1.52)) ~2/# which yields, by definition of y, to
T = (8C? ||¢||Hs1,o)_2/“, we can deduce from (6.11) and (6.14) that L is strictly contractive on
the ball of radius 71 = 2¢(||@ |l 7s;.0 + y1ll@ll gs1s2) in Zy. This proves the existence of a unique
solution 1 to (6.1) in X1/2:5152 with T} = T (|||l y5,.0).

Since ¢ € H*'2, it follows that ¥ ()W ()¢ € C([0, Ti], H"*2), moreover since
up € X'/250%2  we can deduce from Proposition 5.1 that d, (uz) € X, J12H8s1m202 ang
from (3.37) in Proposmon 3.5 it results that

f W(t —1t')0y (u%(t/)) di' € C([0, Ty], H*"*).

Thus u; belongs C([0, T1], H*'+%?).

Step 2. Resolution of (6.1) in Z;. Now proceeding exactly in the same way as above but in Z,,
we obtain that L is also strictly contractive on the ball of radius r; = 2¢(||¢|| sdo T V2191l gs1.0)
in z2 with 7> = (4C2(||¢ || sto T 720l gs00)” 1/i Therefore by definition of y», it follows that

= T(||¢>|| +.0)- Since obviously Hv2 < H90 it follows that there exists a unique solution
uy to (6.1) in C([o o), B0 N X2 and T, = T (Il 1), 51 € 1-1/2, 0], If we indicate

by Ty = Thax the maximum time of the existence in Z; then by uniqueness, we have u; = u3 on
[0, min(73, T,)[ and this gives that T, > T (]|¢||
The continuity of map ¢ — u from H*152 to X 1/2:51:52 follows from classical argument, while

the continuity from H*'*2 to C ([0, T1], H*!>*2) follows again from Proposition 3.5. The analyt-
icity of the flow-map is a direct consequence of the implicit function theorem.

HsCI.O)'
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6.2. Uniqueness
The above contraction argument gives the uniqueness of the solution to the truncated integral

equation (6.1). We give here the argument of [9] to deduce easily the uniqueness of the solution
to the integral equation (2.14).

Letuj,up e X IT/ 25182 be two solutions of the integral equation (2.14) on the time interval
[0, T] and let ii; — ii5 be an extension of u] — up in X /251:52 such that
iy — w2l 172505 < 20w — w2l 172505
X
Y

with 0 < y < T/2. It results by Propositions 3.2 and 3.4 that

ey = w2l 17200

<

t
vf(r)“‘%(’) / Wt —1a, (W2 (@1 () — a2 (e)) (w1 () + ua(t))) i’
0

X]/2,s1,.v2

|0 (W (0) (i1 (1) — 2 (1)) (1 (8) + ua(0))) | 1724851 251652

<C
20~ ~
<SCy" Pl — a2 i+ uall 1721
T
for some © > 0. Hence

2
luy — uall 12syp < 2CYH 2 (lurll 1j2sysy + luall 12y )l — w2l 172,00 -
XVIZ\ ( Xle XT12) Xylz

Taking y < (4C([lu; (l)IIXIT/z.sl,s2 + ||u2(t)||X1/z,x1,s2))’”/2, this forces u) = us on [0, y]. Iterating

this argument, one extends the uniqueness result on the whole time interval [0, T'].
6.3. Global existence

By Proposition 5.2 3 (u?) € X ~1/2+8:514€=28.52 therefore by Proposition 3.5 we obtain that
t
/ W(t =13, (u*(t))) dt' € C([0, T, H'&%2).
0

Note that W ()¢ € C(R4; H*%2) N C(R* ; H>%2). Hence
uEe C([O’ T1: Hs1,sz) ) C(]O, TI: Hs1+€,s2).

Recalling that 7 = T(”‘b”HSJ--()) with s§ € ]—1/2, min(0, s1)] and using the uniqueness result,
we deduce by induction that u € C(]0, T']; H®%2). This allows us to take the L2-scalar product
of (1.1) with u, which shows that # — |lu(¢)||;> is nonincreasing on ]0, T']. Since the time of
local existence 7 only depends on ||¢|| koo this clearly gives that the solution is global in time.
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7. Ill-posedness results for the (KPBII) equation

In this section, we prove the ill-posedness result for the (KPBII) equation stated in Theo-
rem 2.2. We start by constructing a sequence of initial data (¢, ),, which will ensure the nonreg-
ularity of the map ¢ — u from H*? to C([0, T'], H*°) for s < —1/2.
7.1. Proof of Theorem 2.2

Let u be a solution of (1.1). Then we have
1 t
u(g,t,x,y) =Wn)gp(x,y) — E/W(t — 13, (u* (¢, 1, x, y))dt’, (7.1)
0

suppose that the map is C2. Since u (0, 7, x, y) = 0 it is easy to check that

d
w (t,x, y) = ﬁ(o, 1, x, y)[h] = w(t)h,

9%u
ux(t,x,y):= GTSZ(Q t,x,y)lh, h]

t
—/W(t—t’)ul(t',x,y)3x(u1(t’,x,y))dt’
0

t
- f W — 1), (W' k) dr. (7.2)
0

Due to the assumption of C2-regu1arity of the map and since that (0, ¢, x, y) = 0, we can write
a formal Taylor expansion

wh, 1%, y) = ui (6, x, DI+ ua(t, x, Yk, k1 + O (171200, (7.3)

and we must have

lur(t, s )| oo SWallgeos Juate, o )] oo S IR1Z00- (7.4)
Taking the partial Fourier transform with respect to (x, y), it results that

t

Frestyoon (u2(t, ) = / exp(—[t — t'1&%) exp(i(t — ') (&7 — n?/£))

0
X (i8) X [Frst yron (w1 (') x ur (1)) €, ] dr’. (7.5)

Note that
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F)m—>$,y|—>7](ul (t") s uy (t/))(év )]
= xn—>§,y|—>n(w(t/)¢) * FXHE,yHn(w(I/)‘l))
= [ 9t~ ern = mdr myexe( (& + &~ £07)r)
R2
n (n—m)?
x exp(z‘r(&? -1+ E-&)- —)) dg dn). (7.6)
&1 §—§&
Now let P (£, n) = &3 — n?/&. Hence
fxi—)é,y»—>n(u2(t’ . ))

t

=/¢3($ —&1.n— 771)43(51,m)(ié)e_’gze"m@’”)/e”/@‘zﬁg_g‘)z_gz)
R2 0

x eil’(P(Sl’771)+P($—51JI—'II)—P(E,U)) df,dSI dn. (7.7)
Let x(§,&1,n,m1) = P&, m) + P(E —&1,n—n1) — P(§,n). A simple calculation shows that

(n&1 —mé)?

) s 1fs =3 - '
x (&, &1, n,m) =3851(6 — &) + 51— )

Therefore we can deduce that
Fustyon (2t . )) = (€)1 PED / &L nBE — 1,0 —m)
RZ

o1 ETTE—EDD) it x (. E1nm) _ ,—E71

_2%-1(5 —51)4-1)(@,51, n, 7]1)

d& dn, (7.8)

it follows that

lu2(t)[ 3,00 = / (1412 |Frs oy (2(t, .. )G )| dE dy

R2

_ /|s|2(1 lEp)
R2

/q@(&,m)é(& —&L,n—m)
RZ

ot ETTE—EDD) it x € E1nm) _ ,—E% 2

dé d dédn. 7.9
06 —E) 4 igE B gy Cordm] dEdn 79)
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We choose now a sequence of initial data (¢n)n, N > 0, defined through its Fourier transform
by!

N E M =N (xp, y + XDyn)s (7.10)

where N is a positive parameter such that N > 1, and Dy y, Dy y are the rectangles in R?
defined by

Din =[N/2, N1 x [-6N?,6N?],  Dan=I[N,2N1x [V3N?, (3 +1N?].

It is simple to see that ||@x || gs.0 ~ 1. Let us denote by u> y the sequence of the second iteration
uy associated with ¢, . Setting

o1 ETHE—EDT) pitx (€. E1nm) _ ,—E71

K , €, . n, =
(t,&,&1,n,m1) =281 — &) +ix(E. &,n,m1)

llua, N (2) ”%{&0 can be split into three parts:

luz.n @ |00 = C(LAD] + | O]+ | 50

),

where

Ao]"? = CN—H‘[ / EP(1 4 1&12)°
]RZ

2 172
x / K(t.6.60. 0. 1) dé1 i dédn} ,
¢1.m)eD N
E—-&1,m—n)eD1n
|A0]"? = CN”S[ /|$|2(1 +1€1%)°
RZ
2 1/2
X K@, & &, n,n)dE dn dédn} :
&1.m)eEDy N
E—&1.n—m)eDy N
2 172
|f3(z>}”2=czv“S[/EF(HEF)S‘ /K(r,s,sl,n,m)dsldm dédn} ,
R2 k(&,n)

where

1 The forthcoming analysis still works in the case of taking a real sequence d)}v such that é}v &, n= $ N (&l n).
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k& m) = {E.n): E—&.n—n) eDin, Ei.m) € Doy}
U{En): E,m) € Dy, (E—&L,n—m) € Dyn}
=k'(E n UK E, ). (7.11)

Therefore, obviously
2
Ju2.n @) ] 3e0 = Cl 1531
Since we can write § = &1 + (§ — &) and n = n1 + (n — 11), it follows that

3N (V3+7)N?
I\uz<r>\>i,x,o>CN“‘“6/ / E17(1+1E17)"

3N/2(\/3—6)N2

‘ f ot ETHE—EDD) it x (€ E1nm) _ 8% 2

d&rd d&dn. 7.12
L oEE—a i@ sidm| dgdy. (7.12)
i

We need to find a lower bound for the right-hand side of (7.12). Thus it is necessary to evaluate
the contribution of the function y (¢, &1, n, 1) in k(§, n). This in the aim of the following lemma
which is inspired by [10].

Lemma 7.1. Let (£1, 1) € k' (&, ) or (€1, m) € k2(&, n). For N > 1 we have

X €| SN

Proof. By definition of the function x (§, &1, 1, 1) we can write

IxE & nnD| < |x1E &Ln )|+ 6861 — €D, (7.13)
where
(&1 —mé)?
LE1,m, =3 — -
x1, 861, n,m) =38651(5 —&1) S5 Gt

Now let (£1,11) € k'(&, 1), i.e. (€ —&,n—n1) € D1y and (€1, m) € Doy
Let& € Rsuchthat (§ —&() € [N/2, N]and we fix (&1, n1) € Dy n. We will seek n*(&, &1, n1)
such that (&, &1, 7% (€, &1, m), m1) =0 and |n* (&, &1, m) — 71| < 6N?. Indeed, we choose

(£ —&)(m — V/3EE)
&1 '

n & ELn) =m+

Thus

& — &1
€11

|n* (&, &1,m) —m| < lm — V38 — V3815 — &)
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We recall that n; € [«/§N2, (ﬁ + 1)N?] and &1 € [N, 2N]. Therefore it follows that
V3el e [V3N?,4V3N?,
and we have
|171 - \/§N2| < 3+/3N2.
Since |§1| < 2N and |§ — &1| > N /2, it results that
|n* (&, &1,m1) — m| < 1/4(3v3N? +2v/3N?) <6N2.
Now by the mean value theorem we can write

0
X e £ i),

xiEEnnon) = x(E &0 EEL ). m) + (n— 0¥ E & nD) o

where 7 € [n, n*(§, &1, n1)]. Therefore

261 (1 — mé)

X165, & mn)| = |n—n (5,51,771)}‘ £E1(E —£1)

Since [ — n*(&, &, n)| < In—m|+m — n*E, &, m)| < CN?, it follows that

(7 — m)ér — m (& — &)
< ok
X1, &0, 0] S 1l n(é,sl,m)|‘ S5 E)

§N3<|(ﬁ—m)§1| N |771(f—§1)|)
1616 — & 168615 — &)
<N3<(ﬁ+1)N2 N2)

N O
SN,
by the relation of (7.13) it results that
X & & n. 00| < ON? +6lE 1151118 — &1
Since one has |&]| ~ |&1| ~ |E — &1| ~ N, it follows that
|x (& &.n.0)] <CN.
Now, in the other case where (&1, 11) € kz(é, n),ie. (&1,m) € D1 yand (§ —&1,n—n1) € Do N,

follows from the first case since we can write (§1,n1) = (§ —(§ —&1),n—(m—mn1)) € D1,y and
that

x1. &, n,n) =x16,&§ =&, n,n—n1).

This completes the proof of the lemma. O
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Let us now end the proof of Theorem 2.2. Note that for any & € [3N/2,3N] and [(«/_ —
6)N2, (\/§ +7)N?], we have mes(K (§,n)) = CN?3. We recall that we have

3N (V3+7)N?
luan @] 350 = CN 0 / / B2 (1+[€1)°

3N/2 (\/576)1\’2

‘ / e~ E 1 [o(281E—ED+X E £ _ ] 2

déid dédn. 7.14
L TERE—E i EE sidm| didn. - (1.14)
i

Now, we choose a sequence of times (¢y)y defined by

1
thm, 0<€0 <<1 (ﬁxed)
For N > 1 itis clear
e~EIN NN e_N]lreo >C. (7.15)

Moreover, by Lemma 7.1, it follows that |—2&1 (€ — &1) +ix (&,&1, 1, n1)| < N>+ N?> < CN?.
Hence

(=281 —ED)+ixEELnmin _
—261(6 — &) +ix(&. &1, m,m1)

= |tw] + O (ItwI*N?)

1 1
- mdra(m). (7.16)

By combining the relations (7.15), (7.16), we obtain

—E2 1281 E—EDHXEELn N _ )
e e
‘ / dgdm

=251 &) +ix&,&,n,m)

k(&,n)

> Cmes(k(&, 1)) x >CN™ %, (7.17)

N3+e€o

By virtue of (7.14), it results that

3N (V3+T)N?
[tz 3 |yes > CN 476 / / E12(1 +1£12)° dg dn x N~2
3N/2 (3-6)N?
2 CN—6—4SN2SN2N3N—2€0

—1-26-2
>CN™ =0,
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and hence
2 —1/2—e€g—
1~ Nl l13y00 = [ua v (tn) | oo = N7V2707S,

This leads to a contradiction for N >> 1, since we have —1/2 —¢p —s > 0 for s < —1/2 — €.
This completes the proof of Theorem 2.2.
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