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Abstract 

The minimal spanning tree problem is a popular problem of discrete optimization. Numerous algorithms have been 
developed using the traditional approach but with the emergence of modern-day complex data structures, new algorithms 
have been proposed which are more complex yet asymptotically efficient. In this paper we present a cycle detection based 
greedy algorithm, to obtain a minimal spanning tree of a given input weighted undirected graph. The algorithm operates on 
the idea that every connected graph without any cycle is a tree. At successive iterations, the algorithm selects and tests if the 
highest degree vertex is a member of any cycle to remove the most expensive edge from the cycle associated with it. The 
iteration continues until all the cycles are eliminated to obtain the resultant minimal spanning tree. The simplicity of the 
algorithm makes it easier to understand and implement in any high-level languages. The proposed approach will be 
beneficial in analyzing certain class of problems in science and engineering. 
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

The minimal spanning tree problem (MSTP) is a notable problem of combinatorial optimization.  It deals 
with the problem of obtaining a tree of minimum weight that spans all the vertices of a weighted, undirected 
and connected graph, where the weight of the tree corresponds to the sum of weights of its edges.  It is widely 
applied in various fields of science and technology ranging from computer and communication networks, 
knowledge engineering, wiring connections, VLSI circuits design to a large class of optimization problems. 
Recent approaches in analyzing various biomedical problems like medical imaging, bio-terrorism, etc have 
made an extensive use of the concepts of minimal spanning tree (MST). In fact recent advances in clustering 
algorithms also deploy the concepts of MST. 

Numerous systematized solution techniques exist for solving the MSTP. One of the first known solutions 
was given by Boruvka [11] in 1930. Two most popular MST algorithms are due to Kruskal [12] and Prim [13]. 
These three algorithms are often referred to as the classical algorithms for solving the MSTP. 

The rich history of the MSTP is also well documented. Pierce [1] analyzed the details of all the classical 
algorithms related to the minimal spanning tree problem. Maffioli’s [2] survey stressed on the asymptotical 
complexity of the methods used to solve different types of optimum undirected tree problem. The survey by 
Graham and Hell [3] gives an insight to the algorithmic technique for solving the minimal spanning tree 
problem, even tracing their independent sources/origin. 

Researchers in recent past have focused on devising computationally faster algorithms. With the emergence 
of modern data structures and improved hardware support, efficient implementation techniques were also 
invented aiming to speed up these classical algorithms. In 1984, Haymond, Jarvis and Shier [5] elaborated 
various computational methods for MST algorithms. Non-greedy approaches for MSTP were also proposed [6]. 
A detailed survey of different computational experiments is also available [7]. Finally the first linear expected-
time randomized, recursive algorithm for the MSTP was proposed by Karger [4] suitable for computational 
models of restricted random access type. 

With the advent of parallel computing, different authors began to focus on parallelizing the so called 
classical algorithms. In 2014 Lončar [18] proposed a technique to parallelize the classical MST algorithms 
using distributed memory architecture. Osipov [19] presented the Filter-Kruskal algorithm that avoids sorting 
of edges that are obviously not in the MST. It also provided an equivalent parallelization best fitted for modern 
multi-core machines. Bader [20] gave several parallel minimal spanning tree algorithms (three variations of 
Boruvka and a new version) that can be easily implemented on irregular-structured graphs. 

With the advent of parallel computing, different authors began to focus on parallelizing the so called 
classical algorithms. In 2014 Lončar [18] proposed a technique to parallelize the classical MST algorithms 
using distributed memory architecture. Osipov [19] presented the Filter-Kruskal algorithm that avoids sorting 
of edges that are obviously not in the MST. It also provided an equivalent parallelization best fitted for modern 
multi-core machines. Bader [20] gave several parallel minimal spanning tree algorithms (three variations of 
Boruvka and a new version) that can be easily implemented on irregular-structured graphs. 

In the next two sections, we present the problem definition and the general solution techniques. In section 4, 
we describe our proposed algorithm that can efficiently find the MST. In section 5, we illustrate the working of 
the proposed algorithm followed by drawing a conclusion in section 6. 

 

2. Problem Definition 

A spanning tree of a connected undirected graph G = (V, E), is defined as a tree T consisting of all the 
vertices of the graph G. If the graph G is disconnected then every connected component will have a spanning 
tree , where ‘i’ is the number of connected component, the collection of which forms the spanning forest of 
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the graph G. A graph may have many spanning trees. If we associate a weight against each edge of the 
graph, then the spanning trees may be of varying weights. Among them, the minimum weighted spanning tree, 
often referred to as the Minimum Spanning Tree (MST), is of general importance. It has a wide variety of 
application in various fields of science and technology. 

An equivalent definition is due to Bazlamacci [23] that states that given an undirected graph G=(V,E), 
where V denotes the set of vertices with n=│V│ and E the set of edges with m=│E│ and a real number 

=w(e) for each edge e ԑ E called the weight of edge e, the MSTP is formally defined as finding a spanning 
tree  on G, such that w( ) =  is the minimum taken over all possible spanning trees of G. 

The following lemma forms the basis our proposed algorithm. 
Lemma: Every connected graph without any circuit is a tree. 

3. General Solutions 

Traditional approaches for solving the minimal spanning tree problem are usually greedy in nature. Majority 
of the classical algorithms build the MST edge-wise, adding the appropriate small edge and excluding the 
larger ones. The greedy nature of the algorithms is reflected from the fact that the algorithms choose, the best 
possible edge for insertion into the MST that do not produce a cycle in the sub-graph constructed so far, at 
every stage or for deletion from the MST, keeping the graph connected. 

Well known classical algorithms like Boruvka [11] and Kruskal [12] the disjoint set union algorithm for 
computing the MST. Prim[13] implemented it with binary heap, d-heap and F-heap. Yao[14], Cheriton [15],  
Fredman [16] gave new improvements of  these classical methods.  Tarjan [10] figured out the MST 
construction process as one of the edge coloring model. Karger [17, 4] proposed the first known almost linear 
time algorithm with the help of randomized algorithms and recursion. A good survey of all these 
methodologies can be found in [23]. 

Modern authors have also concentrated on parallelizing these algorithms. Dalal [24], Srimani [25] gave 
some elegant solutions. Loncar [18] also gave two new approaches that targets message passing parallel 
machines with distributed memory. Bader [20] gave a method to compute the minimum spanning forest of a 
sparse graph using shared-memory. 

4. Proposed Algorithm   

Our proposed algorithm is based on vertex associative cycle detection algorithm. Various elegant cycle 
detection algorithm of almost linear order can be easily found [21, 22]. We select the vertex u, having 
maximum degree from the set of unmarked vertices (V-S), where S is the set of marked vertices. We then 
check if the chosen vertex is a member of a cycle/knot. If it is so, we then identify the most expensive edge  
(i.e. the edge with maximum edge weight) and delete it from the cycle as well as from the list of edges E. If a 
tie occurs, we choose the edge whose terminal vertices have maximum degree. We repeat this process with the 
selected vertex u until the vertex becomes free of all the cycles it is involved with. Whenever a node becomes 
free of all the cycles it was associated with, we add it to the set of marked vertices S. We the select another 
vertex and continue the process. The algorithm terminates when the number of edges |E| becomes equal to |V|-
1, since a tree with |V| vertices contains |V|-1 edges. The algorithm is given below. 
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INPUT: A weighted undirected graph G= (V, E). 

OUTPUT: A MST T of G. 

MST_Algo (G, V, E, T, S) 

{ 

     S=Φ;  

     T=G; 

     while(|E| > |V|-1) 

    { 

          SELECT a vertex uϵ(V-S) whose degree is maximum 

          while (TRUE) 

           { 

                  if (u is a member of a cycle/knot in T) 

                  { 

SELECT the most expensive edge ex from the  cycle/knot containing the vertex u from T; 

  if(a tie occurs) 

  { 

SELECT the edge ex whose terminal vertices have maximum degree; 

  }  

Remove the most expensive edge ex from the cycle/knot containing the vertex u from T; 

                E = E-ex; 

                  } 

                  else 

                  { 

                           S = S  ; 

                            break; 

                  } 

             } 

      } 

      return T; 
 
The proposed algorithm chooses the vertex with maximum degree at every step. The motivation behind this 

idea is that the probability that a vertex is a member of a cycle increases with its degree. More the degree of a 
vertex more is the probability that the vertex is associated with some cycle. Moreover tie while eliminating an 
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edge is determined based on the degree of the terminal vertices of the edges. The greedy nature of the algorithm 
is reflected from the fact that at every stage the vertex with maximum degree is chosen for checking the cycle 
associativity. 

5. Results and discussions 

This section illustrates the execution of the algorithm applied to the input graph shown in figure 1. The 
algorithm first selects node B because it has highest degree. It then detects that the node B is associated with 
the cycle B-A-E-B. Next it chooses the most expensive edge and finds that there is a tie, namely AE and BE. 
However the terminal vertices of BE has maximum degree and hence BE is eliminated as shown in figure 2 by 
the dotted red lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now the algorithm detects that B is also a member of the cycle B-C-F-B and removes the most expensive 

edge BC from it (see Fig. 3). Next the cycle B-A-D-C-F-B is detected and DC is deleted (see Fig. 4). At this 
point the node B becomes free of all cycles and hence vertex B is added to the list of marked vertices S. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Input Graph 

 

Figure 2: BE deleted 

 

Figure 3: BC deleted 

 

Figure 4: DC deleted 
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The next vertex chosen for testing is A. The node A is associated with the cycle A-D-E-A and hence De 
being the most expensive edge is removed as depicted in figure 5. Next A is added to the list of marked 
vertices. 

 
 
 
 
 
 
 
 
 
 

 
 
 
    At this iteration the number of edges equals one less than the number of vertices and hence the algorithm 
terminates returning the resulting minimal spanning tree as shown in figure 6. 
   One advantage of this method is that it eliminates the need to sort the edges. Additionally in most of the 
cases, removal of an edge causes removal of multiple cycles. For example removal of BC in figure 3 eliminates 
four cycles from the graph. The set of marked vertices S ensures that the selection of vertices is not repeated. 

6. Conclusion   

In our work we have given an algorithm that can be easily implemented on a single machine. It can be 
further extended for distributed systems (distributed graphs) by applying various parallel computing 
techniques. A major advantage of this algorithm is that it expels the need of sorting the edges of the weighted 
graph. Additionally removing one of the edges from a selected cycle also breaks multiple cycles there by 
making it even faster. Thus we can conclude that it is an efficient methodology for finding the minimal 
spanning tree of a given weighted undirected graph. 
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