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Arnold [V.I. Arnold, On matrices depending on parameters, Russian

Math. Surveys 26 (2) (1971) 29–43] constructedminiversal deforma-

tions of square complex matrices under similarity; that is, a simple

normal form to which not only a given square matrix A but all ma-

trices B close to it can be reduced by similarity transformations that

smoothly depend on the entries of B. We construct miniversal de-

formations of matrices under congruence.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The reduction of a matrix to its Jordan form is an unstable operation: both the Jordan form and

a reduction transformation depend discontinuously on the entries of the original matrix. Therefore,

if the entries of a matrix are known only approximately, then it is unwise to reduce it to Jordan

form. Furthermore, when investigating a family of matrices smoothly depending on parameters, then

although each individual matrix can be reduced to its Jordan form, it is unwise to do so since in such

an operation the smoothness relative to the parameters is lost.

For these reasons, Arnold [1] (see also [2,3]) constructedminiversal deformations ofmatrices under

similarity; that is, a simple normal form to which not only a given square matrix A but all matrices
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B close to it can be reduced by similarity transformations that smoothly depend on the entries of B.

Miniversal deformations were also constructed for:

• real matrices with respect to similarity [15] (see also [2,3]; this normal form was simplified in

[18]);
• complex matrix pencils [12] (i.e., matrices of pairs of linear mappings U ⇒ V ; other normal

forms of complex and real matrix pencils were constructed in [18,25], see also [19]);
• complex and real contragredient matrix pencils [18] (i.e., matrices of pairs of counter linear

mappings U � V);
• matrices of selfadjoint operators on a complex or real vector space with scalar product given

by a skew-symmetric, or symmetric, or Hermitian nonsingular form, see [16,8,29,30] and [4,

Appendix 6];
• matrices of linear operators on a unitary space [5]. Deformations of selfadjoint operators (Her-

mitian forms) on a unitary space are studied in [34].

All matrices that we consider are complex matrices.

In Section 2, we formulate Theorem 2.2 that gives miniversal deformations of matrices of bilinear

forms; i.e., miniversal deformations of matrices with respect to congruence transformations

A �→ STAS, S is nonsingular

(and hence miniversal deformations of pairs consisting of a symmetric matrix and a skew-symmetric

matrix since each square matrix can be expressed uniquely as their sum; see Remark 3.1). A more

abstract form of Theorem 2.2, in the spirit of Arnold’s article [1], is given in Theorem 3.1 of Section 3.

We prove Theorem 3.1 in Sections 4–7. The proof is based on Lemma 4.2, which gives a method

for constructing miniversal deformations. This lemma follows from a general theory of miniversal de-

formations. In Section 7.3 we give its constructive proof and find a congruence transformation that

reduces a matrix to its miniversal deformation. Analogous interactive methods for constructing trans-

forming matrices in the reduction to versal deformations of matrices under similarity and of matrix

pencils under equivalence were developed in [17,26,27].

A preliminary version of this article appeared in 2007 preprint [13]; it was used in [14] for con-

structing the Hasse diagram of the closure ordering on the set of congruence classes of 3× 3matrices.

The authors also recently obtained miniversal deformations of matrices of

• sesquilinear forms [11] (which allows to construct miniversal deformations of pairs (H1,H2)
of Hermitian matrices because each square matrix can be expressed uniquely as their sum

H1 + iH2),• pairs of skew-symmetric forms [9], and
• pairs of symmetric forms [10].

2. The main theorem in terms of holomorphic matrix functions

Define the n × nmatrices:

Jn(λ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0

λ
. . .

. . . 1

0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �n :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

−1
...

1 1

−1 −1

1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We use the following canonical form of complex matrices for congruence.
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Theorem 2.1 [21]. Each square complex matrix is congruent to a direct sum, determined uniquely up to

permutation of summands, of matrices of the form

Hm(λ) :=
⎡
⎣ 0 Im

Jm(λ) 0

⎤
⎦ (λ �= 0, λ �= (−1)m+1), �n, Jk(0) (1)

in which λ ∈ C is determined up to replacement by λ−1.

This canonical form was obtained in [21] basing on [31, Theorem 3] and was generalized to other

fields in [24]; a direct proof that this form is canonical was given in [22,23].

Let

Acan = ⊕
i

Hpi(λi) ⊕ ⊕
j

�qj ⊕
⊕
l

Jrl(0), r1 � r2 � . . . , (2)

be the canonical form for congruence of an n × n matrix A. Then

STAS = Acan (3)

for a nonsingular S. Allmatrices that are close to A are represented in the form A+E inwhich E ∈ C
n×n

is close to 0n.

Let S(E) be an n × n matrix function that is holomorphic on a neighborhood of 0n, which means

that S(E) is an n × n matrix whose entries are power series in n2 entries of E, and these series are

convergent in this neighborhood of 0n. Let S(0n) = S in which S is from (3). We define the matrix

function D(E) by

Acan + D(E) = S(E)T (A + E)S(E). (4)

Then D(E) is holomorphic at 0n and D(0n) = 0n. Our purpose is to find a simple form of D(E) by

choosing a suitable S(E). In Theorem 2.2, we give D(E) with the minimal number of nonzero entries

that can be attained by using transformations (4).

By a (0,∗) matrixwemean a matrix whose entries are 0 and ∗. Theorem 2.2 involves the following

(0,∗) matrices, in which all stars are placed in one row or column:

• The m × n matrices

0↖ :=

⎡
⎢⎢⎢⎢⎢⎣

∗
... 0

∗

⎤
⎥⎥⎥⎥⎥⎦ if m � n, or

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ · · · ∗

0

⎤
⎥⎥⎥⎥⎥⎥⎦ if m � n,

0
	 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
0

∗ 0

0

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if m � n, or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 ∗ 0 · · ·

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if m � n,
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0
|
 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∗
0 0

∗
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if m � n, or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ 0 ∗ · · ·

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if m � n

(ifm = n then we can use both the left and the right matrix).

• The matrices

0↗, 0 �, 0 |
 ; 0↘, 0
�

, 0
|
 ; 0↙, 0 	, 0

|


are obtained from 0↖, 0
	

, 0
|

by the clockwise rotation through 90◦; respectively, 180◦; and 270◦.

• The m × n matrices

0� :=
⎡
⎢⎢⎣

∗ · · · ∗
0

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣ 0

∗ · · · ∗

⎤
⎥⎥⎦

(0� can be taken in any of these forms), and

Pmn :=

⎡
⎢⎢⎢⎢⎣
0 . . . 0

...
. . .

...
0

0 . . . 0 0 ∗ . . . ∗

⎤
⎥⎥⎥⎥⎦ in which m � n (5)

(Pmn has n − m − 1 stars if m < n).

Let Acan = A1 ⊕ A2 ⊕ · · · ⊕ At be the decomposition (2), and let D(E) in (4) be partitioned

conformably to the partition of Acan:

D = D(E) =

⎡
⎢⎢⎢⎢⎣
D11 . . . D1t

...
. . .

...

Dt1 . . . Dtt

⎤
⎥⎥⎥⎥⎦ . (6)

Write

D(Ai) := Dii, D(Ai, Aj) := (Dji,Dij) if i < j. (7)

Ourmain result is the following theorem,whichwe reformulate in amore abstract form in Theorem

3.1.

Theorem 2.2 [13]. Let A be a square complex matrix, let Acan be its canonical matrix (2) for congruence,

and let S be a nonsingular matrix such that STAS = Acan. Then all matrices A+ E that are sufficiently close
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to A can be simultaneously reduced by some transformation

A + E �→ S(E)T (A + E)S(E),
S(E) is nonsingular and

holomorphic at zero, S(0) = S
(8)

to the formAcan+D inwhichD is a (0,∗)matrixwhose stars represent entries that depend holomorphically

on the entries of E, the number of stars inD is minimal that can be achieved by transformations of the form

(8), and the blocks of D with respect to the partition (6) are defined in the notation (7) as follows:

(i) The diagonal blocks of D are defined by

D(Hm(λ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0

0↙ 0

]
if λ �= ±1 (all blocks are m × m),

⎡
⎣0

|

0

0↙ 0
|


⎤
⎦ if λ = 1 (m is even by (1)),

[
0

	
0

0↙ 0
�

]
if λ = −1 (m is odd by (1));

(9)

D(�n) =
{
0

	
if n is even,

0
|

if n is odd; (10)

D(Jn(0)) = 0 	. (11)

(ii) The off-diagonal blocks of D whose horizontal and vertical strips contain summands of Acan of the

same type are defined by

D(Hm(λ), Hn(μ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) if λ �= μ±1,([
0↖ 0

0 0↘
]

, 0

)
if λ = μ−1 �= ±1,

([
0 0↗
0↙ 0

]
, 0

)
if λ = μ �= ±1,

([
0↖ 0↗
0↙ 0↘

]
, 0

)
if λ = μ = ±1;

(12)

D(�m, �n) =
{
(0, 0) if m − n is odd,

(0↖, 0) if m − n is even; (13)

D(Jm(0), Jn(0)) =
⎧⎨
⎩(0 	, 0 	) if m � n and n is even,

(0 	 + Pnm, 0 	) if m � n and n is odd.
(14)

(iii) The off-diagonal blocks of D whose horizontal and vertical strips contain summands of Acan of

different types are defined by

D(Hm(λ), �n) =
{
(0, 0) if λ �= (−1)n+1,

([0↖ 0↗], 0) if λ = (−1)n+1; (15)
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D(Hm(λ), Jn(0)) =
{
(0, 0) if n is even,

(0�, 0) if n is odd; (16)

D(�m, Jn(0)) =
{
(0, 0) if n is even,

(0�, 0) if n is odd.
(17)

For each A ∈ C
n×n, the vector space

T(A) := {CTA + AC | C ∈ C
n×n} (18)

is the tangent space to the congruence class of A at the point A since

(I + εC)TA(I + εC) = A + ε(CTA + AC) + ε2CTAC (19)

for all C ∈ C
n×n and ε ∈ C.

The matrix D from Theorem 2.2 was constructed such that

C
n×n = T(Acan) ⊕ D(C) (20)

in which D(C) is the vector space of all matrices obtained from D by replacing its stars by complex

numbers. Thus, the number of stars in D is equal to the codimension of the congruence class of Acan;

it was independently calculated in [6]. The codimensions of *congruence classes of canonical matri-

ces for *congruence were calculated in [7]. Simplest miniversal deformations of matrix pencils and

contragredient matrix pencils [18], canonical matrices for *congruence [11], and canonical pairs of

skew-symmetric matrices [10] were constructed by analogous methods.

Theorem2.2will be proved as follows:wefirst prove in Lemma4.2 that each (0,∗)matrix that satisfies

(20) can be taken as D in Theorem 2.2, and then verify that D from Theorem 2.2 satisfies (20).

Example 2.1. Let A be any 2 × 2 or 3 × 3 matrix. Then all matrices A + E that are sufficiently close to

A can be simultaneously reduced by transformations (8) to one of the following forms

⎡
⎣0

0

⎤
⎦ +

⎡
⎣∗ ∗
∗ ∗

⎤
⎦ ,

⎡
⎣1

0

⎤
⎦ +

⎡
⎣0 0

∗ ∗

⎤
⎦ ,

⎡
⎣1

1

⎤
⎦ +

⎡
⎣0 0

∗ 0

⎤
⎦ ,

⎡
⎣ 0 1

−1 0

⎤
⎦ +

⎡
⎣∗ 0

∗ ∗

⎤
⎦ ,

⎡
⎣0 1

λ 0

⎤
⎦ +

⎡
⎣0 0

∗ 0

⎤
⎦ (λ �= ±1),

⎡
⎣0 −1

1 1

⎤
⎦ +

⎡
⎣∗ 0

0 0

⎤
⎦ ,

or, respectively,

⎡
⎢⎢⎢⎣
0

0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
1

0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

∗ ∗ ∗
∗ ∗ ∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
1

1

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

∗ 0 0

∗ ∗ ∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
1

1

1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

∗ 0 0

∗ ∗ 0

⎤
⎥⎥⎥⎦ ,
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⎡
⎢⎢⎢⎣

0 1

−1 0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
∗ 0 0

∗ ∗ 0

∗ ∗ ∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 1

λ 0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

∗ 0 0

∗ ∗ ∗

⎤
⎥⎥⎥⎦ (λ �= 0, ±1),

⎡
⎢⎢⎢⎣
0 1

0 0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

∗ 0 ∗
∗ 0 ∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 −1

1 1

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
∗ 0 0

0 0 0

∗ ∗ ∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

0 1

−1 0

1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
∗ 0 0

∗ ∗ 0

0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 1

μ 0

1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

∗ 0 0

0 0 0

⎤
⎥⎥⎥⎦ (μ �= ±1),

⎡
⎢⎢⎢⎣
0 −1

1 1

1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
∗ 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

0 0 0

∗ 0 ∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0 0 1

0 −1 −1

1 1 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
0 0 0

∗ 0 0

0 0 0

⎤
⎥⎥⎥⎦ .

Each of these matrices has the form Acan + D in which Acan is a direct sum of blocks of the form

(1) (the zero entries outside of these blocks in Acan are not shown) and the stars in D are complex

numbers that tend to zero as E tends to 0. The number of stars is the smallest that can be attained by

using transformations (8); it is equal to the codimension of the congruence class of A.

3. The main theorem in terms of miniversal deformations

The notion of a miniversal deformation of a matrix with respect similarity was given by Arnold [1]

(see also [3, §30B]). It can be extended to matrices with respect to congruence as follows.

A deformation of a matrix A ∈ C
n×n is a holomorphic map A : � → C

n×n in which � ⊂ C
k is a

neighborhood of �0 = (0, . . . , 0) and A(�0) = A.

Let A and B be two deformations of Awith the same parameter space C
k . We consider A and B as

equal if they coincide on some neighborhood of �0 (this means that each deformation is a germ). We

say that A and B are equivalent if the identity matrix In possesses a deformation I such that

B(�λ) = I(�λ)TA(�λ)I(�λ)

for all �λ = (λ1, . . . , λk) in some neighborhood of �0.
Definition 3.1. A deformationA(λ1, . . . , λk) of a squarematrix A is called versal if every deformation

B(μ1, . . . , μl) of A is equivalent to a deformation of the form A(ϕ1( �μ), . . . , ϕk( �μ)) in which �μ =
(μ1, . . . , μl), all ϕi( �μ) are power series that are convergent in a neighborhood of �0, and ϕi(�0) = 0.

A versal deformation A(λ1, . . . , λk) of A is calledminiversal if there is no versal deformation that has

less than k parameters.

For each (0,∗)matrixD, we denote byD(C) the space of all matrices obtained fromD by replacing

the stars with complex numbers (as in (20)) and by D(�ε) the parameter matrix obtained from D by
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replacing each (i, j) star with the parameter εij . This means that

D(C) := ⊕
(i,j)∈I(D)

CEij, D(�ε) := ∑
(i,j)∈I(D)

εijEij, (21)

in which every Eij is the matrix unit (its (i, j) entry is 1 and the others are 0) and

I(D) ⊆ {1, . . . , n} × {1, . . . , n}
is the set of indices of the stars in D.

We say that a deformation of A is simplest if it has the form A + D(�ε) in which D is a (0,∗) matrix.

Definition 3.1 of versality for a simplest deformation can be reformulated in the spirit of Section 2 as

follows.

Definition 3.2. A simplest deformation A+D(�ε) of a square matrix A is versal if there exists an n× n

matrix S(X) and a neighborhood U ⊂ C
n×n of 0n such that

(i) the entries of S(X) are power series in variables xij , i, j = 1, . . . , n (they form the n × nmatrix

of unknowns X = [xij]),
(ii) these series are convergent in U and S(0n) = In,
(iii) S(E)T (A + E)S(E) ∈ A + D(C) for all E ∈ U.

Since each squarematrix is congruent to its canonical matrix, it suffices to constructminiversal de-

formations of canonicalmatrices (2). Theirminiversal deformations are given in the following theorem,

which is another form of Theorem 2.2.

Theorem 3.1 [13]. Let Acan be a canonical matrix (2) for congruence. A simplest miniversal deformation

of Acan can be taken in the form Acan + D(�ε), where D is the (0,∗) matrix partitioned into blocks Dij (as
in (6)) that are defined by (9)–(17) in the notation (7).

Remark 3.1. Each square matrix A can be represented uniquely as

A = S + C , S is symmetric and C is skew-symmetric. (22)

A congruence of A corresponds to a simultaneous congruence of S and C . Thus, if Acan is a canonical

matrix for congruence given in Theorem 2.1 and Acan = Scan + Ccan is its representation (22), then

(Scan, Ccan) is a canonicalpair for simultaneouscongruenceofpairsof symmetric andskew-symmetric

matrices. The pairs (Scan, Ccan) were described in [23, Theorem 1.2(a)]. Theorem 3.1 admits to derive

a miniversal deformation of (Scan, Ccan); that is, to construct a normal form with minimal number

of parameters to which all pairs (S , C ) that are close to (Scan, Ccan) and consist of symmetric and

skew-symmetric matrices can be reduced by transformations

(S , C ) �→ (STS S, STC S), S is nonsingular,

in which S smoothly depends on the entries of S and C . All one has to do is to express Acan +D(�ε) as
the sum of symmetric and skew-symmetric matrices.

4. A method for constructing miniversal deformations

In this section, we give a method for constructing simplest miniversal deformations; we use it in

the proof of Theorem 3.1.
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The deformation

U(�ε) := A +
n∑

i,j=1

εijEij, (23)

in which Eij are the matrix units, is universal in the sense that every deformation B(μ1, . . . , μl) of A
has the form U( �ϕ(μ1, . . . , μl)), in which ϕij(μ1, . . . , μl) are power series that are convergent in a

neighborhood of �0 and ϕij(�0) = 0. Hence every deformation B(μ1, . . . , μl) in Definition 3.1 can be

replaced by U(�ε), which gives the following lemma.

Lemma 4.1. The following two conditions are equivalent for any deformation A(λ1, . . . , λk) of a matrix

A:

(i) The deformation A(λ1, . . . , λk) is versal.
(ii) The deformation (23) is equivalent to A(ϕ1(�ε), . . . , ϕk(�ε)) for some power series ϕi(�ε) that are

convergent in a neighborhood of �0 and such that ϕi(�0) = 0.

If U is a subspace of a vector space V , then each set v + U with v ∈ V is called an affine subspace

parallel to U.

The proof of Theorem 3.1 is based on the following lemma, which gives a method of constructing

miniversal deformations. A constructive proof of this lemma is given in Theorem 8.1.

Lemma 4.2. Let A ∈ C
n×n and let D be a (0,∗) matrix of size n × n. The following three statements are

equivalent:

(i) The deformation A + D(�ε) of A (see (21)) is miniversal.

(ii) The vector space C
n×n decomposes into the direct sum

C
n×n = T(A) ⊕ D(C)

in which T(A) and D(C) are defined in (18) and (21).

(iii) Each affine subspace of C n×n parallel to T(A) intersects D(C) at exactly one point.

Proof. Let us define the action of the group GLn(C) of nonsingular n× nmatrices on the space C
n×n

by

AS := STAS, A ∈ C
n×n, S ∈ GLn(C). (24)

The orbit AGLn of A under this action consists of all matrices that are congruent to A.

By (19), the space T(A) is the tangent space to the orbit AGLn at the point A. HenceD(�ε) is transversal
to the orbit AGLn at the point A if

C
n×n = T(A) + D(C)

(see definitions in [3, §29E]; two subspaces of a vector space are called transversal if their sum is the

whole space).

This proves the equivalence of (i) and (ii) since a transversal (of theminimal dimension) to the orbit

is a (mini)versal deformation; see [2, Section 1.6] or [32, Part V, Theorem 1.2]. The equivalence of (ii)

and (iii) is obvious. �

Recall that the orbits of canonical matrices (2) under the action (24) were also studied in [6,14].

Corollary 4.1. A simplest miniversal deformation of A ∈ C
n×n can be constructed as follows. Let

T1, . . . , Tr be a basis of the space T(A), and let E1, . . . , En2 be the basis of C
n×n consisting of all matrix

units Eij. Removing from the sequence T1, . . . , Tr, E1, . . . , En2 every matrix that is a linear combination of
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the preceding matrices, we obtain a new basis T1, . . . , Tr, Ei1 , . . . , Eik of the space C
n×n. By Lemma 4.2,

the deformation

A(ε1, . . . , εk) = A + ε1Ei1 + · · · + εkEik

is miniversal.

For each M ∈ C
m×m and N ∈ C

n×n, define the vector space

T(M,N) := {(STM + NR︸ ︷︷ ︸
n-by-m

, RTN + MS︸ ︷︷ ︸
m-by-n

) | S ∈ C
m×n, R ∈ C

n×m}. (25)

Lemma 4.3. Let A = A1⊕· · ·⊕At be a block-diagonalmatrix inwhich every Ai is ni×ni. LetD = [Dij] be
a (0,∗)matrix of the same size and partitioned into blocks conformably to the partition of A. Then A+D(�ε)
is a simplest miniversal deformation of A for congruence if and only if

(i) each affine subspace ofCni×ni parallel to T(Ai) (which is defined in (18)) intersectsDii(C) at exactly
one point and

(ii) each affine subspace of C
nj×ni ⊕ C

ni×nj parallel to T(Ai, Aj) (which is defined in (25)) intersects

Dji(C) ⊕ Dij(C) at exactly one point.

Proof. By Lemma 4.2(iii), A + D(�ε) is a simplest miniversal deformation of A if and only if for each

C ∈ C
n×n the affine subspace C + T(A) contains exactly one D ∈ D(C); that is, for each C exactly one

matrix in D(C) has the form

D = C + STA + AS ∈ D(C), S ∈ C
n×n. (26)

Let us partition D, C, and S into blocks conformably to the partition of A. By (26), for each i we have

Dii = Cii + STiiAi + AiSii, and for all i and j such that i < j we have⎡
⎣Dii Dij

Dji Djj

⎤
⎦ =

⎡
⎣Cii Cij

Cji Cjj

⎤
⎦ +

⎡
⎣STii STji

STij STjj

⎤
⎦

⎡
⎣Ai 0

0 Aj

⎤
⎦ +

⎡
⎣Ai 0

0 Aj

⎤
⎦

⎡
⎣Sii Sij

Sji Sjj

⎤
⎦ .

Thus, (26) is equivalent to the conditions

Dii = Cii + STiiAi + AiSii ∈ Dii(C) for 1 � i � t (27)

and

(Dji,Dij) = (Cji, Cij) + (STij Ai + AjSji, STjiAj + AiSij) ∈ Dji(C) ⊕ Dij(C) (28)

for 1 � i < j � t. Hence, for each C ∈ C
n×n there exists exactly one D ∈ D of the form (26) if and

only if

(i′) for each Cii ∈ C
ni×ni there exists exactly one Dii ∈ Dii of the form (27) and

(ii′) for each (Cji, Cij) ∈ C
nj×ni ⊕ C

ni×nj there exists exactly one (Dji,Dij) ∈ Dji(C) ⊕Dij(C) of the
form (28). �

Corollary 4.2. In the notation of Lemma 4.3, A+D(�ε) is a miniversal deformation of A if and only if each

submatrix of A + D(�ε) of the form⎡
⎣Ai + Dii(�ε) Dij(�ε)

Dji(�ε) Aj + Djj(�ε)

⎤
⎦ with i < j
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is a miniversal deformation of Ai ⊕ Aj. A similar reduction to the case of canonical forms for congruence

with two direct summands was used in [6] for the solution of the equation XA + AXT = 0.

We are ready to prove Theorem 3.1. Let Acan = A1 ⊕ A2 ⊕ · · ·⊕ At be the canonical matrix (2), and

letD = [Dij]ti,j=1 be the (0,∗)matrix constructed in Theorem 3.1. Each Ai has the formHn(λ), or�n, or

Jn(0), and so there are three types of diagonal blocksD(Ai) = Dii and six types of pairs of off-diagonal

blocks D(Ai, Aj) = (Dji,Dij), i < j; they were defined in (9)–(17). In the next three sections, we prove

that all blocks of D satisfy the conditions (i) and (ii) of Lemma 4.3.

5. Diagonal blocks of D

Let us verify that the diagonal blocks of D defined in part (i) of Theorem 2.2 satisfy the condition

(i) of Lemma 4.3.

5.1. Diagonal blocks D(Hn(λ))

Due to Lemma 4.3(i), it suffices to prove that each 2n-by-2n matrix A = [Aij]2i,j=1 can be reduced

to exactly one matrix of the form (9) by adding⎡
⎣ST11 ST21

ST12 ST22

⎤
⎦

⎡
⎣ 0 In

Jn(λ) 0

⎤
⎦ +

⎡
⎣ 0 In

Jn(λ) 0

⎤
⎦

⎡
⎣S11 S12

S21 S22

⎤
⎦ =

⎡
⎣ ST21Jn(λ) + S21 ST11 + S22

ST22Jn(λ) + Jn(λ)S11 ST12 + Jn(λ)S12

⎤
⎦

in which S = [Sij]2i,j=1 is an arbitrary 2n-by-2n matrix. Taking S22 = −A12 and the other Sij = 0, we

obtain a new matrix A with A12 = 0. To preserve A12, we hereafter must take S with ST11 + S22 = 0.

Therefore, we can add ST21Jn(λ) + S21 to the (new) A11, S
T
12 + Jn(λ)S12 to A22, and−S11Jn(λ) + Jn(λ)S11

to A21. Using these additions, we can reduce A to the form (9) on the strength of the following 3

lemmas.

Lemma 5.1. Adding SJn(λ) + ST with a fixed λ and an arbitrary S, we can reduce each n × n matrix to

exactly one matrix of the form⎧⎪⎪⎨
⎪⎪⎩
0 if λ �= ±1,

0
|

if λ = 1,

0
	

if λ = −1.

(29)

Proof. Let A = [aij] be an arbitrary n × nmatrix. We will reduce it along its skew diagonals

starting from the upper left corner; that is, in the following order:

a11, (a21, a12), (a31, a22, a13), . . . , ann. (30)

We reduce A by adding�A := SJn(λ)+ ST in which S = [sij] is any n×nmatrix. For instance, if n = 4

then
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�A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λs11 + 0 + s11 λs12 + s11 + s21 λs13 + s12 + s31 λs14 + s13 + s41

λs21 + 0 + s12 λs22 + s21 + s22 λs23 + s22 + s32 λs24 + s23 + s42

λs31 + 0 + s13 λs32 + s31 + s23 λs33 + s32 + s33 λs34 + s33 + s43

λs41 + 0 + s14 λs42 + s41 + s24 λs43 + s42 + s34 λs44 + s43 + s44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Case 1: λ �= ±1.We reduce A to 0 by induction: Assume that the first t − 1 skew diagonals of A in the

sequence (30) are zero. To preserve them, we must and will take the first t − 1 skew diagonals of S

equal to zero. If the tth skew diagonal of S is (x1, . . . , xr), then we can add

(λx1 + xr, λx2 + xr−1, λx3 + xr−2, . . . , λxr + x1) (31)

to the tth skew diagonal of A. Each vector (c1, . . . , cr) ∈ C
r is represented in the form (31) since the

corresponding system of linear equations

λx1 + xr = c1, λx2 + xr−1 = c2, . . . , λxr + x1 = cr

has a nonzero determinant for all λ �= ±1. We make the tth skew diagonal of A equal to zero.

Case 2: λ = 1.We say that a vector (v1, v2, . . . , vr) ∈ C
r is symmetric if it is equal to (vr, . . . , v2, v1),

and skew-symmetric if it is equal to (−vr, . . . , −v2, −v1). Let us consider the equality

(x1, x2, . . . , xr) + (0, y2, . . . , yr) = (a1, a2, . . . , ar) (32)

in which �x = (x1, . . . , xr) is symmetric and �y = (y2, . . . , yr) is skew-symmetric. The following two

statements hold:

(a) If r is odd, then for each a1, . . . , ar there exist unique �x and �y satisfying (32).

(b) If r is even, then for each a1, . . . , ar−1 there exist unique ar , �x, and �y satisfying (32), and for each

a2, . . . , ar there exist unique a1, �x, and �y satisfying (32).

Indeed, if r = 2k + 1, then (32) takes the form

(x1, . . . , xk, xk+1, xk, . . . , x1) + (0, y2, . . . , yk+1, −yk+1, . . . , −y2) = (a1, . . . , a2k+1),

and so it can be rewritten as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 1
. . .

. . .
. . . 0

1 1

1 0 −1

...
...

...

1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xk+1

y2
...

yk+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

ak+1

ak+2

...

a2k+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix of this system is nonsingular since we can add the columns of the second vertical strip to

the corresponding columns of the first vertical strip and reduce it to the form
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1 1

. . .
. . .

1 1

0

1
. . .

. . . 0

1

0

−1

...

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with nonsingular diagonal blocks. This proves (a).

If r = 2k, then (32) takes the form

(x1, . . . , xk, xk, . . . , x1) + (0, y2, . . . , yk, 0, −yk, . . . , −y2) = (a1, . . . , a2k),

and so it can be rewritten as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 1
. . .

. . .
. . . 0

1 1

1 0

...
... −1

1 0
...

1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xk

y2
...

yk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

ak

ak+1

ak+2

...

a2k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix of this system is 2k-by-(2k − 1) and can be reduced as follows. For i = 1, . . . , k − 1, we

add the ith column of the second vertical strip to the ith column of the first vertical strip or subtract it

from the (i + 1)st column of the first vertical strip and obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 1 1
. . .

. . .
. . .

. . . 0

1 1 1

1 0

0
... −1

... 0
...

0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1
. . .

. . .
. . . 0

0 1

1 0

... 1
... −1

1
... 0

...

1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The first matrix without the first row and the secondmatrix without the last row are nonsingular. This

proves (b).

Since λ = 1, we can add �A = SJn(1) + ST to A. The matrix S is an arbitrary of size n × n, write it

in the form S = B + C in which

B := S + ST

2
and C := S − ST

2
(33)

are its symmetric and skew-symmetric parts. Then

SJn(1) + ST = S + SJn(0) + ST = 2B + (B + C)Jn(0),

and so we can add to A any matrix

�A = 2B + (B + C)Jn(0) (34)

in which B = [bij] is symmetric and C = [cij] is skew-symmetric.

We reduce A to the form 0
|

along the skew diagonals (30) as follows. Taking b11 = −a11/2, we

make the (1, 1) entry of A equal to zero. Reasoning by induction, we fix t ∈ {1, . . . , n−1} and assume

that

• the first t − 1 skew diagonals of A have been reduced to the form 0
|

(that is, these diagonals

coincide with the corresponding skew diagonals of some matrix of the form 0
|

) and these

skew diagonals are uniquely determined by the initial matrix A;
• if t � n and S preserves the first t − 1 skew diagonals of A (i.e., the first t − 1 skew diagonals

of (34) are zero) then the first t − 1 skew diagonals of B are zero.

Let t � n. Then the tth skew diagonal of (34) has the form

(b1, b2, . . . , br) + (0, c2, . . . , cr) (35)

in which (b1, b2, . . . , br) is an arbitrary symmetric vector (it is the tth skew diagonal of 2B) and

(c2, c3, . . . , cr) is an arbitrary skew-symmetric vector (it is the (t − 1)st skew diagonal of C). The

statements (a) and (b) imply that we can make the tth skew diagonal of A as in 0
|

by adding (35).

Moreover, this skew diagonal is uniquely determined, and to preserve it the tth skew diagonal of B

must be zero.

For instance, if t = 2 � n, then we add (b1, b1) and reduce the second skew diagonal of A to the

form (∗, 0) or (0, ∗). If t = 3 � n, then we add (b1, b2, b1) + (0, c2, −c2) and make the third skew

diagonal of A equal to 0.

Let t > n. Let us take S in which the first t − 1 skew diagonals are equal to 0. Then the tth skew

diagonal of (34) has the form

(b1, b2, . . . , br) + (c1, c2, . . . , cr) (36)

inwhich (b1, b2, . . . , br) is the tth skewdiagonal of 2B is symmetric and (c1, c2, . . . , cr) is the (t−1)st
skew diagonal of C without the last entry. Thus, (b1, b2, . . . , br) is any symmetric, c1 is arbitrary, and

(c2, c3, . . . , cr) is any skew-symmetric. Adding (36), we reduce the tth skew diagonal of A to 0.

Case 3: λ = −1.We can add SJn(−1)+ ST to A. Write S in the form B+ C, in which B and C are defined

in (33). Then

�A = SJn(−1) + ST = −S + SJn(0) + ST = −2C + (B + C)Jn(0).
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We reduce A to the form 0
	

along the skew diagonals (30) as follows. The (1, 1) entry of �A is 0;

so we cannot change a11. Reasoning by induction, we fix t ∈ {1, . . . , n − 1} and assume that

• the first t − 1 skew diagonals of A have been reduced to the form 0
	

and these diagonals are

uniquely determined by the initial matrix A;
• if t � n and S preserves the first t − 1 skew diagonals of A (i.e., the first t − 1 skew diagonals

of (34) are zero) then the first t − 1 skew diagonals of C are zero.

If t � n, then we can add to the tth skew diagonal of A any vector

(c1, c2, . . . , ct) + (0, b2, . . . , bt)

in which (c1, . . . , ct) is skew-symmetric (it is the tth skew diagonal of −2C) and (b2, . . . , bt) is

symmetric (it is the (t − 1)st skew diagonal of B). We make the tth skew diagonal of A as in 0
	
. For

instance, if t = 2 � n, then we add (c1, −c1)+ (0, b2) andmake the second skew diagonal of A equal

to zero. If t = 3 � n, then we add (c1, 0, −c1) + (0, b2, b2) and reduce the third skew diagonal of A

to the form (∗, 0, 0) or (0, 0, ∗).
Let t > n. Let us take S in which the first t − 1 skew diagonals are equal to 0. Then we can add to

the tth skew diagonal of A any vector

(c1, c2, . . . , cr) + (b1, b2, . . . , br)

in which (c1, . . . , cr) is skew-symmetric (it is the tth skew diagonal of −2C), b1 is arbitrary, and

(b2, . . . , br−1) is symmetric (it is the (t − 1)st skew diagonal of B without the first and the last

elements). We make the tth skew diagonal of A equal to zero. �

Lemma 5.2. Adding Jn(λ)S + ST , we can reduce each n × n matrix to exactly one matrix of the form⎧⎪⎪⎨
⎪⎪⎩
0 if λ �= ±1,

0
|


if λ = 1,

0
�

if λ = −1.

(37)

Proof. By Lemma 5.1, for each n × n matrix B there exists R such that M := B + RJn(λ) + RT has the

form (29). Then

MT = BT + Jn(λ)TRT + R.

Write

Z :=

⎡
⎢⎢⎢⎢⎣
0 1

...

1 0

⎤
⎥⎥⎥⎥⎦ .

Because ZJn(λ)TZ = Jn(λ), we have

ZMTZ = ZBTZ + Jn(λ)(ZRZ)T + ZRZ.

This ensures Lemma 5.2 since ZBTZ is arbitrary and ZMTZ is of the form (37). �

Lemma 5.3. Adding SJn(λ) − Jn(λ)S, we can reduce each n × n matrix to exactly one matrix of the form

0↙.
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Proof. Let A = [aij] be an arbitrary n × n matrix. Adding

SJn(λ) − Jn(λ)S = SJn(0) − Jn(0)S

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s21 − 0 s22 − s11 s23 − s12 . . . s2n − s1,n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sn−1,1 − 0 sn−1,2 − sn−2,1 sn−1,3 − sn−2,2 . . . sn−1,n − sn−2,n−1

sn1 − 0 sn2 − sn−1,1 sn3 − sn−1,2 . . . snn − sn−1,n−1

0 − 0 0 − sn1 0 − sn2 . . . 0 − sn,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we reduce A along the diagonals

an1, (an−1,1, an2), (an−2,1, an−1,2, an3), . . . , a1n

to the form 0↙. �

5.2. Diagonal blocks D(�n)

Due to Lemma 4.3(i), it suffices to prove that each n × n matrix A can be reduced to exactly one

matrix of the form (10) by adding �A := ST�n + �nS. Write �n as the sum of its symmetric and

skew-symmetric parts: �n = �
(s)
n + �

(c)
n , where

�(s)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
...

0 1

0 −1

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and �(c)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

−1

1

−1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if n is even,

�(s)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

−1

1

−1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and �(c)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
...

0 1

0 −1

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if n is odd.

Then the symmetric and skew-symmetric parts of �A are

�A(s) = ST�(s)
n + �(s)

n S, �A(c) = ST�(c)
n + �(c)

n S

in which S = [sij] is any n × n matrix.

Case 1: n is even. Then

�A(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 + 0 sn1 + 0 −sn−1,1 + 0 . . . s21 + 0

0 + sn1 sn2 + sn2 −sn−1,2 + sn3 . . . s22 + snn

0 − sn−1,1 sn3 − sn−1,2 −sn−1,3 − sn−1,3 . . . s23 − sn−1,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 + s21 snn + s22 −sn−1,n + s23 . . . s2n + s2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�A(c) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn1 − sn1 −sn−1,1 − sn2 sn−2,1 − sn3 . . . −s11 − snn

sn2 + sn−1,1 −sn−1,2 + sn−1,2 sn−2,2 + sn−1,3 . . . −s12 + sn−1,n

sn3 − sn−2,1 −sn−1,3 − sn−2,2 sn−2,3 − sn−2,3 . . . −s13 − sn−2,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

snn + s11 −sn−1,n + s12 sn−2,n + s13 . . . −s1n + s1n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We reduce A = [aij] to the form 0
	

along its skew diagonals (30) as follows. The (1, 1) entry of

�A = �A(s) + �A(c) is zero, and so the (1, 1) entry of A is not changed. Reasoning by induction, we

fix t ∈ {1, . . . , n − 1} and assume that

• the first t skew diagonals of A have been reduced to the form 0
	

and they are uniquely deter-

mined by the initial A;
• the addition of�A preserves the first t skew diagonals of A if and only if the first t−1 diagonals

of S starting from the lower left diagonal

are zero and its tth diagonal

(sn−t+1,1, sn−t+2,2, sn−t+3,3 . . . , sn−2,t−2, sn−1,t−1, sn,t)

is symmetric if t is odd and skew-symmetric if t is even.

Write

(v1, v2, . . . , vt) :=
(
(−1)t−1sn−t+1,1, . . . , sn−2,t−2, −sn−1,t−1, sn,t

)
;

this vector is symmetric for all t.

The (t + 1)st skew diagonal of �A(s) is

(0, vt, vt−1, . . . , v2, v1) + (v1, v2, . . . , vt−1, vt, 0). (38)

If t is odd, then every symmetric vector of dimension t + 1 is represented in the form (38). If t is even,

then (38) without the first and the last elements is an arbitrary symmetric vector of dimension t − 1

and the first (and the last) element of (38) is fully determined by the other elements. Since the (t+1)st

skew diagonal of �A(c) is an arbitrary skew-symmetric vector of dimension t + 1, this means that the

(t+1)st skew diagonal of A is reduced to zero if t is odd, and to the form (∗, 0, . . . , 0) or (0, . . . , 0, ∗)

if t is even. To preserve it, we hereafter must take those S in which the (t+1)st skew diagonal of�A(c)

is zero; this means that the (t + 1)st diagonal of S is symmetric if t + 1 is odd and skew-symmetric if

t + 1 is even.

Thus, the first n skew diagonals in A have the form of the corresponding diagonals in 0
	
.

The (n + 1)st skew diagonal of �A(s) has the form

(vn, vn−1, . . . , v2) + (v2, . . . , vn−1, vn)

(comparewith (38)) and every symmetric vector of dimension n−1 is represented in this form. Hence,

the (n+1)st skew diagonal of�A is an arbitrary vector of dimension n−1 andwemake the (n+1)st
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skew diagonal of A equal to zero. Analogously, we make its n + 2, n + 3, . . . skew diagonals equal to

zero and reduce A to the form 0
	
.

Case 2: n is odd. Then

�A(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn1 + sn1 −sn−1,1 + sn2 sn−2,1 + sn3 . . . s11 + snn

sn2 − sn−1,1 −sn−1,2 − sn−1,2 sn−2,2 − sn−1,3 . . . s1n − sn−1,n

sn3 + sn−2,1 −sn−1,3 + sn−2,2 sn−2,3 + sn−2,3 . . . s13 + sn−2,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

snn + s11 −sn−1,n + s12 sn−2,n + s13 . . . s1n + s1n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�A(c) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 + 0 sn1 + 0 −sn−1,1 + 0 . . . −s21 + 0

0 − sn1 sn2 − sn2 −sn−1,2 − sn3 . . . −s22 − snn

0 + sn−1,1 sn3 + sn−1,2 −sn−1,3 + sn−1,3 . . . −s23 + sn−1,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 + s21 snn + s22 −sn−1,n + s23 . . . −s2n + s2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We reduce A along its skew diagonals (30). The first skew diagonal of �A(s) is arbitrary; we make the

first entry of A equal to zero.

Let t < n. Assume that

• the first t skew diagonals of A have been reduced to the form 0
|

and they are uniquely deter-

mined by the initial A;
• the addition of �A preserves these diagonals if and only if the first t − 1 diagonals of S, starting

from the lower left diagonal, are zero and the tth diagonal (u1, . . . , ut) of S is symmetric if t is

even and skew-symmetric if t is odd.

Then the vector

(v1, v2, . . . , vt) :=
(
(−1)t−1u1, , . . . , ut−2, −ut−1, ut

)
is skew-symmetric for all t.

The (t + 1)st skew diagonal of �A(c) is

(0, vt, vt−1, . . . , v2, v1) − (v1, v2, . . . , vt−1, vt, 0). (39)

If t is even, then every skew-symmetric vector of dimension t + 1 is represented in the form (39). If

t is odd, then (39) without the first and the last elements is an arbitrary skew-symmetric vector of

dimension t − 1 and the first (and the last) element of (39) is fully determined by the other elements.

Since the (t + 1)st skew diagonal of �A(s) is an arbitrary symmetric vector of dimension t + 1, this

means that the (t + 1)st skew diagonal of A reduces to 0 if t is even, and to the form (∗, 0, . . . , 0) or
(0, . . . , 0, ∗) if t is odd. To preserve it, we hereafter must take those S in which the (t + 1)st skew

diagonal of �A(s) is zero; this means that the (t + 1)st diagonal of S is symmetric if t + 1 is even and

skew-symmetric if t + 1 is odd.

The first n skew diagonals in A have the form of the corresponding diagonals in 0
|

. The (n + 1)st

skew diagonal in �A(c) has the form

(vn, vn−1, . . . , v2) − (v2, . . . , vn−1, vn)

(comparewith (39)) and every skew-symmetric vector is represented in this form. Hence, the (n+1)st
skewdiagonal of�A is an arbitrary vector of dimension n−1 andwemake the (n+1)st skewdiagonal
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of A equal to zero. Analogously, wemake its n+ 2, n+ 3, . . . skew diagonals equal to zero and reduce

A to the form 0
|

.

5.3. Diagonal blocks D(Jn(0))

Due to Lemma 4.3(i), it suffices to prove that each n × n matrix A can be reduced to exactly one

matrix of the form (11) by adding

�A := ST Jn(0) + Jn(0)S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 + s21 s11 + s22 s21 + s23 . . . sn−1,1 + s2n

0 + s31 s12 + s32 s22 + s33 . . . sn−1,2 + s3n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 + sn1 s1,n−1 + sn2 s2,n−1 + sn3 . . . sn−1,n−1 + snn

0 + 0 s1n + 0 s2n + 0 . . . sn−1,n + 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

in which S = [sij] is any n × n matrix. Thus,

�A = [bij], bij := sj−1,i + si+1,j (s0i := 0, sn+1,j := 0),

and so all entries of �A have the form skl + sl+1,k+1. The transitive closure of (k, l) ∼ (l + 1, k + 1)
is an equivalence relation on the set {1, . . . , n} × {1, . . . , n}.

Represent �A as the sum

�A = Bn1 + Bn−1,1 + · · · + B11 + B12 + · · · + B1n

of matrices that correspond to the equivalence classes and are defined as follows. Each B1j (j =
1, 2, . . . , n) is obtained from �A by replacing with 0 all of its entries except for

s1j + sj+1,2, sj+1,2 + s3,j+2, s3,j+2 + sj+3,4, . . . (41)

and each Bi1 (i = 2, 3, . . . , n) is obtained from �A by replacing with 0 all of its entries except for

0 + si1, si1 + s2,i+1, s2,i+1 + si+2,3, si+2,3 + s4,i+3, s4,i+3 + si+4,5, . . . ; (42)

the pairs of indices in (41) and in (42) are equivalent:

(1, j) ∼ (j + 1, 2) ∼ (3, j + 2) ∼ (j + 3, 4) ∼ · · ·
and

(i, 1) ∼ (2, i + 1) ∼ (i + 2, 3) ∼ (4, i + 3) ∼ (i + 4, 5) ∼ · · ·
We call the entries (41) and (42) themain entries of B1j and Bi1 (i > 1). Thematrices Bn1, . . . , B11, B12,
. . . , B1n have no common sij .

An arbitrary sequence of complex numbers can be represented in the form (41). The entries (42)

are linearly dependent only if the last entry in this sequence has the form skn + 0 (see (40)); then

(k, n) = (2p, i − 1 + 2p) for some p, and so i = n + 1 − 2p. Thus the following sequences (42) are

linearly dependent:

0 + sn−1,1, sn−1,1 + s2n, s2n + 0;
0 + sn−3,1, sn−3,1 + s2,n−2, s2,n−2 + sn−1,3, sn−1,3 + s4n, s4n + 0; . . .

One of the main entries of each of the matrices Bn−1,1, Bn−3,1, Bn−5,1, . . . is the linear combination

of the other main entries of this matrix, which are arbitrary. Themain entries of the other matrices Bi1

and B1j are arbitrary. Adding Bi1 and B1j , we reduce A to the form 0 	.
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6. Off-diagonal blocks of D that correspond to summands of Acan of the same type

Nowweverify the condition (ii) of Lemma4.3 for thoseoff-diagonal blocks ofD (defined inTheorem

2.2(ii)) whose horizontal and vertical strips contain summands of Acan of the same type.

6.1. Pairs of blocks D(Hm(λ), Hn(μ))

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of 2n × 2m and 2m × 2n matrices

can be reduced to exactly one pair of the form (12) by adding

(STHm(λ) + Hn(μ)R, RTHn(μ) + Hm(λ)S), S ∈ C
2m×2n, R ∈ C

2n×2m.

Taking R = 0 and S = −Hm(λ)−1A, we reduce A to 0. To preserve A = 0 we hereafter must take S

and R such that RTHn(μ) + Hm(λ)S = 0; that is,

S = −Hm(λ)−1RTHn(μ),

and so we can add

�B := −Hn(μ)TRHm(λ)−THm(λ) + Hn(μ)R

to B.

Write P := −Hn(μ)TR, then R = −Hn(μ)−TP and

�B = P

⎡
⎣Jm(λ) 0

0 Jm(λ)−T

⎤
⎦ −

⎡
⎣Jn(μ)−T 0

0 Jn(μ)

⎤
⎦ P. (43)

Let us partition B, �B, and P into n × m blocks:

B =
⎡
⎣B11 B12

B21 B22

⎤
⎦ , �B =

⎡
⎣�B11 �B12

�B21 �B22

⎤
⎦ , P =

⎡
⎣X Y

Z T

⎤
⎦ .

By (43),

�B11 = XJm(λ) − Jn(μ)−TX, �B12 = YJm(λ)−T − Jn(μ)−TY,

�B21 = ZJm(λ) − Jn(μ)Z, �B22 = TJm(λ)−T − Jn(μ)T .

These equalities show that we can reduce each block Bij separately by adding �Bij .

(i) Fist we reduce B11 by adding �B11 = XJm(λ) − Jn(μ)−TX .

If λ �= μ−1, then �B11 is an arbitrary n × m matrix since Jm(λ) and Jn(μ)−T have no common

eigenvalues; we make B11 = 0.

Let λ = μ−1. Then

Jn(μ)−T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ−1 0

−μ−2 μ−1

μ−3 −μ−2 μ−1

. . .
. . .

. . .
. . .

. . .
. . . μ−3 −μ−2 μ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0

−λ2 λ

λ3 −λ2 λ

. . .
. . .

. . .
. . .

. . .
. . . λ3 −λ2 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Adding

�B11 = XJm(0) − (Jn(μ)−T − λIn)X

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 x11 . . . x1,m−1

0 x21 . . . x2,m−1

0 x31 . . . x3,m−1

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦ + λ2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0

x11 . . . x1m

x21 . . . x2m

. . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦ − λ3

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0

0 . . . 0

x11 . . . x1m

. . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦ + · · · ,

we reduce B11 to the form 0↖ along the skew diagonals starting from the upper left corner.

(ii) Let us reduce B12 by adding �B12 = YJm(λ)−T − Jn(μ)−TY .

If λ �= μ, then �B12 is arbitrary; we make B12 = 0.

Let λ = μ. Write F := Jn(0). Since

Jn(λ)−1 = (λIn + F)−1 = λ−1In − λ−2F + λ−3F2 − · · · ,

we have

�B12 = Y(Jm(λ)−T − λ−1Im) − (Jn(λ)−T − λ−1In)Y

= −λ−2

⎡
⎢⎢⎢⎢⎢⎢⎣

y12 . . . y1m 0

y22 . . . y2m 0

y32 . . . y3m 0

. . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦ + λ−2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0

y11 . . . y1m

y21 . . . y2m

. . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦ + · · ·

We reduce B12 to the form 0↗ along its diagonals starting from the upper right corner.

(iii) Let us reduce B21 by adding �B21 = ZJm(λ) − Jn(μ)Z.
If λ �= μ, then �B21 is arbitrary; we make B21 = 0.

If λ = μ, then

�B21 = Z(Jm(λ) − λIm) − (Jn(λ) − λIn)Z

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 z11 . . . z1,m−1

. . . . . . . . . . . . . . . . . . . .

0 zn−1,1 . . . zn−1,m−1

0 zn1 . . . zn,m−1

⎤
⎥⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎣

z21 . . . z2m

. . . . . . . . . .

zn1 . . . znm

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ;

we reduce B12 to the form 0↙ along its diagonals starting from the lover left corner.

(iv) Finally, reduce B22 by adding �B22 = TJm(λ)−T − Jn(μ)T .
If λ �= μ−1, then �B22 is arbitrary; we make B22 = 0.

If λ = μ−1, then

�B22 = T(Jm(λ)−T − μIm) − (Jn(μ) − μIn)T

= −μ2

⎡
⎢⎢⎢⎢⎢⎢⎣

. . . t1m 0

. . . . . . . . . . .

. . . tn−1,m 0

. . . tnm 0

⎤
⎥⎥⎥⎥⎥⎥⎦ + μ3

⎡
⎢⎢⎢⎢⎢⎢⎣

. . . t1m 0 0

. . . . . . . . . . . . .

. . . tn−1,m 0 0

. . . tnm 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ − · · · −

⎡
⎢⎢⎢⎢⎢⎢⎣

t21 . . . t2m

. . . . . . . . . .

tn1 . . . tnm

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ;

we reduce B22 to the form 0↘ along its skew diagonals starting from the lover right corner.
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6.2. Pairs of blocks D(�m, �n)

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of n × m andm × nmatrices can be

reduced to exactly one pair of the form (13) by adding

(ST�m + �nR, RT�n + �mS), S ∈ C
m×n, R ∈ C

n×m.

Taking R = 0 and S = −�−1
m A, we reduce A to 0. To preserve A = 0 we hereafter must take S and

R such that RT�n + �mS = 0; that is, S = −�−1
m RT�n, and so we can add

�B := −�T
nR�−T

m �m + �nR

to B.

Write P := �T
nR, then

�B = −P(�−T
m �m) + (�n�

−T
n )P.

Since

�n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

−1
...

1 1

−1 −1

1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �−1
n = (−1)n+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...

−1 −1 −1 −1

1 1 1

−1 −1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we have

�−T
m �m = (−1)m+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 ∗
1

. . .

. . . 2

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

�n�
−T
n = (−1)n+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

−2 1

. . .
. . .

∗ −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

If n − m is odd, then

(−1)n+1�B = 2P + P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 ∗
0

. . .

. . . 2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

−2 0

. . .
. . .

∗ −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
P

and we reduce B to 0 along its skew diagonals starting from the upper left corner.
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If m − n is even, then

(−1)n+1�B = −P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 ∗
0

. . .

. . . 2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

−2 0

. . .
. . .

∗ −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
P

and we reduce B to the form 0↖ along its skew diagonals starting from the upper left corner.

6.3. Pairs of blocks D(Jm(0), Jn(0)) with m � n

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of n × m and m × n matrices with

m � n can be reduced to exactly one pair of the form (14) by adding the matrices

�A = RT Jn(0) + Jm(0)S, �BT = Jm(0)T S + RT Jn(0)
T

to A and BT (it is convenient for us to reduce the transpose of B).

Write S = [sij] and RT = [−rij] (they are m-by-n). Then

�A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s21 − 0 s22 − r11 s23 − r12 . . . s2n − r1,n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sm−1,1 − 0 sm−1,2 − rm−2,1 sm−1,3 − rm−2,2 . . . sm−1,n − rm−2,n−1

sm1 − 0 sm2 − rm−1,1 sm3 − rm−1,2 . . . smn − rm−1,n−1

0 − 0 0 − rm1 0 − rm2 . . . 0 − rm,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

�BT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − r12 0 − r13 . . . 0 − r1n 0 − 0

s11 − r22 s12 − r23 . . . s1,n−1 − r2n s1n − 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sm−2,1 − rm−1,2 sm−2,2 − rm−1,3 . . . sm−2,n−1 − rm−1,n sm−2,n − 0

sm−1,1 − rm2 sm−1,2 − rm3 . . . sm−1,n−1 − rmn sm−1,n − 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Adding �A, we can reduce A to the form 0↙; for definiteness, we take A in the form

0↓ :=
⎡
⎣ 0m−1,n

∗ ∗ · · · ∗

⎤
⎦ . (45)

To preserve this form, we hereafter must take

s21 = · · · = sm1 = 0, sij = ri−1,j−1 (2 � i � m, 2 � j � n).

Write

(r00, r01, . . . , r0,n−1) := (s11, s12, . . . , s1n),
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then

�BT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − r12 0 − r13 . . . 0 − r1n 0 − 0

r00 − r22 r01 − r23 . . . r0,n−2 − r2n r0,n−1 − 0

0 − r32 r11 − r33 . . . r1,n−2 − r3n r1,n−1 − 0

0 − r42 r21 − r43 . . . r2,n−2 − r4n r2,n−1 − 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 − rm2 rm−2,1 − rm3 . . . rm−2,n−2 − rmn rm−2,n−1 − 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If rij and ri′j′ belong to the same diagonal of �BT , then i − j = i′ − j′. Hence, the diagonals of �BT

have no common rij , and so we can reduce the diagonals of BT independently.

The first n diagonals of �BT starting from the upper right corner are

0, (−r1n, r0,n−1), (−r1,n−1, r0,n−2 − r2n, r1,n−1),

(−r1,n−2, r0,n−3 − r2,n−1, r1,n−2 − r3n, r2,n−1),

(−r1,n−3, r0,n−4 − r2,n−2, r1,n−3 − r3,n−1, r2,n−2 − r4n, r3,n−1), . . .

(we underline linearly dependent entries in each diagonal), adding themwemake the first n diagonals

of BT as in 0 �.
The (n + 1)st diagonal of �BT is{

(r00 − r22, r11 − r33, . . . , rn−2,n−2 − rnn) if m = n,

(r00 − r22, r11 − r33, . . . , rn−2,n−2 − rnn, rn−1,n−1) if m > n.

Adding it, we make the (n + 1)st diagonal of BT equal to zero.

Ifm > n + 1, then the (n + 2)nd, . . . ,mth diagonals of �BT are

(−r32, r21 − r43, r32 − r54, . . . , rn,n−1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−rm−n+1,2, rm−n,1 − rm−n+2,3, rm−n+1,2 − rm−n+3,4, . . . , rm−2,n−1).

Each of these diagonals contains n elements. If n is even, then the length of each diagonal is even and

its elements are linearly independent; we make the corresponding diagonals of BT equal to zero. If n

is odd, then the length of each diagonal is odd and the set of its odd-numbered elements is linearly

dependent; we make all elements of the corresponding diagonals of BT equal to zero except for their

last elements (they correspond to the stars of Pnm defined in (5)).

It remains to reduce the last n − 1 diagonals of BT (the last n − 2 diagonals if m = n). The

corresponding diagonals of �BT are

−rm2,

(−rm−1,2, rm−2,1 − rm3),

(−rm−2,2, rm−3,1 − rm−1,3, rm−2,2 − rm4),

(−rm−3,2, rm−4,1 − rm−2,3, rm−3,2 − rm−1,4, rm−2,3 − rm5),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−rm−n+3,2, rm−n+2,1 − rm−n+4,3, . . . , rm−2,n−3 − rm,n−1),
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and, only if m > n,

(−rm−n+2,2, rm−n+1,1 − rm−n+3,3, . . . , rm−2,n−2 − rmn).

Adding these diagonals, wemake the corresponding diagonals of BT equal to zero. To preserve the zero

diagonals, we hereafter must take rm2 = rm4 = rm6 = · · · = 0 and arbitrary rm1, rm3, rm5, . . . .
Recall that A has the form 0↓ defined in (45). Since rm1, rm3, rm5, . . . are arbitrary, we can reduce

A to the form⎡
⎣ 0m−1,n

∗ 0 ∗ 0 · · ·

⎤
⎦

by adding �A; these additions preserve the already reduced B.

If m = n, then we can alternatively reduce A to the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . .

0 0 . . . 0

∗ 0 . . . 0

0 0 . . . 0

∗ 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

preserving the form 0 	 of B.

7. Off-diagonal blocks of D that correspond to summands of Acan of distinct types

Finally, we verify the condition (ii) of Lemma 4.3 for those off-diagonal blocks of D (defined in

Theorem 2.2(iii)) whose horizontal and vertical strips contain summands of Acan of different types.

7.1. Pairs of blocks D(Hm(λ), �n)

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of n × 2m and 2m × nmatrices can

be reduced to exactly one pair of the form (15) by adding

(STHm(λ) + �nR, RT�n + Hm(λ)S), S ∈ C
2m×n, R ∈ C

n×2m.

Taking R = 0 and S = −Hm(λ)−1A, we reduce A to 0. To preserve A = 0, we hereafter must take S

and R such that RT�n + Hm(λ)S = 0; that is,

S = −Hm(λ)−1RT�n.

Hence, we can add

�B = �nR − �T
nRHm(λ)−THm(λ)

to B. Write P = �T
nR, then

�B = �n�
−T
n P − P

(
Jm(λ) ⊕ Jm(λ)−T

)
.

Divide B and P into two blocks of size n × m:

B = [M N], P = [U V].
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We can add toM and N the matrices

�M := �n�
−T
n U − UJm(λ), �N := �n�

−T
n V − VJm(λ)−T .

If λ �= (−1)n+1 then by (44) the eigenvalues of �n�
−T
n and the eigenvalues of Jm(λ) and Jm(λ)−T

are distinct, and we makeM = N = 0.

If λ = (−1)n+1 then

�M = (−1)n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

2 0

. . .
. . .

∗ 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
U − U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0
. . .

. . . 1

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�N = (−1)n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

2 0

. . .
. . .

∗ 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
V + V

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

. . .
. . .

∗ 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We reduceM to the form 0↖ along its skew diagonals starting from the upper left corner, and N to the

form 0↗ along its diagonals starting from the upper right corner.

7.2. Pairs of blocks D(Hm(λ), Jn(0))

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of n × 2m and 2m × nmatrices can

be reduced to exactly one pair of the form (16) by adding

(STHm(λ) + Jn(0)R, RT Jn(0) + Hm(λ)S), S ∈ C
2m×n, R ∈ C

n×2m.

Taking R = 0 and S = −Hm(λ)−1A, we reduce A to 0. To preserve A = 0 we hereafter must take S

and R such that RT Jn(0) + Hm(λ)S = 0; that is,

S = −Hm(λ)−1RT Jn(0).

Hence we can add

�B :=Jn(0)R − Jn(0)
TRHm(λ)−THm(λ)

=Jn(0)R − Jn(0)
TR

(
Jm(λ) ⊕ Jm(λ)−T

)
to B.

Divide B and R into two blocks of size n × m:

B = [M N], R = [U V].
We can add toM and N the matrices

�M := Jn(0)U − Jn(0)
TUJm(λ), �N := Jn(0)V − Jn(0)

TVJm(λ)−T .
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We reduceM as follows. Let (u1, u2, . . . , un)
T be the first column of U. Then we can add to the first

column �b1 of M the vector

��b1 :=(u2, . . . , un, 0)
T − λ(0, u1, . . . , un−1)

T

=
{
0 if n = 1,

(u2, u3 − λu1, u4 − λu2, . . . , un − λun−2, −λun−1)
T if n > 1.

The elements of this vector are linearly independent if n is even, and they are linearly dependent if n

is odd. We reduce �b1 to zero if n is even, and to the form (∗, 0, . . . , 0)T or (0, . . . , 0, ∗)T if n is odd.

Then we successively reduce the other columns transforming M to 0 if n is even and to the form 0
�
nm

if n is odd.

We reduce N in the same way starting from the last column.

7.3. Pairs of blocks D(�m, Jn(0))

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of n × m andm × nmatrices can be

reduced to exactly one pair of the form (17) by adding

(ST�m + Jn(0)R, RT Jn(0) + �mS), S ∈ C
m×n, R ∈ C

n×m.

Taking R = 0 and S = −�−1
m A, we reduce A to 0. To preserve A = 0 we hereafter must take S and

R such that RT Jn(0) + �mS = 0; that is, S = −�−1
m RT Jn(0). Hence, we can add

�B : = Jn(0)R − Jn(0)
TR�−T

m �m

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r21 . . . r2m

. . . . . . . . . .

rn1 . . . rnm

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦ − (−1)m+1

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0

r11 . . . r1m

. . . . . . . . . . . . . . . .

rn−1,1 . . . rn−1,m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 ∗
1

. . .

. . . 2

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

to B. We move along the columns of B starting from the first column and reduce B to 0 if n is even and

to 0� if n is odd.

Appendix A. A transformation that reduces a matrix to its miniversal deformation

In this section, we fix an n × n complex matrix A and a (0,∗) matrix D of the same size such that

C
n×n = T(A) + D(C), (46)

in which (see (18) and (21))

T(A) = {CTA + AC | C ∈ C
n×n}, D(C) = ⊕

(i,j)∈I(D)

CEij,

andallEij are thematrixunits.Weprove that thedeformationA+D(�ε)ofAdefined in (21) isminiversal.

To this end, we construct an n × nmatrix S(X) satisfying the conditions (i)–(iii) of Definition 3.2.

For each P = [pij] ∈ C
n×n, we write

‖P‖ :=
√∑ |pij|2, ‖P‖D :=

√ ∑
(i,j)/∈I(D)

|pij|2.
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Note that

‖aP + bQ‖ � |a| ‖P‖ + |b| ‖Q‖, ‖PQ‖ � ‖P‖ ‖Q‖
for all a, b ∈ C and P,Q ∈ C

n×n; see [20, Section 5.6].

For every n × n matrix unit Eij , we fix Fij ∈ C
n×n such that

Eij + FTij A + AFij ∈ D(C) (47)

(Fij exists by (46)); we take Fij = 0n if Eij ∈ D(C). Write

a := ‖A‖, f := ∑
i,j

‖Fij‖. (48)

For each n × nmatrix E, we construct a sequence

M1 := E, M2, M3, . . . (49)

of n × nmatrices as follows: if Mk = [m(k)
ij ] has been constructed, then Mk+1 is defined by

A + Mk+1 := (In + Ck)
T (A + Mk)(In + Ck) (50)

in which

Ck := ∑
i,j

m
(k)
ij Fij. (51)

In this section, we prove the following theorem.

Theorem 8.1. Given A ∈ C
n×n and a (0,∗) matrix D of the same size that satisfy (46). Fix ε ∈ R such

that

0 < ε <
1

max{f (a + 1)(f + 2), 3} (see (48)) (52)

and define the neighborhood

U := {E ∈ C
n×n | ‖E‖ < ε5}

of 0n. Then for each matrix E ∈ U, the infinite product

S(E) := (In + C1)(In + C2)(In + C3) · · · (see (49)) (53)

is convergent,

A + D := S(E)T (A + E)S(E) ∈ A + D(C) (54)

and

‖S(E) − In‖ < −1 + (1 + ε)(1 + ε3)(1 + ε5) · · · , ‖D‖ � ε3. (55)

The matrix S(E) is a function of the entries of E; replacing them by unknowns xij, we obtain a matrix S(X)
that satisfies the conditions (i)–(iii) of Definition 3.2.

The proof of Theorem 8.1 is based on two lemmas.

Lemma 8.1. Let ε ∈ R, 0 < ε < 1/3, and let the sequence of real numbers

δ1, τ1, δ2, τ2, δ3, τ3, . . . (56)
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be defined by induction:

δ1 = τ1 = ε5, δi+1 = ε−1δiτi, τi+1 = τi + ε−1δi.

Then

0 < δi < ε2i, 0 < τi < ε3 for all i = 1, 2, . . . (57)

Proof. Reasoning by induction, we assume that the inequalities (57) hold for i = 1, . . . , k. Then they

hold for i = k + 1 since

δk+1 = ε−1δkτk < ε−1ε2kε3 = ε2(k+1)

and

τk+1 = τk + ε−1δk = τk−1 + ε−1δk−1 + ε−1δk = · · · = τ1 + ε−1(δ1 + δ2 + · · · + δk)

< ε5 + ε−1(ε5 + ε−1ε5ε5 + ε6 + ε8 + ε10 + · · · )
= ε5 + ε4 + ε8 + ε5(1 + ε2 + ε4 + · · · ) = ε5 + ε4 + ε8 + ε5/(1 − ε2)

< ε5 + ε4 + ε8 + 2ε5 < ε4 + ε8 + ε4 < 3ε4 < ε3. �

Lemma 8.2. Let ε ∈ R satisfy (52) and let k ∈ N. Assume that thematrixMk = [m(k)
ij ] from (49) satisfies

‖Mk‖D < δk, ‖Mk‖ < τk (see (56)). (58)

Then

‖Mk+1‖D < δk+1, ‖Mk+1‖ < τk+1 (59)

and

‖Ck‖ < ε−1δk (see (51)). (60)

Proof. By (47),∑
i,j

m
(k)
ij Eij +

∑
i,j

m
(k)
ij FTij A + ∑

i,j

m
(k)
ij AFij ∈ D(C),

and so

Mk + CT
k A + ACk ∈ D(C). (61)

If (i, j) ∈ I(D), then Eij ∈ D(C) and Fij = 0 by the definition of Fij . If (i, j) /∈ I(D), then |m(k)
ij | < δk

by the first inequality in (58). The inequality (60) holds because

‖Ck‖ �
∑

(i,j)/∈I(D)

|m(k)
ij |‖Fij‖ <

∑
(i,j)/∈I(D)

δk‖Fij‖ = δkf < δkε
−1.

By (50) and (58),

Mk+1 = Mk + CT
k (A + Mk) + (A + Mk)Ck + CT

k (A + Mk)Ck, (62)

‖Mk+1‖ � ‖Mk‖ + 2‖Ck‖(‖A‖ + ‖Mk‖) + ‖Ck‖‖A + Mk‖‖Ck‖
< τk + 2δkf (a + τk) + δkf (a + τk)δkf

= τk + δkf (a + τk)(2 + δkf )

< τk + δkf (a + 1)(2 + f ) < τk + δkε
−1 = τk+1.
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By (61) and (62),

‖Mk+1‖D = ‖CT
k Mk + MkCk + CT

k (A + Mk)Ck‖
� 2‖Ck‖‖Mk‖ + ‖Ck‖2(‖A‖ + ‖Mk‖)
< 2δkf τk + (δkf )

2(a + τk)

< δkf τk(2 + f (a + 1))

< δkτkf (2(a + 1) + f (a + 1)) < δkτkε
−1 = δk+1,

which proves (59). �

Proof of Theorem 8.1. Since M1 = E ∈ U, ‖M1‖ < ε5 = δ1 = τ1. Hence, the inequalities (58) hold

for k = 1. Reasoning by induction and using Lemma 8.2, we get

‖Mi‖D < δi, ‖Mi‖ < τi, ‖Ci‖ < ε−1δi, i = 1, 2, . . . ,

and by (57)

‖C1‖ + ‖C2‖ + ‖C3‖ + · · · < ε−1(δ1 + δ2 + δ3 + · · · )
< ε−1(ε2 + ε4 + ε6 + · · · ) = ε(1 + ε2 + ε4 + · · · )
= ε/(1 − ε2) = 1/(ε−1 − ε) < 1/(3 − 3−1).

The infinite product (53) converges to some matrix S(E) due to [33, Theorem 4] (which generalizes

[28, Theorem 15.14]). By (50) and (51), the entries of each Ci are polynomials in the entries of E. Thus,

the entries of each

Sk(E) := (In + C1)(In + C2) · · · (In + Ck), k = 1, 2, . . .

are polynomials in the entries of E. Since Sk(E) → S(E), the Weierstrass theorem on uniformly

convergent sequences of analytic functions [28, Theorem 15.8] ensures that the entries of S(E) are

holomorphic functions in the entries of M.

The inclusion (54) holds since A + Mi → S(E)T (A + E)S(E) and ‖Mi‖D < δi → 0 as i → ∞.

The inequalities (55) hold since for each k ∈ N we have

‖Sk(E) − In‖ = ‖(In + C1)(In + C2) · · · (In + Ck) − In‖
�

∑
i�k

‖Ci‖ + ∑
i<j�k

‖Ci‖ ‖Cj‖ + · · ·

� −1 + (1 + ‖C1‖)(1 + ‖C2‖)(1 + ‖C3‖) · · ·
< −1 + (1 + ε−1δ1)(1 + ε−1δ2)(1 + ε−1δ3) · · ·
< −1 + (1 + ε)(1 + ε3)(1 + ε5) · · · (by (57))

and

Mi → D, ‖Mi‖ � τi < ε3.

If E = 0n then all Mi = Ci = 0n, and so S(0n) = In. �
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