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This article studies the pullback asymptotic behavior of solutions
for a non-autonomous homogeneous two-phase flow model in a
two-dimensional domain. We prove the existence of pullback at-
tractors AV in V (the velocity has the H1-regularity) and AY in Y

(the velocity has the L2-regularity). Then we verify the regularity
of the pullback attractors by proving that AV =AY , which implies
the pullback asymptotic smoothing effect of the model in the sense
that the solutions eventually become more regular than the initial
data. The method used in this article is similar to the one used
in Zhao and Zhou (2007) [42] in the case of the non-autonomous
incompressible non-Newtonian fluid in a two-dimensional domain.
Let us mention that the nonlinearity involved in the model consid-
ered in this article is stronger than the one in the two-dimensional
non-Newtonian flow studied in Zhao and Zhou (2007) [42].
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1. Introduction

The study of non-autonomous dynamical systems is an important subject and has been paid much
attention as evidence by the references cited in [13,12,15,14,16,30,31,36,40,6,27,26]. In [24], the au-
thor considers some special classes of non-autonomous dynamical systems and studies the existence
and uniqueness of uniform attractors. In [14], the authors present a general approach that is well
suited to construct the uniform attractors of some equations arising in mathematical physics, see also
[38,1,14]. In this approach, instead of considering a single process associated to the dynamical sys-
tem, the authors consider a family of processes depending on a parameter (symbol) σ in some Banach
space. The approach preserves the leading concept of invariance, which implies the structure of the
uniform attractors.
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It is well known that the concept of attractors has been proved an extremely useful tool for study-
ing the long-term behavior of solutions of a wide variety of dynamical systems [38,39,2,25,5,34,8,9,
17,26–29]. With the development of non-autonomous and random dynamical systems, a new type
of attractor, called pullback attractor was formulated and investigated in [20,26]. As summarized
in [37,42], it consists of a parameterized family of nonempty compact subsets of the state space.
Usually, non-autonomous dynamical systems can be formulated in terms of a cocycle mapping for
the dynamics in the state space. If the cocycle is continuous with respect to a group θ , which it-
self is continuous, then the non-autonomous dynamical system can be reduced to a semigroup via
the skew-product flow. Results on global attractors for autonomous semi-dynamical systems can thus
be adapted to such non-autonomous dynamical systems [14,11,24]. Recently, using the concept of
measure of non-compactness (see [33]), the authors of [41] (see also [40,36,16,30,31]) derived some
necessary and sufficient conditions for the existence of pullback attractors of non-autonomous dynam-
ical systems. The result was later improved in [37], where the authors proposed sufficient condition
for the existence of pullback attractors for norm-to-weak continuous cocycles (that is, cocycles map-
ping convergent into weakly convergent sequences) in a Banach space.

In this article, we study the pullback asymptotic behavior of solutions for a non-autonomous ho-
mogeneous two-phase flow model in a two-dimensional domain. We prove the existence of pullback
attractors AV in V (the velocity has the H1-regularity) and AY in Y (the velocity has the L2-
regularity). The we verify the regularity of the pullback attractors by proving that AV = AY , which
implies the pullback asymptotic smoothing effect of the model in the sense that the solutions even-
tually become more regular than the initial data. The method used in this article is the same as the
one used in [42] in the case of the non-autonomous incompressible non-Newtonian fluid in a two-
dimensional domain. The proof follows similar steps as in [42] (see also [32,40,41,6,31,36,7,27,26]).
Let us mention that the nonlinearity involved in the model considered in this article is stronger than
the one in the two-dimensional non-Newtonian flow studied in [42].

Let us recall that the incompressible Navier–Stokes equation governs the motions of single-phase
fluids such as air or water. On the other hand, we are faced with the difficult problem of under-
standing the motion of binary fluid mixtures, that is fluids composed by either two phases of the
same chemical species or phases of different composition. Diffuse interface models are well-known
tools to describe the dynamics of complex (e.g., binary) fluids [22]. For instance, this approach is used
in [3] to describe cavitation phenomena in a flowing liquid. The model consists of the NS equation
coupled with the phase-field system [4,22,21,23]. In the isothermal compressible case, the existence
of a global weak solution is proved in [19]. In the incompressible isothermal case, neglecting chem-
ical reactions and other forces, the model reduces to an evolution system which governs the fluid
velocity u and the order parameter φ. This system can be written as a NS equation coupled with a
convective Allen–Cahn equation [22]. The associated initial and boundary value problem was stud-
ied in [22], in which the authors proved that the system generated a strongly continuous semigroup
on a suitable phase space which possesses a global attractor A. They also established the existence
of an exponential attractor E . This entails that A has a finite fractal dimension, which is estimated
in [22] in terms of some model parameters. The dynamic of simple single-phase fluids has been
widely investigated although some important issues remain unresolved [38]. In the case of binary flu-
ids, the analysis is even more complicate and the mathematical studied is still at it infancy as noted
in [22].

The article is divided as follows. In the next section, we recall from [22] the non-autonomous
homogeneous two-phase flow and its mathematical setting. We also derive some a priori estimates.
In Section 3, we recall from [42] preliminaries on pullback attractors for cocycle. Then, Section 4
studies the existence of pullback attractors in AVusing the result of [37]. In Section 5, we prove
the existence of pullback attractors AY in Y when the external force is normal. Then in Section 6,
using a method of [42] we verify the regularity of the pullback attractors by proving that AV = AY ,
which implies the pullback asymptotic smoothing effect of the model in the sense that the solutions
eventually become more regular than the initial data.
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2. A two-phase flow model and its mathematical setting

2.1. Governing equations

In this article, we consider a model of homogeneous incompressible two-phase flow with sin-
gularly oscillating forces. More precisely, we assume that the domain M of the fluid is a bounded
domain in R

2. Then, we consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− ν1�u + (u · ∇)u + ∇p −Kμ∇φ = g,

div u = 0,

∂φ

∂t
+ u · ∇φ + μ = 0,

μ = −ν2�φ + α f (φ),

(2.1)

in M× (0,+∞).
In (2.1), the unknown functions are the velocity u = (u1, u2) of the fluid, its pressure p and the

order (phase) parameter φ. The quantity μ is the variational derivative of the following free energy
functional

F(φ) =
∫
M

(
ν2

2
|∇φ|2 + αF (φ)

)
ds, (2.2)

where, e.g., F (r) = ∫ r
0 f (ζ )dζ . Here, the constants ν1 > 0 and K > 0 correspond to the kinematic

viscosity of the fluid and the capillarity (stress) coefficient, respectively, ν2,α > 0 are two physical
parameters describing the interaction between the two phases. In particular, ν2 is related with the
thickness of the interface separating the two fluids. Hereafter, as in [22] we assume that ν2 � α. We
endow (2.1) with the boundary condition

u = 0,
∂φ

∂η
= 0 on ∂M× (0,+∞), (2.3)

where ∂M is the boundary of M and η is its outward normal.
The initial condition is given by

(u, φ)(0) = (u0, φ0) in M. (2.4)

2.2. Mathematical setting

We first recall from [22] a weak formulation of (2.1)–(2.4). Hereafter, we assume that the do-
main M is bounded with a smooth boundary ∂M (e.g., of class C2). We also assume that f ∈ C1(R)

satisfies ⎧⎨
⎩

lim|r|→+∞ f ′(r) > 0,

∣∣ f ′(r)
∣∣ � c f

(
1 + |r|m)

, ∀r ∈R,

(2.5)

where c f is some positive constant and m ∈ [1,+∞) is fixed. It follows from (2.5) that

∣∣ f (r)
∣∣� c f

(
1 + |r|m+1), ∀r ∈R. (2.6)
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If X is a real Hilbert space with inner product (·,·)X , we will denote the induced norm by | · |X , while
X∗ will indicate its dual. We set

V = {
u ∈ C∞

c (M): div u = 0 in M
}
.

We denote by H and V the closure of V in (L2(M))2 and (H1
0(M))2, respectively. The scalar product

in H is denoted by (·,·)L2 and the associated norm by | · |L2 . Moreover, the space V is endowed with
the scalar product

((u, v)) =
2∑

i=1

(∂xi u, ∂xi v)L2 , ‖u‖ = ((u, u))1/2.

We now define the operator A by

Au = P�u, ∀u ∈ D(A) = H2(M) ∩ V ,

where P is the Leray–Helmotz projector in L2(M) onto H . Then, A is a self-adjoint positive un-
bounded operator in H which is associated with the scalar product defined above. Furthermore,
A−1 is a compact linear operator on H and |A · |L2 is a norm on D(A) that is equivalent to the
H2-norm.

Note that from (2.5), we can find γ > 0 such that

lim|r|→+∞ f ′(r) > 2γ > 0. (2.7)

We define the linear positive unbounded operator Aγ on L2(M) by:

Aγ φ = −�φ + γ φ, ∀φ ∈ D(Aγ ), (2.8)

where

D(Aγ ) =
{
ρ ∈ H2(M); ∂ρ

∂η
= 0 on ∂M

}
.

Note that A−1
γ is a compact linear operator on L2(M) and |Aγ · |L2 is a norm on D(Aγ ) that is

equivalent to the H2-norm.
We introduce the bilinear operators B0, B1 (and their associated trilinear forms b0,b1) as well as

the coupling mapping R0, which are defined from D(A) × D(A) into H , D(A) × D(Aγ ) into L2(M),

and L2(M) × D(A3/2
γ ) into H , respectively. More precisely, we set

(
B0(u, v), w

) =
∫
M

[
(u · ∇)v

] · w dx = b0(u, v, w), ∀u, v, w ∈ D(A),

(
B1(u, φ),ρ

) =
∫
M

[
(u · ∇)φ

]
ρ dx = b1(u, φ,ρ), ∀u ∈ D(A), φ,ρ ∈ D(Aγ ),

(
R0(μ,φ), w

) =
∫
M

μ[∇φ · w]dx = b1(w, φ,μ), ∀w ∈ D(A), (μ,φ) ∈ L2(M) × D
(

A3/2
γ

)
.

(2.9)
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Note that

R0(μ,φ) = Pμ∇φ.

Now we define the Hilbert spaces Y and V by

Y = H × H1(M), V = V × D(Aγ ), (2.10)

endowed with the scalar products whose associated norms are

∣∣(u, φ)
∣∣2
Y

= K−1|u|2L2 + ν2
(|∇φ|2L2 + γ |φ|2L2

)
,

∥∥(u, φ)
∥∥2
V

= ‖u‖2 + |Aγ φ|2L2 . (2.11)

We also set

fγ (r) = f (r) − α−1ν2γ r

and observe that fγ still satisfies (2.7) with γ in place of 2γ since ν2 � α. Also its primitive Fγ (r) =∫ r
0 fγ (ζ )dζ is bounded from below.

In order to clarify the assumptions on the external force g , we introduce the following notations.
Given a Banach space X , we denote by L2

loc(R; X) the metrizable space of functions ψ(s), s ∈ R with
values in X that are locally 2-power integrable in the Bochner sense [15,31]. It is equipped with the
local 2-power mean convergence topology. We will also denote by L2

b(R; X) the subspace of L2
loc(R; X)

of translation bounded functions; i.e., for ψ(s) ∈ L2
b(R; X), we have

‖ψ‖2
L2

b
≡ ‖ψ‖2

L2
b(R;X)

= sup
t∈R

t+1∫
t

∥∥ψ(s)
∥∥2

X ds < ∞. (2.12)

If g ∈ L2
loc(R; X), we set

H(g) = {
g(· + s), s ∈R

}
. (2.13)

Note that for g0 ∈ L2
b(R; X), we have

‖g‖L2
b(R;X) � ‖g0‖L2

b(R;X), ∀g ∈ H(g0). (2.14)

Throughout this article, we will denote by c a generic positive constant depending on the do-
main M. Using the notations above, we rewrite (2.1)–(2.3) as (see [22] for the details)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

du

dt
+ ν1 Au + B0(u, u) −KR0(ν2 Aγ φ,φ) = g, a.e. in M× (0,+∞),

μ = ν2 Aγ φ + α fγ (φ), a.e. in M× (0,+∞),

dφ

dt
+ μ + B1(u, φ) = 0, a.e. in M× (0,+∞).

(2.15)

Remark 2.1. In the weak formulation (2.15), the term μ∇φ is replaced by ν2 Aγ ∇φ. This is justified
since f ′

γ (φ)∇φ is the gradient Fγ (φ) and can be incorporated into the pressure gradient, see [22] for
details.
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Definition 2.1. Suppose that (u0, φ0) ∈ Y, g ∈ L2(0, T ; V ∗) and T > 0. A pair (u, φ) is called a weak
solution to (2.15), (2.4) on [0, T ] if it satisfies (2.15), (2.4) in a weak sense on [0, T ] and

(u, φ) ∈ C
([0, T ];Y) ∩ L2([0, T ];V)

,

du

dt
∈ L4/3([0, T ]; V ∗), dφ

dt
,μ ∈ L2([0, T ]; L2(M)

)
. (2.16)

If (u0, φ0) ∈ V, a weak solution (u, φ) is called a strong solution on the time interval [0, T ] if in
addition to (2.16), it satisfies

u ∈ C
([0, T ]; V

) ∩ L2(0, T ; D(A)
)
, φ ∈ C

([0, T ]; D(Aγ )
) ∩ L2(0, T ; D

(
A3/2

γ

))
. (2.17)

The weak formulation of (2.15), (2.4) was proposed and studied in [22,21], and the existence and
uniqueness of solution was proved when the external force is time independent and non-oscillating.
In this article, we study the pullback asymptotic behavior of solutions (2.15), (2.4). We prove the
existence of pullback attractors AV in V and AY in Y. Then we verify the regularity of the pull-
back attractors by proving that AV = AY , which implies the pullback asymptotic smoothing effect of
(2.15), (2.4) in the sense that the solutions eventually become more regular than the initial data.

2.3. Some a priori estimates

In this part, we first derive some a priori estimates on the solution to (2.15), (2.4). We then use
these estimates to construct bounded absorbing sets in V and Y. As pointed in [22], if (u, φ) is a
smooth solution to (2.1), by taking the scalar product in H of (2.1)1 with u, then taking the scalar
product in L2(M) of (2.1)3 with μ, we derive that

d

dt

[
1

2
K−1|u|2L2 +F(φ)

]
−K−1(u, g)L2 + ν1K−1‖u‖2 + |μ|2L2 = 0. (2.18)

We will need the following lemma, whose proof is given in [15] (see Lemma 2.1 in [15]).

Lemma 2.1. Let a real function z(t), t � 0, be uniformly continuous and satisfy the inequality

dz

dt
+ λz(t) � f (t), ∀t � 0, (2.19)

where λ > 0, f (t) � 0 for all t � 0 and f ∈ L1
loc(R+). Suppose also that

t+1∫
t

f (s)ds � M, ∀t � 0. (2.20)

Then,

z(t) � z(0)e−λt + M
(
1 + λ−1), ∀t � 0. (2.21)

Proof. See [15]. �
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Proposition 2.2. Let g0 ∈ L2
b(R; V ∗) and g ∈ H(g0). For (u0, φ0) ∈ Y and f ∈ C1(R). The system

(2.15), (2.4) has a unique weak solution (u, φ)(t) that satisfies

(u, φ) ∈ C
([0, T ];Y) ∩ L2([0, T ];V)

,

du

dt
∈ L4/3([0, T ]; V ∗), dφ

dt
∈ L2([0, T ]; L2(M)

)
. (2.22)

Moreover, the following estimate holds:

∣∣(u, φ)(t)
∣∣2
Y
� Q

(∣∣(u, φ)(τ )
∣∣2
Y

)
e−ρ(t−τ ) + c

(‖g0‖2
L2

b(R,V ∗)
+ c1

)
, ∀t � τ � 0,

∣∣(u, φ)(t)
∣∣2
Y

+
t∫

τ

(
ν1

K
∥∥u(s)

∥∥2 + ∣∣μ(s)
∣∣2

L2 + ∣∣Fγ

(
φ(s)

)∣∣
L1

)
ds

� Q
(∣∣(u, φ)(τ )

∣∣2
Y

) +
t∫

τ

(‖g0‖2
L2

b(R,V ∗)
+ c1

)
ds, ∀t � τ � 0,

t∫
τ

|Aγ φ|2L2 � Q 1
(
t − τ ,

∣∣(u, φ)(τ )
∣∣2
Y
,‖g0‖L2

b(R,V ∗), c1
)
, ∀t � τ � 0, (2.23)

where Q nonnegative function given below, Q 1 is a monotone non-decreasing function and c1 is given
by (2.30).

Proof. The existence and uniqueness of weak solutions as well as (2.22) is given in [22]. To derive
(2.23), we proceed as in [22] (see Proposition 3.1 and Lemma 3.3 in [22]). Let us take the scalar
product in L2(M) of (2.15)3 with 2φ. Adding the resulting equation to (2.18), it follows that (see [22]
for the details)

dE

dt
+ κ E(t) = ∧1(t), (2.24)

where

E(t) = ∣∣(u, φ)(t)
∣∣2
Y

+ 2α
(

Fγ

(
φ(t)

)
,1

)
L2 + ∣∣φ(t)

∣∣2
L2 + Ce, (2.25)

and

∧1(t) = −2ν1K−1‖u‖2 + κK−1|u|2L2 − 2|μ|2L2 − (2 − κ)ν2
(|∇φ|2L2 + γ

∣∣φ(t)
∣∣2

L2

)
+ 2α

[
κ
(

Fγ (φ) − fγ (φ)φ,1
)

L2 − (1 − κ)
(

fγ (φ)φ,1
)

L2

]
+ 2K−1(u, g)L2 + κ

∣∣φ(t)
∣∣2

L2 + 2καC Fγ |M|, (2.26)

Ce = 2αC Fγ |M| > 0, |M| > 0 being the Lebesgue measure of M, and C Fγ > 0 is a constant large
enough to ensure that E(t) is nonnegative.

Note that Fγ is bounded from below by a constant independent of ν2 and α. With this choice
of Ce , we can find C f > 0 such that (see [22] for details)
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∣∣(u(t),φ(t)
)∣∣2
Y
� E(t) � C f

(
1 + ∣∣(u(t),φ(t)

)∣∣2
Y

+ ∣∣φ(t)
∣∣2m+2

L2m+2

)
. (2.27)

From (2.5), we have

c∗
∣∣ fγ (y)

∣∣(1 + |y|)� 2 fγ (y)y + c f
(
1 + α−1ν2

)
,

Fγ (y) − fγ (y)y � c′
f

(
1 + α−1ν2

)|y|2 + c′′
f , (2.28)

for any y ∈ R, where c f , c∗, c′
f and c′′

f are positive, sufficiently large constants that depend only on f .
From [22], we also note that

∧1(t) �−K−1(ν1 − κCm|M|)∥∥u(t)
∥∥2 − 2

∣∣μ(t)
∣∣2

L2 − (2 − κ)ν2
∣∣∇φ(t)

∣∣2
L2

− (
2 − κ

(
1 + 2c′

f (α + ν2)
)
(ν2γ )−1)ν2γ

∣∣φ(t)
∣∣2

L2

− c∗α(1 − κ)
(∣∣ fγ

(
φ(t)

)∣∣,1 + ∣∣φ(t)
∣∣)

L2 + (ν1K)−1‖g‖2
V ∗ + c1, (2.29)

where Cm depends on the shape of M, but not its size and c1 is given by

c1 = 2καC Fγ |M| + 2αc′′
f |M| + c f (α + ν2)(1 − κ)|M|. (2.30)

Let us choose κ ∈ (0,1) as

κ = min
{
ν1

(
2Cm|M|)−1

,
((

1 + 2c′
f (α + ν2)

)
(ν2γ )−1)−1}

. (2.31)

From now on, ci will denote a positive constant independent on the initial data and on time.
It follows from (2.25)–(2.31) that

dE

dt
+ κ E(t) + c2

(
ν1

K
∥∥u(t)

∥∥2 + ν2
∣∣∇φ(t)

∣∣2
L2 + ν2γ

∣∣φ(t)
∣∣2

L2

)
+ 2

∣∣μ(t)
∣∣2

L2

+ c3
(∣∣ fγ

(
φ(t)

)∣∣,1 + ∣∣φ(t)
∣∣)

L2 � (ν1K)−1‖g‖2
V ∗ + c1, (2.32)

which gives

dE

dt
+ κ E(t) � (ν1K)−1‖g‖2

V ∗ + c1. (2.33)

Applying Lemma 2.1 with

z(t) = E(t + τ ), f (t) = 1

ν1K
‖g‖2

V ∗ + c1, λ = κ, M = (ν1K)−1‖g‖2
L2

b(R;V ∗)
+ c1,

we obtain

E(t + τ )� E(τ )e−κt + (
1 + κ−1)((ν1K)−1‖g‖2

L2
b(R;V ∗)

+ c1
)
, (2.34)

which proves (2.23)1 with Q (|(u, φ)(τ )|2
Y
) = E(τ ).

From (2.32), we also have
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E(t) + c2

t∫
τ

(
ν1K−1

∥∥u(s)
∥∥2 + ν2

∣∣∇φ(s)
∣∣2

L2 + ν2γ
∣∣φ(s)

∣∣2
L2

)
ds

+
t∫

τ

[
2
∣∣μ(s)

∣∣2
L2 + c3

(∣∣ fγ
(
φ(s)

)∣∣,1 + ∣∣φ(s)
∣∣)

L2

]
ds

� E(τ ) +
t∫

τ

(
(ν1K)−1

∥∥g(s)
∥∥2

V ∗ + c1
)

ds. (2.35)

Note that (2.5) implies that

∣∣Fγ (y)
∣∣ � ∣∣ fγ (y)

∣∣(1 + |y|) + c4, ∀y ∈ R, (2.36)

for some positive constant c4.
Therefore, (2.23)2 follows from (2.35) and (2.36).
For (2.23)3, using (2.23)1–(2.23)2 we obtain as in [22] that

ν2

t∫
τ

|Aγ φ|2L2 ds �
t∫

τ

∣∣μ(s)
∣∣2

L2 ds + α2c f

t∫
τ

(
1 + |φ|2m+2

L2m+2

)
ds + γ 2

t∫
τ

∣∣φ(s)
∣∣2

L2 ds

� Q 1
(
t − τ ,

∣∣(u, φ)(τ )
∣∣
Y
,‖g0‖L2

b(R;V ∗), c1
)
, (2.37)

and (2.23)3 follows. �
Proposition 2.3. Let g0 ∈ L2

b(R; H), then for any g ∈ H(g0) and (u0, φ0) ∈ V, the system (2.15), (2.4) has a
unique strong solution (u, φ)(t) that satisfies

(u, φ) ∈ C
([0, T ];V) ∩ L2([0, T ]; D(A) × D

(
A3/2

γ

))
,

du

dt
∈ L4/3([0, T ]; H

)
,

dφ

dt
∈ L2([0, T ]; D

(
A1/2

γ

))
, (2.38)

and the following estimate holds:

(t − τ )
∥∥(u, φ)(t)

∥∥2
V
� C

(
t − τ ,

∣∣(u, φ)(τ )
∣∣
Y
,‖g0‖L2

b(R;H)

)
, ∀t � τ � 0, (2.39)

where C = C(R1, R2, R3) is a monotone continuous functions of R1 , R2 and R3 .

Proof. The existence and uniqueness of strong solution as well as (2.38) is proved as in [22]. We only
need to prove (2.39). Taking the inner product in H of (2.15)1 with 2Au, the inner product in L2(M)

of (2.15)2 and (2.15)3 with 2A2
γ φ and adding the resulting equalities gives (see [22] for the details)

dY
dt

+ 2ν1|Au|2L2 + 2ν2
∣∣A3/2

γ φ
∣∣2

L2

= 2K
(

R0(ν2 Aγ φ,φ), Au
)

L2 − 2
(

B0(u, u), Au
)

L2 + (g, Au)L2

− 2α
(

A1/2
γ fγ (φ), A3/2

γ φ
)

2 − 2
(

A1/2
γ B1(u, φ), A3/2

γ φ
)

2 , (2.40)
L L
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where

Y(t) = ∥∥u(t)
∥∥2 + ∣∣Aγ φ(t)

∣∣2
L2 .

We note that

2K
∣∣(R0(ν2 Aγ φ,φ), Au

)
L2

∣∣ � 2Kν2
∣∣R0(Aγ φ,φ)

∣∣
L2 |Au|L2

� c|Aγ φ|L2 |∇φ|L∞|Au|L2

� c|Aγ φ|4/3
L2 |φ|2/3

H1 |Au|4/3
L2 + ν2

8

∣∣A3/2
γ φ

∣∣2
L2

� ν1

4
|Au|2L2 + ν2

8

∣∣A3/2
γ φ

∣∣2
L2 + c|Aγ φ|4L2 |φ|2H1 , (2.41)

2
∣∣(B0(u, u), Au

)
L2

∣∣� c
∣∣B0(u, u)

∣∣
L2 |Au|L2

� c|u|1/2
L2 ‖u‖|Au|3/2

L2

� ν1

4
|Au|2L2 + c|u|2L2‖u‖4, (2.42)

2α
∣∣(A1/2

γ fγ (φ), A3/2
γ φ

)
L2

∣∣ � c
∣∣∇ fγ (φ)

∣∣
L2

∣∣A3/2
γ φ

∣∣
L2

� ν2

8

∣∣A3/2
γ φ

∣∣2
L2 + c

∣∣ f ′
γ (φ)∇φ

∣∣2
L2 , (2.43)

2
∣∣(A1/2

γ B1(u, φ), A3/2
γ φ

)
L2

∣∣ � 2
∣∣A1/2

γ B1(u, φ)
∣∣

L2

∣∣A3/2
γ φ

∣∣
L2

� c‖u‖1/2|Au|1/2
L2 |φ|1/2

H1 |Aγ φ|1/2
L2

∣∣A3/2
γ φ

∣∣
L2

+ c|u|1/2
L2 ‖u‖1/2|Aγ φ|1/2

L2

∣∣A3/2
γ φ

∣∣3/2
L2

� ν2

8

∣∣A3/2
γ φ

∣∣2
L2

+ c
(‖u‖|Au|L2 |φ|H1 |Aγ φ|L2 + |u|2L2‖u‖2|Aγ φ|2L2

)
� ν2

8

∣∣A3/2
γ φ

∣∣2
L2 + ν1

4
|Au|2L2

+ c
(‖u‖2|φ|2H1 |Aγ φ|2L2 + |u|2L2‖u‖2|Aγ φ|2L2

)
. (2.44)

It follows from (2.40)–(2.44) that

d

dt

(
(t − τ )Y(t)

) + (t − τ )
ν1

2
|Au|2L2 + (t − τ )

ν2

2

∣∣A3/2
γ φ

∣∣2
L2

� (t − τ )G(t)Y(t) + (t − τ )Υ (t) +Y(t), (2.45)

where

G(t) = c
(|Aγ φ|2L2 |φ|2H1 + |u|2L2‖u‖2),

Υ (t) = c
(∣∣ f ′

γ (φ)∇φ
∣∣2

L2 + |g|2L2

)
. (2.46)

Note that from (2.23), we have
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t∫
τ

(
(s − τ )Υ (s) +Y(s)

)
ds � Q

(
t − τ ,

∣∣(u, φ)(τ )
∣∣2
Y
,

t∫
τ

|g|2L2 ds

)
, (2.47)

t∫
τ

(s − τ )G(s)ds � c

t∫
τ

(s − τ )
(∣∣A3/2

γ φ
∣∣2

L2

∥∥φ(s)
∥∥2 + ∣∣u(s)

∣∣2
L2

∥∥u(s)
∥∥2)

ds

� Q

(
t − τ ,

∣∣(u, φ)(τ )
∣∣2
Y
,

t∫
τ

|g|2L2 ds

)
. (2.48)

It follows from (2.45)–(2.48) that

(t − τ )Y(t) � Q

(
t − τ ,

∣∣(u, φ)(τ )
∣∣2
Y
,

t∫
τ

|g|2L2 ds

)
, ∀t � τ � 0, (2.49)

and (2.39) follows. �
3. Preliminary

Let (E,d) be a complete metric space, (P ,ρ) be a metric space which will be called the parameter
space. We assume that we are given a mapping θ : R× P → P such that θt ≡ θ(t, ·) : P → P forms a
group, that is, θ satisfies

θt+τ = θt · θτ , ∀t, τ ∈R,

θ0 = Id. (3.1)

Hereafter, we will denote by B(E) the set of all bounded subsets of E .

Definition 3.1. A mapping Ψ :R+ × P × E → E is said to be a cocycle on E with respect to the group θ

if the following conditions are satisfied:

Ψ (0, p, x) = x, ∀(p, x) ∈ P × E;
Ψ (t + τ , p, x) = Ψ

(
t, θτ (p),Ψ (τ , p, x)

)
, ∀t, τ ∈R+, (p, x) ∈ P × E. (3.2)

The cocycle is said to be continuous on E if for all (t, p) ∈ R+ × P , the mapping
Ψ (t + τ , p, ·) : E → E is continuous.

The cocycle is said to be norm-to-weak continuous on E if for each p ∈ P and t � 0,

‖xn‖E → ‖x‖E implies that Ψ (t, p, xn) ⇀ Ψ (t, p, x) in E as n → ∞. (3.3)

The mapping π :R+ × P × E → P × E defined by

π(t, p, x) = (
θt(p),Ψ (t, p, x)

)
, ∀t ∈ R, (p, x) ∈ P × E, (3.4)

forms a semigroup on P × E and is called a skew-product flow [42].

Remark 3.1. It is clear that if Ψ is continuous on E , then it is norm-to-weak continuous on E .
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Definition 3.2. Let Ψ be a cocycle on E with respect to a group θ . A set B0 ⊂ E is called a uniformly
(with respect to p ∈ P ) absorbing set for Ψ if for any O ∈ B(E), there exists T0 = T0(O) ∈ R+ such
that

Ψ (t, p,O) ⊂ B0, ∀t � T0, p ∈ P . (3.5)

Definition 3.3. Let Ψ be a cocycle on E with respect to a group θ . Given O ∈ B(E) and p ∈ P , we
define the pullback ω-limit set ωp(O) by

ωp(O) =
⋂

s∈R+

⋃
t�s

Ψ
(
t, θ−t(p),O

)
. (3.6)

Definition 3.4. A family A= {A p}p∈P of nonempty compact sets on E is called a pullback attractor of
the cocycle φ if it is Ψ -invariant, that is,

Ψ (t, p, Ap) = Aθt (p), ∀t ∈R+, p ∈ P , (3.7)

and pullback attracting, that is

lim
t→∞ dE

(
Ψ

(
t, θ−t(p),O

)
, Ap

) = 0, ∀O ∈ B(E), p ∈ P , (3.8)

where dE denotes the metric on E .

Theorem 3.1. Let Ψ be a continuous cocycle on E with respect to a group θ of continuous mappings on P and
let π = (θt ,Ψ ) be the corresponding skew-product flow on P × E. In addition, we assume that there exists a
nonempty compact subset B0 of E such that for every O ∈ B(E), there exists T (O) ∈R+ , which is independent
of p ∈ P , such that

Ψ (t, p,O) ⊂ B0, ∀t > T (O). (3.9)

Then,

(1) there exists a unique pullback attractor A= {A p}p∈P for the cocycle φ on E, where

Ap =
⋂

τ∈R+

⋃
t>τ

Ψ
(
t, θ−t(p),B0

)
. (3.10)

Furthermore,

(2) there exists a global attractor Â for the autonomous semi-dynamical system Ψ defined on P × E, where

Â =
⋂

τ∈R+

⋃
t>τ

π(t, P × B0). (3.11)

Assertions (1) and (2) are equivalent and

Â =
⋃
p∈P

{p} × Ap . (3.12)
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Proof. The proof of (3.10) is given in [18,35], while (3.11) is proved in [11]. Finally, (3.13) is proved
in [10]. �

Let O ∈ B(E). Its Kuratowski measure of non-compactness �(B) is defined by

�(O) = inf{δ: O admits a finite cover by sets of diameter � δ}. (3.13)

We recall the following properties of � (see Lemma 2.1 in [37]).

Lemma 3.2. Let O, B1, B2 ∈ B(E), then

(1) �(O) = 0 ⇔ Ō is compact;
(2) �(B1 + B2) � �(B1) + �(B2);
(3) �(B1) � �(B2) if B1 ⊂ B2;
(4) �(B1 ∪ B2) � max{�(B1),�(B2)};
(5) �(O) = �(Ō).

Definition 3.5. A cocycle Ψ on E is said to be pullback ω-limit compact if for any O ∈ B(E), any
p ∈ P , and any ε > 0, there exists t0 = t0(O, p, ε) ∈ R+ such that

�

( ⋃
t�t0

Ψ
(
t, θ−t(p),O

))
� ε. (3.14)

Definition 3.6. A cocycle Ψ on E is said to satisfy the pullback condition (PC) if for any p ∈ P ,
O ∈ B(E) and ε > 0, there exist t0 = t0(O, p, ε) and a finite dimensional space E1 of E such that

(1) P0

( ⋃
t�t0

Ψ
(
t, θ−t(p),O

))
is bounded, (3.15)

where P0 : E → E1 is a bounded projector;

(2) sup
u∈O

∥∥(I −P0)Ψ
(
t, θ−t(p), u

)∥∥
E � ε, ∀t � t0. (3.16)

Lemma 3.3. Let E be a Banach space and Ψ a cocycle on E. If Ψ is norm-to-weak continuous on E and has a
uniformly absorbing set B0 , then Ψ possesses a pullback attractor A = {Ap}p∈P satisfying Ap = ωp(B0) if
and only if Ψ is pullback ω-limit compact.

Proof. See [42]. �
Lemma 3.4. Let E be a Banach space and Ψ a cocycle on E. If Ψ satisfies the pullback condition (PC), then Ψ

is pullback ω-limit compact. Moreover, if E is uniformly convex, then the converse is true.

Proof. See [42]. �
4. Existence of a pullback attractor in VVV

In this section, we suppose that g0 ∈ L2
b(R; H) and g ∈ H(g0). We will prove the existence of a

pullback attractor AV = {AV
g }g∈H(g0) in V. Hereafter, we define the group {θt}t∈R acting on H(g0) by
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θt g(·) = g(· + t), ∀t ∈R, ∀g ∈ H(g0). (4.1)

From the existence and uniqueness result proved in [22] and recalled in Proposition 2.2, we define
a continuous cocycle Ψ (t, g, (u0, φ0)) on Y by

Ψ
(
t, g, (u0, φ0)

) = (u, φ)(t), ∀(
t, g, (u0, φ0)

) ∈R+ ×H(g0) ×Y, (4.2)

where (u, φ)(t) is the solution of (2.15), (2.4) with the data (u0, φ0) ∈ Y and the external force func-
tion g ∈H(g0).

From Proposition 2.3, we also define a continuous cocycle Ψ (t, g, (u0, φ0)) on V by

Ψ
(
t, g, (u0, φ0)

) = (u, φ)(t), ∀(
t, g, (u0, φ0)

) ∈R+ ×H(g0) ×V, (4.3)

where (u, φ)(t) is the solution of (2.15), (2.4) with the data (u0, φ0) ∈ V and the external force func-
tion g ∈H(g0).

Lemma 4.1. Let g0 ∈ L2
b(R; H), then the cocycle Ψ (t, g, (u0, φ0)) define by (4.3) possesses a bounded uni-

formly absorbing set BV

0 ⊂V and it is norm-to-weak continuous on V.

Proof. From (2.23)1 and (2.27), we see that for any O ∈ B(Y), there exists t0 = t0(O) ∈ R+ such that

Ψ (t, g,O) ⊂ B0 = {
(u, φ) ∈Y,

∣∣(u, φ)
∣∣2
Y
� ρ2

0

}
, ∀t � t0, ∀g ∈ H(g0), (4.4)

where

ρ2
0 = c

(
c1 + ‖g0‖2

L2
b(R;V ∗)

)
, (4.5)

and c1 is given by (2.30).
Now let us set

BV

0 =
⋃

g∈H(g0)

⋃
t�t0(B0)

Ψ (t + 1, g,B0). (4.6)

From (2.39)and (4.5), it is clear that BV

0 is bounded in V, more precisely, we have

∥∥(u, φ)
∥∥2
V
� Q 1

(
1,ρ0,‖g0‖L2

b(R;H)

) ≡ ρ2
1 , ∀(u, φ) ∈ BV

0 . (4.7)

It is also clear that BV

0 is a bounded uniformly absorbing set for the cocycle Ψ (t, g, (u0, φ0)) defined
on V by (4.3). From Proposition 2.3, the cocycle is also continuous on V, which implies that it is
norm-to-weak continuous on V. �
Lemma 4.2. Let g0 ∈ L2

b(R; H), then the cocycle Ψ (t, g, (u0, φ0)) defined by (4.3) satisfies the pullback con-
dition (PC) on V.

Proof. Let 0 < λ1 � λ2 � · · ·λn � · · · , λn → +∞ as n → +∞ and a family of elements en = (wn,ρn) ⊂
D(A) × D(A3/2

γ ), which forms a basis of V and is orthonormal in Y such that

(A, Aγ )en = λnen, ∀n ∈ N. (4.8)
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Let

Vn = span{e1, e2, . . . , en}, (4.9)

where n ∈ N will be specified later. Then Vn is a finite dimensional subspace of V. Denote by Pn the
orthogonal projector from V into Vn . Then, we have ‖Pn‖ � 1 for all n ∈ N. From Lemma 4.1, for any
O ∈ B(V), there exists t0 = t0(O) > 0 such that

Ψ (t, g,O) ⊂ BV

0 , ∀t � t0, ∀g ∈ H(g0).

Without loss of generality, let (u, φ) = Ψ (t, θ−s−t0 (g), (u0, g0)) ∈ D(A) × D(A3/2
γ ) ⊂V satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

du

dt
+ ν1 Au + B0(u, u) −KR0(ν2 Aγ φ,φ) = θ−s−t0(g) = g(t − s − t0),

μ = ν2 Aγ φ + α fγ (φ),

dφ

dt
+ μ + B1(u, φ) = 0,

(4.10)

where (u0, φ0) ∈ BV
0 , t � t0, s ∈R. We decompose (u, φ) as

(u, φ) = Pn(u, φ) + (I −Pn)(u, φ) = (u1, φ1) + (u2, φ2). (4.11)

Taking the inner product in H of (4.10)1 with 2Au2, the inner product in L2(M) of (4.10)2 and (4.10)3
with 2A2

γ φ2, we derive that

dY
dt

+ 2ν1|Au2|2L2 + 2ν2
∣∣A3/2

γ φ2
∣∣2

L2

= 2K
(

R0(ν2 Aγ φ,φ), Au2
)

L2 − 2
(

B0(u, u), Au
)

L2 + (
g(t − s − t0), Au2

)
L2

− 2α
(

A1/2
γ fγ (φ), A3/2

γ φ2
)

L2 − 2
(

A1/2
γ B1(u, φ), A3/2

γ φ2
)

L2 , (4.12)

where

Y(t) = ∥∥u2(t)
∥∥2 + ∣∣Aγ φ2(t)

∣∣2
L2 .

We recall that (see [38])

|w|L∞ � c‖w‖
(

1 + log
|Aw|2

L2

λ1‖w‖2

)1/2

, (4.13)

and

|w|L∞ � c|w|1/2
L2 |Aw|1/2

L2 , (4.14)

for all w ∈ D(A). We derive from (4.18) the following:
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|u1|L∞ � c‖u1‖
(

1 + log
|Au1|2L2

λ1‖u1‖2

)1/2

� c‖u1‖D1/2, (4.15)

|∇φ1|L∞ � c|Aγ φ1|L2

(
1 + log

|A3/2
γ φ1|2L2

λ1|Aγ φ1|2L2

)1/2

� c|Aγ φ1|L2 D1/2, (4.16)

where

D =
(

1 + log
λn+1

λ1

)
. (4.17)

We note that

|Au1|2L2 � λn‖u1‖2,
∣∣A3/2

γ φ1
∣∣2

L2 � λn|Aγ φ1|2L2 . (4.18)

Using (4.15)–(4.18), we derive

2K
∣∣(R0(ν2 Aγ φ,φ), Au2

)
L2

∣∣
= 2K

∣∣b1(Au2, φ1 + φ2, Aγ φ1 + Aγ φ2)
∣∣ � I1 + I2 + I3 + I4, (4.19)

where

I1 = 2K
∣∣b1(Au2, φ1, Aγ φ1)

∣∣ � c|Au2|L2 |∇φ1|L∞|Aγ φ1|L2 �
ν1

10
|Au2|2L2 + cρ2

0ρ2
1 D, (4.20)

I2 = 2K
∣∣b1(Au2, φ1, Aγ φ2)

∣∣ � c|Au2|L2 |∇φ1|L∞|Aγ φ2|L2 �
ν1

10
|Au2|2L2 + cρ2

0ρ2
1 D, (4.21)

I3 = 2K
∣∣b1(Au2, φ2, Aγ φ1)

∣∣ � c|Au2|L2 |∇φ2|L∞|Aγ φ1|L2

� c|Au2|L2‖φ2‖1/2
∣∣A3/2

γ φ2
∣∣1/2

L2 |Aγ φ1|L2 �
ν1

10
|Au2|2L2 + ν2

10

∣∣A3/2
γ φ2

∣∣2
L2 + cρ2

0ρ4
1 , (4.22)

I4 = 2K
∣∣b1(Au2, φ2, Aγ φ2)

∣∣ � c|Au2|L2 |∇φ2|L∞|Aγ φ2|L2

� ν1

10
|Au2|2L2 + ν2

10

∣∣A3/2
γ φ2

∣∣2
L2 + cρ2

0ρ4
1 . (4.23)

We also have

2
∣∣(B0(u, u), Au2

)
L2

∣∣ = 2
∣∣(B0(u1 + u2, u1 + u2), Au2

)
L2

∣∣ � J1 + J2 + J3 + J4, (4.24)

where

J1 = 2
∣∣b0(u1, u1, Au2)

∣∣ � |u1|L∞‖u1‖|Au2|L2

� c‖u1‖2 D1/2|Au2|L2 �
ν1

10
|Au2|2L2 + cρ4

1 D, (4.25)

J2 = 2
∣∣b0(u1, u2, Au2)

∣∣ � ν1

10
|Au2|2L2 + cρ4

1 D, (4.26)

J3 = 2
∣∣b0(u2, u1, Au2)

∣∣ � |u2|L∞‖u1‖|Au2|L2

� c|u2|2|Au2|3/2
L2 ‖u1‖� ν1 |Au2|2L2 + cρ2

0ρ4
1 , (4.27)
10
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J4 = 2
∣∣b0(u2, u2, Au2)

∣∣ � |u2|L∞‖u2‖|Au2|L2

� ν1

10
|Au2|2L2 + cρ2

0ρ4
1 . (4.28)

Note that

2α
∣∣(A1/2

γ fγ (φ), A3/2
γ φ2

)
L2

∣∣ � c
∣∣∇ fγ (φ)

∣∣
L2

∣∣A3/2
γ φ

∣∣
L2

� ν2

10

∣∣A3/2
γ φ2

∣∣2
L2 + c

∣∣ f ′
γ (φ)∇φ

∣∣2
L2

� ν2

10

∣∣A3/2
γ φ2

∣∣2
L2 + cρ2

2 . (4.29)

Note that from (2.5) and (2.10), we have

∣∣ f ′
γ (φ)∇φ

∣∣2
L2 � ρ2

2 , (4.30)

where ρ2
2 = ρ2

2 (ρ1). We also have

2
∣∣(A1/2

γ B1(u, φ), Aγ
3/2φ2

)
L2

∣∣ = 2
∣∣(A1/2

γ B1(u1 + u2, φ1 + φ2), Aγ
3/2φ2

)
L2

∣∣
� K1 + K2 + K3 + K4, (4.31)

where

K1 = 2
∣∣(A1/2

γ B1(u1, φ1), Aγ
3/2φ2

)
L2

∣∣
� c

(|∇u1|L2 |∇φ1|L∞ + |u1|L∞|Aγ φ1|L2

)∣∣Aγ
3/2φ2

∣∣
L2

� c‖u1‖|Aγ φ1|L2 D1/2|Aγ φ1|L2

� ν2

10
|Aγ φ2|2L2 + cρ4

1 D, (4.32)

K2 = 2
∣∣(A1/2

γ B1(u1, φ2), Aγ
3/2φ2

)
L2

∣∣ � ν2

10
|Aγ φ2|2L2 + cρ4

1 D, (4.33)

K3 = 2
∣∣(A1/2

γ B1(u2, φ1), Aγ
3/2φ2

)
L2

∣∣
� c

(|∇u2|L2 |∇φ1|L∞ + |u2|L∞|Aγ φ1|L2

)∣∣Aγ
3/2φ2

∣∣
L2

� c
(‖u2‖|Aγ φ1|L2 D1/2 + |u2|1/2

L2 |Au2|1/2
L2 |Aγ φ1|L2

)∣∣Aγ
3/2φ2

∣∣
L2

� ν1

10
|Au2|2L2 + ν2

10

∣∣Aγ
3/2φ2

∣∣2
L2 + cρ4

1 D, (4.34)

K4 = 2
∣∣(A1/2

γ B1(u2, φ2), Aγ
3/2φ2

)
L2

∣∣
� c

(|∇u2|L2 |∇φ2|L∞ + |u2|L∞|Aγ φ2|L2

)∣∣Aγ
3/2φ2

∣∣
L2

� c‖u2‖‖φ2‖1/2
∣∣Aγ

3/2φ2
∣∣3/2

L2 + c|u2|1/2
L2 |Au2|1/2

L2 |Aγ φ2|L2

∣∣Aγ
3/2φ2

∣∣
L2

� ν1

10
|Au2|2L2 + ν2

10
|Aγ φ2|2L2 + cρ2

0 + cρ6
1 . (4.35)

We also have
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∣∣(g(t − s − t0), Au2
)

L2

∣∣ � ν1

10
|Au2|2L2 + c

∣∣g(t − s − t0)
∣∣2

L2 . (4.36)

Combining (4.12)–(4.36), we derive that

dY
dt

+ ν1|Au2|2L2 + ν2
∣∣A3/2

γ

∣∣2
L2

� c
(
ρ4

1 D + ρ4
1ρ2

0 + ρ2
o ρ2

1 D + ρ4
1 D + ρ2

0 + ρ6
1 + ρ2

2

) + c
∣∣g(t − s − t0)

∣∣2
L2 , (4.37)

and

dY
dt

+ νλn+1Y � c
(
ρ4

1 D + ρ4
1ρ2

0 + ρ2
o ρ2

1 D + ρ4
1 D + ρ2

0 + ρ6
1 + ρ2

2

)
+ c

∣∣g(t − s − t0)
∣∣2

L2 , (4.38)

where ν = min(ν1, ν2). We note that

|Au2|2L2 � λn+1(Au2, u2)L2 ,
∣∣A3/2

γ φ2
∣∣2

L2 � λn+1(Aγ φ2, Aγ φ2)L2 . (4.39)

Let λ̃n+1 = νλn+1 and α1 > 0 such that

∥∥(v,ϕ)
∥∥2
V
� α−1

1

(〈Av, v〉 + 〈Aγ ϕ, Aγ ϕ〉), ∀(v,ϕ) ∈V. (4.40)

Then the Gronwall Lemma yields

Y(t0 + s) � Y(t0)e−λ̃n+1s + R2

λ̃n+1
+ c

s+t0∫
t0

e−λ̃n+1(s+t0−t)
∣∣g(t − s − t0)

∣∣2
L2 dt, (4.41)

where

R2 = c
(
ρ4

1 D + ρ4
1ρ2

0 + ρ2
o ρ2

1 D + ρ2
0 + ρ6

1 + ρ2
2

)
. (4.42)

Let n1 = n1(ε) ∈ N such that

R2

λ̃n+1
� α1ε

4
, ∀n � n1. (4.43)

Let η ∈ (0,1) fixed and τ = t − s − t0. Then

c

s+t0∫
t0

e−λ̃n+1(s+t0−t)
∣∣g(t − s − t0)

∣∣2
L2 dt

= c

0∫
e−λ̃n+1τ

∣∣g(τ )
∣∣2

L2 dτ
−s
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� c

0∫
−η

e−λ̃n+1τ
∣∣g(τ )

∣∣2
L2 dτ + c

−η∫
−s

eλ̃n+1τ
∣∣g(τ )

∣∣2
L2 dτ

� c

0∫
−η

eλ̃n+1τ
∣∣g(τ )

∣∣2
L2 dτ + c

−η∫
−η−1

eλ̃n+1τ
∣∣g(τ )

∣∣2
L2 dτ

+ c

−η−1∫
−η−2

eλ̃n+1τ
∣∣g(τ )

∣∣2
L2 dτ + c

−η−2∫
−η−3

e−λ̃n+1τ
∣∣g(τ )

∣∣2
L2 dτ + · · ·

� c

0∫
−η

eτ λ̃n+1
∣∣g(τ )

∣∣2
L2 dτ

+ ce−τ λ̃n+1
(
1 + e−λ̃n+1 + e−2λ̃n+1 + e−3λ̃n+1 + · · ·)‖g0‖2

L2
b(R;H)

� c

0∫
−η

eτ λ̃n+1
∣∣g(τ )

∣∣2
L2 dτ + ce−ηλ̃n+1‖g0‖2

L2
b(R;H)

(
1 − e−λ̃n+1

)−1
. (4.44)

Since g ∈ L2
b(R; H), we have

0∫
−η

eτ λ̃n+1
∣∣g(τ )

∣∣2
L2 dτ � ‖g‖2

L2
b(R;H)

� ‖g0‖2
L2

b(R;H)
. (4.45)

By the Lebesgue dominated convergence theorem, we see that for the above ε > 0, there exists n2 =
n2(ε) ∈N such that

c

0∫
−η

eτ λ̃n+1
∣∣g(τ )

∣∣2
L2 dτ � α1ε

4
, ∀n � n2,

ce−ηλ̃n+1‖g‖2
L2

b(R;H)

(
1 − e−λ̃n+1

)−1 � α1ε

4
, ∀n � n2. (4.46)

Now, let t1 = t0 + 1
λ̃n+1

ln (
4ρ2

1
α1ε

) + 1. Then we have

Y(t0)e−sλ̃n+1 � ρ2
1 e−sλ̃n+1 � α1ε

4
, ∀s � t1. (4.47)

It follows from (4.41)–(4.47) that for n � max{n1,n2} and s � t1, we have

∥∥(I −Pn)Ψ
(
s, θ−s(g), (u0, φ0)

)∥∥2
V

= ∥∥(u2, φ2)(s)
∥∥2
V
� α−1

1

(〈Au2, u2〉 + 〈Aγ φ2, Aγ φ2〉
)

� α−1
1

(
α1ε

4
+ α1ε

4
+ α1ε

4
+ α1ε

4

)
= ε, (4.48)

for all s � t1, ∀g ∈H(g0), and the proof is complete. �
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Theorem 4.3. Let g0 ∈ L2
b(R; H), then the cocycle Ψ (t, g, (u0, φ0)) defined by (4.3) possesses a pullback

attractor in V

AV = {
AV

g

}
g∈H(g0)

= {
ωg

(
BV

0

)}
g∈H(g0)

, (4.49)

where BV

0 is a bounded uniformly absorbing set defined by (4.6) and

ωg
(
BV

0

) =
⋂
s�0

⋃
t�s

Ψ
(
t, θ−t(g),BV

0

)
(4.50)

is the pullback ω-limit set of BV

0 , where the bar denotes the closure in V.

Proof. It follows from Lemmas 3.3, 3.4, 4.1 and 4.2. �
5. Existence of a pullback attractor in Y

In this section, we establish the existence of a pullback attractor AY in Y with g0 being normal
in L2

log(R; V ∗). We first recall from [42] the following definition.

Definition 5.1. A function g(t) ∈ L2
log(R; V ∗) is said to be normal if for any ε > 0 there exists δ =

δ(ε) > 0 such that

sup
t∈R

t+δ∫
t

‖g‖2
V ∗ ds � ε. (5.1)

The set of normal functions in L2
log(R; V ∗) will be denoted L2

n(R; V ∗). Clearly, we have L2
n(R; V ∗) ⊂

L2
b(R; V ∗).

Lemma 5.2. If g0 ∈ L2
b(R; V ∗), then for any g ∈H(g0) and (u0, φ0) ∈ Y, the system (2.15), (2.4) has a unique

solution (u, φ) that satisfies (u, φ)(t) that satisfies

(u, φ) ∈ C
([0, T ];Y) ∩ L2([0, T ];V)

,

du

dt
∈ L4/3([0, T ]; V ∗), dφ

dt
∈ L2([0, T ]; L2(M)

)
. (5.2)

Moreover, the following estimate holds:

∣∣(u, φ)(t)
∣∣2
Y
� Q

(∣∣(u, φ)(τ )
∣∣2
Y

)
e−ρ(t−τ ) + c

(‖g0‖2
L2

b(R,V ∗) + c1
)
, ∀t � τ � 0,

∣∣(u, φ)(t)
∣∣2
Y

+
t∫

τ

(
ν1

K
∥∥u(s)

∥∥2 + ∣∣μ(s)
∣∣2

L2 + ∣∣Fγ

(
φ(s)

)∣∣
L1

)
ds

� Q
(∣∣(u, φ)(τ )

∣∣2
Y

) +
t∫ (‖g0‖2

L2
b(R,V ∗) + c1

)
ds, ∀t � τ � 0,
τ
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t∫
τ

|Aγ φ|2L2 � Q 1
(
t − τ ,

∣∣(u, φ)(τ )
∣∣2
Y
,‖g0‖L2

b(R,V ∗), c1
)
, ∀t � τ � 0, (5.3)

where Q nonnegative function given below, Q 1 is a monotone non-decreasing function and c1 is given
by (2.30).

Proof. The proof is similar to that of Proposition 2.2, so we omit it. �
From Lemma 5.2 we define a continuous cocycle Ψ (t, g, (u0, φ0)) on Y by

Ψ
(
t, g, (u0, φ0)

) = (u, φ)(t), ∀(
t, g, (u0, φ0)

) ∈R+ ×H0(g0) ×Y, (5.4)

where (u, φ)(t) is the solution of (2.15), (2.4) with the data (u0, φ0) ∈ Y and the external force func-
tion g ∈H0(g0).

Lemma 5.3. Let g0 ∈ L2
b(R; V ∗), then the cocycle Ψ (t, g, (u0, φ0)) define by (5.4) possesses a bounded uni-

formly absorbing set BY

0 ⊂ Y and it is norm-to-weak continuous on Y.

Proof. From (5.3)1, we see that for any O ∈ B(Y), there exists t0 = t0(O) ∈ R+ such that

Ψ (t, g,O) ⊂ BY

0 = {
(u, φ) ∈ Y,

∣∣(u, φ)
∣∣2
Y
� ρ2

3

}
, ∀t � t0, ∀g ∈ H0(g0), (5.5)

where

ρ2
3 = c

(
c1 + ‖g0‖2

L2
b(R;V ∗)

)
, (5.6)

and c1 is given by (2.30). Finally, from (5.2) and Remark 3.1, we conclude that the cocycle is continu-
ous on Y. �

The following embedding theorem, which can be found in [42] (see Lemma 4.3 of [42]) will be
used to prove the pullback ω-limit compactness of the cocycle in Y.

Lemma 5.4. Let E0, E1, E be three Banach spaces satisfying E1 ⊂ E ⊂ E0 , with the injection of E1 in E being
compact. Assume p1 � 1 and p0 > 1. We set

W p1,p0(0, T ; E1, E0) = {
ψ(t), t ∈ [0, T ]: ψ(t) ∈ Lp1

(
(0, T ); E1

)
, ψ ′(t) ∈ Lp0

(
(0, T ); E0

)}
,

equipped with the norm

‖ψ‖W p1,p0 (0,T ;E1,E0) =
( T∫

0

∥∥ψ(t)
∥∥p1

E1
dt

)1/p1

+
( T∫

0

∥∥ψ ′(t)
∥∥p0

E0
dt

)1/p0

.

Then we have

W p1,p0(0, T ; E1, E0) ⊂ Lp1(0, T ; E), ∀T > 0,

with compact injection.
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Lemma 5.5. Let g0 ∈ L2
n(R; V ′), then the cocycle Ψ (t, g, (u0, φ0)) defined by (5.4) is pullback ω-limit com-

pact in Y.

Proof. For any O ∈ B(Y), let (u0, φ0) ∈O and (u, φ)(t) = Ψ (t, θ−s(g), (u0, φ0)). Then (u, φ) satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

du

dt
+ ν1 Au + B0(u, u) −KR0(ν2 Aγ φ,φ) = g(t − s),

μ = ν2 Aγ φ + α fγ (φ),

dφ

dt
+ μ + B1(u, φ) = 0.

(5.7)

Let E(t) = |(u, φ)(t)|2
Y

+ 2α(Fγ (φ(t)),1)L2 + |φ(t)|2
L2 + Ce . As in (2.24)–(2.32), we derive that

dE

dt
+ κ E(t) + c2

(
ν1

K
∥∥u(t)

∥∥2 + ν2
∣∣∇φ(t)

∣∣2
L2 + ν2γ

∣∣φ(t)
∣∣2

L2

)
+ 2

∣∣μ(t)
∣∣2

L2

+ c3
(∣∣ fγ

(
φ(t)

)∣∣,1 + ∣∣φ(t)
∣∣)

L2 � (ν1K)−1
∥∥g(t − s)

∥∥2
V ∗ + c1. (5.8)

Let ρ̃0 = ρ̃0(O) > 0 be a constant such that (see (2.23) and (2.27))

Ẽ(u, φ) = ∣∣(u, φ)
∣∣2
Y

+ 2α
(

Fγ (φ),1
)

L2 + |φ|2L2 + Ce � ρ̃2
0 , ∀(u, φ) ∈ O, ∀t � t0, (5.9)

where Ce is the same constant as in (2.25)–(2.26).
Integrating (5.8), we derive that

c

t2∫
t1

(
ν1

K
∥∥u(t)

∥∥2 + ν2
∣∣∇φ(t)

∣∣2
L2 + ν2γ

∣∣φ(t)
∣∣2

L2

)
dt

� cρ̃2
0 + c

t2∫
t1

(
(ν1K)−1

∥∥g(t − s)
∥∥2

V ∗ + c1
)

dt. (5.10)

From (5.3), we also have ∀t2 > t1 � t∗
0 + t0

t2∫
t1

∥∥B0(u, u)
∥∥2

V ∗ dt � c

t2∫
t1

|u|2L2‖u‖2 dt � ρ2
0

t2∫
t1

‖u‖2 dt, (5.11)

t2∫
t1

∥∥R0(Aγ φ,φ)
∥∥4/3

V ∗ dt � c

t2∫
t1

‖φ‖|Aγ φ|2L2 dt � ρ2
0

t2∫
t1

|Aγ φ|2L2 dt, (5.12)

t2∫
t1

∣∣B1(u, φ)
∣∣2

L2 dt � c

t2∫
t1

|u|L2‖u‖‖φ‖|Aγ φ|L2 dt � ρ2
0

t2∫
t1

‖u‖|Aγ φ|L2 dt, (5.13)

t2∫
t

∣∣A1/2
γ f (φ)

∣∣2
L2 dt � c

t2∫
t

∣∣ f ′(φ)∇φ
∣∣2

L2 dt � cρ2
2 . (5.14)
1 1
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It follows from (5.8)–(5.14) that

t2∫
t1

(∣∣∣∣du

dt

∣∣∣∣
4/3

V ∗
+

∣∣∣∣dφ

dt

∣∣∣∣
2

L2

)
dt � cρ2

0

t2∫
t1

(‖u‖2 + |Aγ φ|2L2

)
dt + c

t2∫
t1

(∥∥g(t − s)
∥∥2

V ∗ + ρ2
2

)
dt.

(5.15)

Since g0 ∈ L2
log(R, V ∗), it follows from (5.10) that the set

B[t1,t2] = {
(u, φ)(s) = Ψ

(
s, θ−s(g), (u0, φ0)

)
, (u0, φ0) ∈ BY,

g ∈ H(g0), t2 > t1 � t∗
0 + t0, s ∈ [t1, t2]

} ⊂ L2((t1, t2);Y
)

(5.16)

is bounded in L2(t1, t2;V). We also note that (5.15) implies that

{(
du

dt
,

dφ

dt

)
, (u, φ) ∈ B[t1,t2]

}
(5.17)

is bounded in L4/3(t1, t2; V ∗)× L2(t1, t2; L2(M)). Noticing that V⊂ Y⊂ V
∗ and the embedding V⊂ Y

is compact, we conclude that B[t1,t2] is pre-compact in L2(t1, t2;Y). If g0 ∈ L2
n(R; V ∗), then for any

ε > 0, there exists δ ∈ (0,1) such that

sup
t∈R

t+δ∫
t

∥∥g0(τ )
∥∥2

V ∗ dτ � ε

M
, (5.18)

where M > 0 will be specified later. Let t∗ = t∗(O) = t∗
0(O) + t0 + 1 = t∗

0 + t0 + 1. It is clear that
B[s−δ,s] is pre-compact in L2(s − δ, s;Y) for each s � t∗ . Thus, for any ε > 0, there exists a finite
δε
2M -net {(u1, φ1), (u2, φ2), . . . , (uN∗ , φN∗)} ⊂ B[s−δ,s] such that for any (u, φ) ∈ B[s−δ,s] , there exits k ∈
{1,2, . . . , N∗} such that

s∫
s−δ

∥∥(u, φ) − (uk, φk)
∥∥2
Y

dt � δε

2M
, (5.19)

which implies that there exists t̃ ∈ [s − δ, s] such that

∥∥(u, φ)(t̃) − (uk, φk)(t̃)
∥∥2
Y
� δε

2M
. (5.20)

Now if (u1, φ1)(t) = Ψ (t, θ−s(g1), (u01, φ01)), (u2, φ2)(t) = Ψ (t, θ−s(g2), (u02, φ02)), with g1, g2 ∈
H0(g0), (u01, φ01), (u02, φ02) ∈ Y, we set (w,ψ) = (u1, φ1) − (u2, φ2), g̃ = g1 − g2. Then, (w,ψ) sat-
isfies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw

dt
+ ν1 Aw + B0(w, w) + B0(w, u1) + B0(u1, w)

−KR0(ν2 Aγ ψ,ψ) −KR0(ν2 Aγ ψ,φ1) −KR0(ν2 Aγ φ1,ψ) = g̃,

χ = ν2 Aγ ψ + α fγ (φ1) − α fγ (φ2),

dψ + χ + B1(w,ψ) + B1(w, φ1) + B1(u1,ψ) = 0.

(5.21)
dt
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If we set

Φ(t) = [
K−1|w|2L2 + ν2|∇ψ |2L2 + γ ν2|ψ |2L2

]
,

Υ (t) = c
(|Aγ φ1|2L2 + ‖u1‖2 + |u1|2L2‖u1‖2 + Q

(|φ1|H1 , |φ2|H1

))
. (5.22)

Then we derive that

Φ ′(t)� c
∣∣g̃(t − s)

∣∣2
L2 + Υ (t)Φ(t), (5.23)

which gives

Φ(s) �
(

Φ(t̃) + c

s∫
t̃

∣∣g̃(t − s)
∣∣2

L2 dt

)
exp

( s∫
t̃

Υ (t)dt

)

�
(

Φ(t̃) + c

s∫
t̃

∣∣g̃(t − s)
∣∣2

L2 dt

)
exp

(
Q 1

(
ρ0,‖g0‖L2

b(R;V ∗)

))
. (5.24)

Note that

s∫
t̃

Υ (t)dt = c

s∫
t̃

(|Aγ φ1|2L2 + ‖u1‖2 + |u1|2L2‖u1‖2 + Q
(|φ1|H1 , |φ2|H1

))
dt

� Q 1(ρ1), (5.25)

where Q 1 is a monotone function.
Let us choose M as

M = exp
(

Q 1(ρ1)
)
. (5.26)

Then it follows from (5.20)–(5.26) that

∥∥(u, φ)(s) − (uk, φk)(s)
∥∥2
Y

� M

[∥∥(u, φ)(t̃) − (uk, φk)(t̃)
∥∥2
Y

+ c

s∫
s−δ

(∣∣g1(t − s)
∣∣2

L2 + ∣∣g2(t − s)
∣∣2

L2

)
dt

]

� M

(
ε

2M
+ ε

2M

)
= ε, ∀s � t∗. (5.27)

Therefore, for each g ∈H(g0), Ψ (s, θ−s(g),O) is pre-compact in Y for all s � t∗ .
Similarly, substituting BY

0 for O, we obtain that there exists t∗(BY

0 ) > 0 and t∗
0(BY

0 ) + t0 + 1 such
that Ψ (s, θ−s(g),BY

0 ) is pre-compact in Y for all s � t∗(BY

0 ). By the invariance property and the
continuity of the cocycle, we derive that
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⋃
s�t∗(O)+t∗(BY

0 )

Ψ
(
s, θ−s(g),O

) =
⋃

s�t∗(O)

Ψ
(
t∗(BY

0

)
, θ−t∗(BY

0 )(g),Ψ
(
s, θ−s(g),O

))

⊂ Ψ

(
t∗(BY

0

)
, θ−t∗(BY

0 )(g),
⋃

s�t∗(O)

Ψ
(
s, θ−s(g),O

))

⊂ Ψ
(
t∗(BY

0

)
, θ−t∗(BY

0 )(g),BY

0

)
. (5.28)

Thus
⋃

s�t∗(O)+t∗(BY

0 ) Ψ (s, θ−s(g),O) is pre-compact in Y and the proof is complete. �
Theorem 5.6. Let g0 ∈ L2

n(R; V ∗), then the cocycle Ψ (s, g, (u0, φ0)) defined by (5.4) possesses a pullback
attractor in Y

AY = {
AY

g

} = {
ωg

(
BY

0

)}
g∈H(g0)

, (5.29)

where BY

0 is a bounded uniformly absorbing set defined by (5.5) and

ωg
(
BY

0

) =
⋂
s�0

⋃
t�s

Ψ
(
t, θ−t(g),BY

0

)
(5.30)

is the pullback ω-limit set of BY

0 .

Proof. It follows from Lemmas 5.3 and 5.5. �
6. Regularity of pullback attractors

In this section we assume that g0 ∈ L2
n(R; V ∗) ∩ L2

b(R; H) such that Theorems 4.3 and 5.6 simulta-
neously hold. Our goal is to prove that AV = AY , which implies the pullback asymptotic smoothing
effect of the model in the sense that the solutions eventually become more regular than the initial
data. Using the uniform Gronwall Lemma, we first prove that the solutions to (2.15), (2.4) with the
initial value in any bounded set of Y eventually enter a bounded set of V.

Lemma 6.1. Let g0 ∈ L2
b(R; H) and O ⊂ B(Y) be arbitrary. Let (u, φ)(t) = Ψ (t, g, (u0, φ0)) be the corre-

sponding solution of (2.15), (2.4) with (u0, φ0) ∈ O and g ∈ H(g0). Then there exist a time T0(O) and a
positive constant K such that

∥∥(u, φ)(t)
∥∥
V

= ∥∥Ψ
(
t, g, (u0, φ0)

)∥∥
V
� K , ∀(u0, φ0) ∈ O, ∀g ∈ H(g0), ∀t � T0(O). (6.1)

Proof. The proof is similar to that of Proposition 2.3. For the reader’s convenience, we sketch it here.
Taking the inner product in H of (2.15)1 with 2Au, the inner product in L2(M) of (2.15)2 and (2.15)3
with 2A2

γ φ and adding the resulting equalities gives

dY
dt

+ 2ν1|Au|2L2 + 2ν2
∣∣A3/2

γ φ
∣∣2

L2

= 2K
(

R0(ν2 Aγ φ,φ), Au
)

L2 − 2
(

B0(u, u), Au
)

L2 + (g, Au)L2

− 2α
(

A1/2
γ fγ (φ), A3/2

γ φ
)

2 − 2
(

A1/2
γ B1(u, φ), A3/2

γ φ
)

2 , (6.2)
L L
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where

Y(t) = ∥∥u(t)
∥∥2 + ∣∣Aγ φ(t)

∣∣2
L2 .

As in (2.40)–(2.44), we derive that

dY
dt

+ c|Au|2L2 + c
∣∣A3/2

γ φ
∣∣2

L2 � G(t)Y(t) + Υ (t), (6.3)

where

G(t) = c
(|Aγ φ|2L2 |φ|2H1 + |u|2L2‖u‖2),

Υ (t) = c
(∣∣ f ′

γ (φ)∇φ
∣∣2

L2 + |g|2L2

)
. (6.4)

Note that from (2.23) and (4.4), for t � T0(O) ≡ t0 = t0(O) we have

t+1∫
t

G(s)ds � a1,

t+1∫
t

Y(s)ds � a3,

t+1∫
t

Υ (s)ds � a2, (6.5)

where the constants ai depend on O and not on t � t0.
It follows from (6.4)–(6.5) and the uniform Gronwall Lemma that

Y(t)� (a3 + a2)ea1 , ∀t � T0(O) + 1, (6.6)

and (6.1) follows. �
Theorem 6.2. Let g0 ∈ L2

n(R; V ∗) ∩ L2
b(R; H), then

AY = {
AY

g

} = {
AV

g

} = AV. (6.7)

Proof. The proof is similar to that of [42] in the case of the incompressible non-Newtonian fluid. For
the reader’s convenience, we sketch it here. It is enough to prove that

AY

g = AV

g , ∀g ∈ H(g0). (6.8)

First we note that AV
g is bounded in V for all g ∈H(g0). Thus AV

θ−t (g)
is bounded in Y for any t ∈R.

By the Ψ -invariance property and pullback attracting property of the pullback attractor, we have

distY
(
AV

g ,AY

g

) = distY
(
Ψ

(
t, θ−t(g),AV

θ−t (g)

)
,AY

g

)
(∀t ∈R+)

= lim
t→+∞ distY

(
Ψ

(
t, θ−t(g),AV

θ−t (g)

)
,AY

g

)
= 0, ∀g ∈ H(g0), (6.9)

which implies

AV

g ⊂ AY

g , ∀g ∈ H(g0). (6.10)
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From Lemma 6.1, we also note that

AY

θ−t (g) = ωθ−t (g)

(
BY

0

) =
⋂
s�0

⋃
τ�s

Ψ
(
τ , θ−τ θ−t(g),BY

0

)
(6.11)

is bounded in V for any t ∈ R. By the Ψ -invariance property and pullback attracting property of the
pullback attractor, we have

distY
(
AY

g ,AV

g

) = distY
(
Ψ

(
t, θ−t(g),AY

θ−t (g)

)
,AV

g

)
(∀t ∈R+)

� distV
(
Ψ

(
t, θ−t(g),AY

θ−t (g)

)
,AV

g

)
(∀t ∈R+)

= lim
t→+∞ distV

(
Ψ

(
t, θ−t(g),AY

θ−t (g)

)
,AV

g

)
= 0, ∀g ∈ H(g0), (6.12)

which implies

AY

g ⊂ AY

g , ∀g ∈ H(g0), (6.13)

and (6.8) follows from (6.10) and (6.13). The proof is complete. �
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