A note on a sum theorem for dimension \mathcal{K}-Ind

Vitaly V. Fedorchuk

Moscow State University (M.V. Lomonosov), Department of General Topology and Geometry, Moscow, Russia

A R T I C L E I N F O

MSC:
54F45

Keywords:
Dimension
Simplicial complex
Hereditarily normal space
Perfectly normal space
Sum theorem

A B S T R A C T

Main results are:
1. Let Y be a closed subspace of a hereditarily normal X such that \mathcal{K}-Ind$Y \leq n$ and \mathcal{K}-Ind$(X \setminus Y) \leq n$. Then \mathcal{K}-Ind$X \leq n$.
2. Let X be a perfectly normal space. Then a finite sum theorem for dimension \mathcal{K}-Ind holds in X if and only if \mathcal{K}-Ind is monotonic in X.

We denote by \mathcal{K} a non-empty set of finite complete simplicial complexes.

© 2011 Published by Elsevier B.V.

1. Introduction

In [4] inductive dimension function \mathcal{K}-Ind, where \mathcal{K} is a non-empty set of finite simplicial complexes, was introduced (look at Definition 2.4). This dimension is an extension of the classical inductive dimension Ind, since $\{0, 1\}$-Ind$X = \text{Ind}X$ for every normal space. Generally,

\mathcal{K}-Ind$X \leq \text{Ind}X$.

In [4] it was proved that

\mathcal{K}-Ind$X = \text{Ind}X$

if and only if \mathcal{K} contains a disconnected complex K.

One of the main questions concerning dimension \mathcal{K}-Ind is the following one:

Let a perfectly normal space X be the union of its closed subspaces X_i, $i = 1, 2, \ldots$. Is it true that

\mathcal{K}-Ind$X = \sup\{\mathcal{K}$-Ind$X_i: i = 1, 2, \ldots\}$?

The answer is unknown even if $X = X_1 \cup X_2$.

Here we prove (Theorem 3.4) that the finite sum theorem for dimension \mathcal{K}-Ind holds for subspaces of a perfectly normal space X if and only if dimension \mathcal{K}-Ind is monotonic in subspaces of X. The proof is based on the following

Finite Dowker theorem (Theorem 3.1). Let Y be a closed subspace of a hereditarily normal space X such that \mathcal{K}-Ind$Y \leq n$, \mathcal{K}-Ind$(X \setminus Y) \leq n$. Then \mathcal{K}-Ind$X \leq n$.

E-mail address: vvfedorchuk@gmail.com.

1 The author was supported by the Russian Foundation for the Basic research (Grant 09-01-00741) and the Program “Development of the Scientific Potential of Higher School” of the Ministry for Education of the Russian Federation (Grant 2.1.1.3704).

0166-8641/$ – see front matter © 2011 Published by Elsevier B.V.
doi:10.1016/j.topol.2011.04.017
Let us recall that C.H. Dowker proved (look at [1,2]) the following

Theorem D. Let a hereditarily normal space \(X \) be the union of its subspaces \(X_i \), \(i = 1, 2, \ldots \), such that \(\text{Ind} \, X_i \leq n \), \(i = 1, 2, \ldots \), and \(\bigcup \{X_i: i = 1, 2, \ldots, k\} \) is closed for \(k = 1, 2, \ldots \). Then \(\text{Ind} \, X \leq n \).

Theorem 3.1 implies a finite version of Theorem D for dimension \(K \)-Ind.

2. Preliminaries

2.1. In what follows \(K \) stands for a non-empty set of finite complete simplicial complexes \(K \), which we call complexes. For a complex \(K \) by \(v(K) \) we denote the set of all its vertices. A simplicial complex, which is the nerve of a finite family \(\alpha = \{A_1, \ldots, A_s\} \) of sets, is denoted by \(N(\alpha) \).

By a space we mean a topological normal \(T_1 \)-space. For a space \(X \) by \(\exp X \) we denote the set of all closed subsets of \(X \). By \(\text{Fin}_s(\exp X) \) we denote the set of all finite sequences \(\Phi = (F_1, \ldots, F_m) \), \(F_j \in \exp X \), \(j = 1, \ldots, m \).

Definition 2.2. ([3]) Let \(X \) be a space, \(K \) be a complex, and \(\Phi = (F_1, \ldots, F_m) \in \text{Fin}_s(\exp X) \). A sequence \(u = (U_1, \ldots, U_s) \), \(s \geq m \), of open subsets of \(X \) is said to be a \(K \)-neighbourhood of \(\Phi \) if \(F_j \subseteq U_j \), \(j = 1, \ldots, m \), and there is an embedding \(N(u) \subseteq K \). One can number vertices \(a_j \in v(K) \) so that the embedding \(N(u) \subseteq K \) is defined by the correspondence \(U_j \rightarrow a_j \).

Definition 2.3. ([3]) A set \(P \subseteq X \) is called a \(K \)-partition of \(\Phi = (F_1, \ldots, F_m) \) (notation: \(P \in \text{Part}(\Phi, K) \)) if \(P = X \setminus \bigcup u \), where \(u \) is a \(K \)-neighbourhood of \(\Phi \).

If a \(K \)-partition of \(\Phi \) exists, then \(N(\Phi) \subseteq K \). Put

\[
\text{Exp}_K(X) = \{\Phi \in \text{Fin}_s(\exp X): N(\Phi) \subseteq K\}. \tag{2.1}
\]

Definition 2.4. ([4]) To every space \(X \) one assigns the dimension \(K \)-Ind \(X \) which is an integer \(\geq -1 \) or \(\infty \). The dimension function \(K \)-Ind is defined in the following way:

\(\text{1.} \) \(K \)-Ind \(X = -1 \iff X = \emptyset \);
\(\text{2.} \) \(K \)-Ind \(X \leq n \), where \(n = 0, 1, \ldots \), if for every \(K \in K \) and \(\Phi \in \text{Exp}_K(X) \) there exists a partition \(P \in \text{Part}(\Phi, K) \) such that \(\text{K-Ind} \, P \leq n - 1 \);
\(\text{3.} \) \(K \)-Ind \(X = \infty \), if \(K \)-Ind \(X > n \) for all \(n \geq -1 \).

If the set \(K \) contains only one complex \(K \), we write \(K = K \) and \(K \)-Ind \(X = K \)-Ind \(X \).

Theorem 2.5. For every space \(X \), \(\{0, 1\} \)-Ind \(X = \text{Ind} \, X \). \(\square \)

Theorem 2.6. ([4]) If \(Y \) is a closed subspace of a space \(X \), then \(K \)-Ind \(Y \leq K \)-Ind \(X \). \(\square \)

Theorem 2.7. ([4]) If \(X = \bigoplus \{X_\alpha: a \in A\} \) is a discrete union of spaces \(X_\alpha \), then

\(K \)-Ind \(X = \sup\{K \text{-Ind} \, X_\alpha: a \in A\} \). \(\square \)

Lemma 2.8. If \(U \) is an open \(F_\alpha \)-subspace of a space \(X \), then \(U \) is a cozero-set, i.e. there exists a continuous function \(\varphi : X \rightarrow [0, 1] \) such that \(U = \varphi^{-1}(0, 1) \). \(\square \)

Strong swelling lemma 2.9. Let \(\Phi = (F_1, \ldots, F_m) \in \text{Fin}_s(\exp X) \). Then there exists a family \(u = (U_1, \ldots, U_m) \) of open subsets of \(X \) such that \(F_j \subseteq U_j \), \(j = 1, \ldots, m \), and \(N(\text{Cl}(u)) = N(\Phi) \), where \(\text{Cl}(u) = (\text{Cl}(U_1), \ldots, \text{Cl}(U_m)) \). \(\square \)

Nerve lemma 2.10. ([4]) Let \(Y \) be subspace of a space \(X \), \(\alpha = (A_1, \ldots, A_m) \) be a sequence of subsets of \(X \), and \(\beta = (B_1, \ldots, B_m) \) be a sequence of subsets of \(Y \) such that \(N(\alpha), N(\beta) \subseteq K \) and \(A_j \cap Y \subseteq B_j \), \(j = 1, \ldots, m \). Let \(C_j = A_j \cup B_j \) and \(\gamma = (C_1, \ldots, C_m) \). Then \(N(\gamma) \subseteq K \). \(\square \)

3. Main results

Let \(K \) be a non-empty set of complexes and let \(X \) be a hereditarily normal space.

Theorem 3.1. Let \(Y \) be a closed subspace of a hereditarily normal space \(X \) such that \(K \)-Ind \(Y \leq n \), \(K \)-Ind \((X \setminus Y) \leq n \). Then \(K \)-Ind \(X \leq n \).
Proof. We shall apply induction with respect to n. For $n = -1$ the theorem is obvious. Assume that the corresponding statements hold for dimensions less than $n \geq 0$ and consider a hereditarily normal space X satisfying the assumption of our theorem. Let $K \in \mathcal{K}$, $\Phi = (F_1, \ldots, F_m) \in \text{Exp}_k(X)$, and $\Phi|_Y = (F_1 \cap Y, \ldots, F_m \cap Y)$. Then $\Phi|_Y \in \text{Exp}_k(Y)$. Since \mathcal{K}-$\text{Ind} Y \leq n$, there is a family $u = (U_1, \ldots, U_m)$ of open subsets of Y such that

$$ F_j \cap Y \subset U_j, \quad j = 1, \ldots, m; \quad (3.1) $$
$$ N(u) \subset K; \quad (3.2) $$
$$ \mathcal{K}$-$\text{Ind}(Y \setminus U_1 \cup \cdots \cup U_m) \leq n - 1. \quad (3.3) $$

Put $P = Y \setminus U_1 \cup \cdots \cup U_m$ and $Z = X \setminus P$. The family u is an open cover of a normal space $Y \setminus P$. Hence there exist closed subsets A_j of a space $Y \setminus P$ such that

$$ F_j \cap Y \subset A_j \subset U_j; \quad (3.4) $$
$$ A_1 \cup \cdots \cup A_m = Y \setminus P. \quad (3.5) $$

Put $\alpha = (A_1, \ldots, A_m)$. From (3.2) and (3.4) it follows that

$$ N(\alpha) \subset K. \quad (3.6) $$

Since $Y \setminus P$ is closed in Z, the sets $B_j = A_j \cup F_j$, $j = 1, \ldots, m$, are closed in Z. Put $\beta = (B_1, \ldots, B_m)$. The condition $\Phi \in \text{Exp}_k(X)$ is equivalent to

$$ N(\Phi) \subset K. \quad (3.7) $$

From (3.6), (3.7) and the Nerve lemma (Lemma 2.10) it follows that

$$ N(\beta) \subset K. \quad (3.8) $$

Consequently, according to the Strong swelling lemma (Lemma 2.9) there exists a family $\nu = (V_1, \ldots, V_m)$ of open subsets of Z such that

$$ B_j \subset V_j, \quad j = 1, \ldots, m; \quad (3.9) $$
$$ N(\delta) = N(\beta) \subset K, \quad (3.10) $$

where $\delta = (D_1, \ldots, D_m)$ and $D_j = \text{Cl}_Z(V_j)$.

Put $E_j = D_j \setminus Y$, $j = 1, \ldots, m$, and $\epsilon = (E_1, \ldots, E_m)$. The sets E_j are closed in $X \setminus Y$ and

$$ N(\epsilon) \subset K \quad (3.11) $$

according to (3.10). But \mathcal{K}-$\text{Ind}(X \setminus Y) \leq n$. Consequently, according to (3.11) there exists a family $\omega = (W_1, \ldots, W_m)$ of open subsets of $X \setminus Y$ such that

$$ E_j \subset W_j, \quad j = 1, \ldots, m; \quad (3.12) $$
$$ N(\omega) \subset K; \quad (3.13) $$
$$ \mathcal{K}$-$\text{Ind} \omega \leq n - 1, \quad (3.14) $$

where

$$ Q = X \setminus Y \cup W_1 \cup \cdots \cup W_m. \quad (3.15) $$

Put $G_j = V_j \cup W_j$, $j = 1, \ldots, m$, and $\gamma = (G_1, \ldots, G_m)$.

From (3.10), (3.13), and the Nerve lemma (Lemma 2.10) it follows that

$$ N(\gamma) \subset K. \quad (3.16) $$

Condition (3.9) implies that

$$ F_j \subset G_j, \quad j = 1, \ldots, m. \quad (3.17) $$

Consequently, γ is a K-neighbourhood of Φ in X. Then the set

$$ R = X \setminus G_1 \cup \cdots \cup G_m \quad (3.18) $$

is a K-partition of Φ in X. We claim that

$$ R = P \cup Q. \quad (3.19) $$
To check (3.19) it suffices to prove that
\[R \cap Y = P; \]
\[R \cap (X \setminus Y) = Q. \]
(3.20)

From definition of \(G_j \) it follows that
\[G_j \cap Y = V_j \cap Y. \]
(3.21)

Hence
\[(G_1 \cup \cdots \cup G_m) \cap Y = (V_1 \cup \cdots \cup V_m) \cap Y. \]
Condition (3.22) is equivalent to
\[Y \setminus G_1 \cup \cdots \cup G_m = Y \setminus V_1 \cup \cdots \cup V_m. \]
(3.23)

From (3.18) it follows that
\[Y \setminus G_1 \cup \cdots \cup G_m = R \cap Y. \]
(3.24)

From (3.24) and (3.25) we get (3.20).

On the other hand, \(V_j \subset Z \) implies that \((V_1 \cup \cdots \cup V_m) \cap P = \emptyset. \) Consequently, \(P \subset Y \setminus V_1 \cup \cdots \cup V_m \subset (\text{in view of (3.9)}) \subset Y \setminus B_1 \cup \cdots \cup B_m \subset (\text{because of } B_j = A_j \cup F_j \subset Y \setminus A_1 \cup \cdots \cup A_m = (\text{in accordance with (3.5)}) = P. \)

Hence
\[P = Y \setminus V_1 \cup \cdots \cup V_m. \]
(3.25)

Conditions (3.12) and (3.26) yield
\[V_j \setminus Y \subset W_j, \quad j = 1, \ldots, m. \]
(3.26)

Consequently, the definition of \(G_j \) implies that
\[G_j \cap (X \setminus Y) = W_j. \]
(3.27)

Thus, the condition (3.21) is checked as well. Hence the equality (3.19) is proved. Since \(P \cap Q = \emptyset, \) we have \(Q = R \setminus P. \)

On the other hand,
\[\mathcal{K} \text{-Ind } P \leq (\text{in view of (3.3)}) \leq n - 1; \]
\[\mathcal{K} \text{-Ind } Q \leq (\text{because of (3.14)}) \leq n - 1. \]

Consequently, by the inductive assumption we have
\[\mathcal{K} \text{-Ind } R \leq n - 1. \]
(3.28)

The condition (3.29) implies that \(\mathcal{K} \text{-Ind } X \leq n. \) \(\square \)

Let us consider the following properties of a space \(X: \)

- \((\mu_n)\) For each subspace \(Y \subset X \) and every open subspace \(U \) of \(Y, \) if \(\mathcal{K} \text{-Ind } Y \leq n, \) then \(\mathcal{K} \text{-Ind } U \leq n. \)
- \((\mu^0_n)\) For each subspace \(Y \subset X \) and every open \(F_n \text{-subspace } U \) of \(Y, \) if \(\mathcal{K} \text{-Ind } Y \leq n, \) then \(\mathcal{K} \text{-Ind } U \leq n. \)
- \((\sigma_n)\) For each subspace \(Y \subset X \) and every pair \(Y_1, Y_2 \) of closed subspaces of \(Y \) such that \(Y = Y_1 \cup Y_2, \) if \(\mathcal{K} \text{-Ind } Y_i \leq n, \) then \(\mathcal{K} \text{-Ind } Y \leq n. \)

As a corollary of Theorem 3.1 we have

Proposition 3.2. If a hereditarily normal space \(X \) has property \((\mu_n),\) then it also has property \((\sigma_n).\)
Proof. Consider a subspace \(Y \subset X \) and a pair \(Y_1, Y_2 \) of closed subspaces of \(Y \) such that \(Y = Y_1 \cup Y_2 \) and \(K\text{-Ind} Y_i \leq n \), \(i = 1, 2 \). By virtue of \((\mu_n)\) the set \(Y \setminus Y_1 \) satisfies the inequality \(K\text{-Ind}(Y \setminus Y_1) \leq n \). Applying Theorem 3.1 to the space \(Y \) and the pair \(Y_1, Y \setminus Y_1 \) we obtain the inequality \(K\text{-Ind} Y \leq n \). \(\square \)

Proposition 3.3. If a hereditarily normal space \(X \) has property \((\sigma_n)\), then it also has property \((\mu_0^n)\).

Proof. Let \(Y \subset X \) and let \(U \) be an open \(F_\sigma \)-set in \(Y \). Then there exists a continuous function \(f : Y \to I \) such that \(U = f^{-1}((0, 1]) \) (see Lemma 2.8). The sets \(B_i = f^{-1}([1/i+1, 1/i]) \), \(i = 1, 2, \ldots \), are closed in \(Y \). By the closed subspace theorem (Theorem 2.6) we have

\[
K\text{-Ind} B_i \leq n, \quad i = 1, 2, \ldots \tag{3.30}
\]

Consider the sequences

\[
B_{2i+1} = 0, 1, 2, \ldots; \quad B_{2i+2} = 0, 1, 2, \ldots.
\]

They are discrete. Put

\[
A_1 = \bigcup \{B_{2i+1}, \ i = 0, 1, 2, \ldots\}; \quad A_2 = \bigcup \{B_{2i+2}, \ i = 0, 1, 2, \ldots\}.
\]

By the Discrete sum theorem (Theorem 2.7) and (3.30) we have

\[
K\text{-Ind} A_1 \leq n; \quad K\text{-Ind} A_2 \leq n.
\]

But \(A_1 \cup A_2 = U \). Consequently, property \((\sigma_n)\) yields \(K\text{-Ind} U \leq n \). \(\square \)

Since properties \((\mu_n)\) and \((\mu_0^n)\) are equivalent in perfectly normal spaces, from Propositions 3.2 and 3.3 we get

Theorem 3.4. Properties \((\mu_n)\) and \((\sigma_n)\) are equivalent in the class of perfectly normal spaces. \(\square \)

Question 3.5. Does a perfectly normal space \(X \) satisfy property \((\sigma_n), n = 0, 1, 2, \ldots \), for an arbitrary \(K \)?

Remark 3.6. The answer is “yes” if \(K \) contains a disconnected complex \(K \). In fact, in this case, \(K\text{-Ind} X = \text{Ind} X \) (look at [4]) for every normal space \(X \), and dimension \(\text{Ind} \) satisfies the countable sum theorem in the class of all perfectly normal spaces (look at [1,2]).

References