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A B S T R A C T  

Thomas M. Strat has developed a decision-theoretic apparatus for Dempster-Shafer 
theory (Decision analysis using belief functions, Intern.  J. Approx.  Reason.  4(5/6), 
391 417, 1990). In this apparatus, expected utility intervals are constructed for different 
choices. The choice with the highest expected utility is' preferable to others. Howeuer, to 
find the preferred choice when the expected utility interval o f  one choice is included in 
that o f  another, it is necessary to interpolate a discerning point in the intervals. This is 
done by the parameter p, defined as the probability that the ambiguity about the utility 
of  euery nonsingleton focal element will turn out as fauorable as possible. I f  there are 
set'eral different decision makers, we might sometimes be more interested in hauing the 
highest expected utility among the decision makers rather than only trying to maximize 
our own expected utility regardless o f  choices made by other decision makers. The 
preference o f  each choice is" then determined by the probability o f  yielding the highest 
expected utility. This probability is equal to the maximal interval length o f  p under 
which an alternatiue is preferred. We must here take into account not only the choices 
already made by other decision makers but also the rational choices we can assume to 
be made by later decision makers. In Strats apparatus, an assumption, unwarranted by 
the euidence at hand, has to be made about the ualue o f  p. We demonstrate that no 
such assumption is necessary. It is" sufficient to assume a uniform probability distribu- 
tion for p to be able to discern the most preferable choice. We discuss when this 
approach is justifiable. 
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1. INTRODUCTION 

To make rational decisions under uncertainty is somewhat complicated 
in Dempster-Shafer theory (Dempster [1], Shafer [2]) because of the 
interval representation. In [3] Nguyen and Walker discussed different 
approaches to decision making with belief functions. They found ~three 
different basic models. The first is based on the Choquet integral that 
yields the expected utility with respect to belief functions: 

f0 f° E F ( U )  = F(u  > t ) d t  + [F(u > t) - 1] dt, 
o c  

where F is a belief function defined on 2 (~) by F ( A )  = inf{P(A):  P ~ P} 
and P = {P : F _< P} is a class of probability measures on ®. This leads to 
the pessimistic strategy of ranking alternatives by their minimal expected 
utility. 

In the second basic model the decision maker uses some additional 
information or subjective views. Instead of searching for the alternative 
that maximizes expected utility, the utility function will be supplemented 
by some new function dependent  on the utility and some other parameter  
corresponding to the additional information or subjective views. An article 
by Strat [4] is an example of the second basic model. 

The third basic model consists of models using the insufficient-reason 
principle or equivalently the maximum-entropy principle. As an example, 
Smets and Kennes [5] have developed a two-level model of credal belief 
and pignistic probability, called the transferable belief model (TBM). 

On the credal level of this model the reasoning process takes place in 
the usual manner as within Dempster-Shafer theory. Here  beliefs are held 
by belief functions and combined by Dempster 's rule. When a decision 
must be taken, the belief on the credal level is transformed to a probability 
at the pignistic level by a pignistic transformation based on Laplace's 
insufficient-reason principle; 

m ( A )  Ix n AI 
BetP(x)  = ~ ~. m ( A ) . - -  

IB n AI 
Be tP(B)  = ~., m ( A ) . -  



On p in Decision-Theoretic Apparatus 187 

where BetP(.) is the pignistic probability we should use to "bet"  with in a 
utility maximization process. Here  ~lt is the set of all propositions. It is 
called the betting frame. 

The pignistic probability regarding some proposition A depends on the 
organization of the betting frame ~ .  But regardless of the organization of 
the betting frame, we always have BetP(A) > Bel (A)  VA ~ ,~. 

Further discussions on decision making with belief functions can be 
found in [6, 7]. 

This article is concerned with a method that has recently been devel- 
oped by Strat [4]. In this method an expected utility interval is constructed 
for each choice; 

[ E . ( x ) , E * ( x ) ] ,  

where E . ( . )  and E*(-) are defined as 

E . ( x )  & ~_, i n f ( A i ) ' m o ( A  i) 
A~c_O 

and 

E*(x) ~= ~ s u p ( A / ) . m o ( A i ) ,  
AicO 

® is a frame of discernment, i.e., an exhaustive set of mutually exclusive 
possibilities, and m o is a basic probability assignment (bpa), a function 
from the power set of ® to [0, 1]: 

m o : 2  ° - +  [0,1] 

whenever 

and 

, n o ( Q )  = 0 

Y'~ mo(A  ~) = 1. 
Aic_(9 

The frame of discernment is here the set of all possible utilities of the 
outcomes. We will call E ,  the lower expected utility and E* the upper 
expected utility. 

Our preference among different alternatives will depend upon their 
expected utility. Let the expected utility be defined as 

E ( x )  ~= E , ( x )  + p .  [ E * ( x )  - E , ( x ) ] ,  

where p is defined as the probability that the ambiguity about the utility of 
every nonsingleton focal element will turn out as favorably as possible, i.e. 
the probability that nature will turn out as favorably as possibly towards us 
as decision makers. 
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Strat gives an example involving a carnival wheel (Figure 1). This wheel 
is divided into 10 equal sectors, each one having a payoff of either $1, $5, 
$10, or $20. One of the sectors is hidden from view. He asks: How much 
are we willing to pay to play this game? 

The frame of discernment ® is {$1, $5, $10, $20}. Assume that 

m({$1}) = 0.4, 

m({$5}) = 0.2, 

m({$10}) = 0.2, 

m({$20}) = 0.1, 

m({$1, $5, $10, $20}) = 0.1. 

Calculating the expected-value interval, we have 

E ( x )  = [ E , ( x ) , E * ( x ) ]  

= [0.4 × $1 + 0.2 × $5 + 0.2 × $10 + 0.1 × $ 2 0 +  0.1 × $1, 

0.4 × $1 + 0.2 × $5 + 0.2 x $10 + 0.1 × $20 + 0.1 × $20] 

= [$5.50, $7.40]. 

Thus, we would be willing to pay at least $5.50, but certainly not more 
than $7.40. But should we be willing to play for $6? 

Obviously, when we are searching for the most preferable choice, we can 
immediately disregard those choices where the upper expected utility is 
less than the highest lower expected utility among all choices. Further- 

Figure 1. Carnival wheel. 
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more, if both interval limits of the utility interval are higher for one 
alternative than for another, i.e. E i , > E j ,  and E* > E 7, then the first 
one, choice i, is always preferable regardless of the value of p. In fact, if 
we receive the choices in decreasing order of the magnitude of their upper 
expected utility, we can immediately disregard any choice whose lower 
expected utility is less than any lower expected utility of the previous 
choices. Only if the expected-utility interval of one choice is included in 
the interval of another choice will our preference depend on the assumed 
value of p. As a result, we will end up with a set of expected utility 
intervals ordered by interval inclusion, [E 1 , ,  E*]  c [E= , ,  E~'] _c ... c_ 
[E,  , ,  E* ] _c [0, 1]. Here  we have renumbered the choices by the order  of 
interval inclusion, i.e. the order of increasing interval length. In the 
following we will only consider choices ordered and renumbered by inter- 
val inclusion. 

Strat argues that instead of first assuming a value for p and then 
calculating the choice that results, one might ask the reverse question. At 
what value of p would I be willing to change my decision? 

Let us study the choice between x 1 and x 2 where [ E l , ,  E~] ___ [ E 2 , ,  
E~ ]: 

choice 1: [E 1 , ,  E~' ], 

choice 2: [ E  2 , ,  E~ ]. 

Here  choice 1 is preferred when 

E l ,  + p ' ( E ~  - E1 , )  > E2 ,  + p ' ( E ~  - E 2 , )  

We find that the two choices are equally preferable if 

E l ,  -- E 2 ,  

P = (E~ - E 2 , )  - ( E l  - E ~ , ) "  

Let us call this value ,012. Since choice 1 has the higher lower expected 
utility of the two choices, it is preferred when p ~ [0, P12 ]' and choice 2 is 
preferred when p ~ [ P12, 1]. 

Let choice 1 be the decision not to play, and choice 2 the decision to 
play: 

choice 1: E(x)  = [$6.00, $6.00], 

choice 2: E(x)  = [$5.50, $7.40]. 
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W h e n  we c o m p a r e  these  two choices,  we find that  choice  1 is p r e f e r a b l e  to 
choice  2 when  

E 1 , - E 2 , 6.00 - 5.50 

P 1 2  < (E~  - E 2 , )  - (E~  - E 1 , ) = (7.40 - 5.50) - (6.00 - 6.00) 

0.50 
- - -  - 0.263. 

1.90 
Thus,  when  p < 0.263 we will no t  p lay the  game,  but  when  p > 0.263 we 
will. 

F u r t h e r m o r e ,  this might  bes t  be  seen  as an ind ica t ion  of  w he the r  we 
need  to ga the r  m o r e  in fo rma t ion  or  a re  ready  to make  a decis ion.  I f  p is 
close to 0 or  1, we might  be  willing to m a k e  a decis ion r ight  now, but  if, on 
the  o t h e r  hand,  it is a r o u n d  0.5, we would  p r e f e r  to ga the r  add i t iona l  
in fo rmat ion  be fo re  mak ing  a decision.  

However ,  at t imes  we might  be  forced  to m a k e  a dec is ion  right now 
regard less  of  the  value  of  p. R a t h e r  than  trying to e s t ima te  p in this 
s i tuat ion,  we might  choose  a d i f fe ren t  route .  

In  this ar t ic le  we will es tabl ish an a l te rna t ive  to mak ing  an out r ight ,  and  
of ten unwar ran ted ,  a s sumpt ion  abou t  p. This  a l te rna t ive  is to accept  a 
un i fo rm probab i l i ty  d i s t r ibu t ion  for  p. 

A d o p t i n g  a un i fo rm probab i l i ty  d i s t r ibu t ion  for  p requi res  two condi -  
t ions be ing  fulfilled. First ly,  the re  cer ta in ly  mus t  not  be  any ev idence  at 
hand  r ega rd ing  the va lue  of  the  p robab i l i ty  p. Such ev idence  could,  for 
example ,  be  in the  form of  d o m a i n  knowledge ,  d i rec t  ev idence  regard ing  
the value  of  p, o r  knowledge  that  the  dec is ion  s i tua t ion  is con t ro l l ed  by 
e i the r  the  dec is ion  m a k e r  or  an adversary .  I t  wou ld  seem to be c ommon-  
p lace  tha t  the re  is no d i rec t  ev idence  avai lable  regard ing  the va lue  of  p. 
The  s i tua t ion  we are  looking  for  is then  a bus iness l ike  s i tua t ion  in a field 
with p o o r  d o m a i n  knowledge  where  the  ou t comes  are  not  con t ro l l ed  by 
e i the r  the  dec is ion  m a k e r  or  an adversary ,  i.e. a dec is ion  s i tua t ion  wi thout  
ev idence  r ega rd ing  the va lue  of  p. Secondly,  it mus t  be  a dec is ion  s i tua t ion  
where  the  dec is ion  m a k e r  is not  only in te res ted  in minimiz ing  the expec ted  
loss regard less  of  the  poss ib le  gains or  in t e res t ed  in maximiz ing  the 
expec ted  gain regard less  of  the  poss ib le  losses. In these  two s i tua t ions  he 
would  choose  to a d o p t  p = 0 or  p = 1, respect ively,  even if the re  is no 
avai lable  ev idence  r ega rd ing  the value  of  p. This  would  be  the  s i tua t ion  if 
the  dec is ion  m a k e r  were  fo rced  to play a game  he th inks  is unfavorable .  
Then  he would  try to min imize  the  expec ted  loss, i.e. choose  p = 0. If, on  
the  o t h e r  hand,  the  dec is ion  m a k e r  is forced  to ob ta in  a lot of  value  by 
playing a pa r t i cu la r  game,  he may  try to maximize  the  expec ted  gain, i.e. 
choose  p = 1. This  e l imina tes  the  ex t r eme  s i tua t ions  where  the  dec is ion  
m a k e r  is fo rced  into a game  by one  r eason  or  ano ther ,  i.e. s i tua t ions  where  
it is not  poss ib le  to avoid a choice.  W h a t  is r ema in ing  is the  " n o r m a l "  
bus iness l ike  dec is ion  s i tua t ions  where  we do  not  have a reason  to choose  
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one value for p over another: when there is not any evidence at hand 
regarding the value of p. 

As Strat points out in his article, if we make an assumption about the 
value of p, we should not confuse our assumption about ambiguity with 
our risk preference• Our risk preference is handled by adopting utilities• 

The methodology in this article was developed as the decision part of a 
multiple-target tracking algorithm (Schubert [8], Bergsten and Schubert 
[9]) for an antisubmarine intelligence analysis system• 

In Section 2 we will discuss points of preference change, and in Section 
3 the uniform probability distribution for p. In Section 4 we will study 
decision making with a uniform probability distribution for p, and the 
different objectives decision makers might have when there are several 
decision makers competing. Finally, conclusions are drawn in Section 5. 

2. THE PREFERRED CHOICE 

When we have several choices, they may be preferred in different 
intervals of p. If we calculate all  Pij'S and order them by increasing 
magnitude, we can calculate the expected utility of every choice for a point 
in each interval of llhe ordered pij's. The choice with the highest expected 
utility in each interval is then the preferred choice for that interval. 
However, we already know that choice 1 is preferred when p = 0, since 
this choice has the highest lower expected utility among all choices, and it 
will remain the preferred choice while p is less than min i Pli, the smallest 
of all pit's and the first point of preference change• Beyond this point, 
choice i will be preferable over choice 1. Since choice 1 will never again be 
preferred in any other interval, we may now disregard all other 01i, J va i, 
even though they represent points of possible preference change. The 
reason for this is obvious: choice 1 can never again be the most preferable 
choice for any interval above min i Pli, since it is not even preferred to 
choice i beyond that point• Thus, these points of possible preference 
change will never represent an actual change of the current preference• 
Continuing, choice i will now be preferred up to the point where p = min t 
Pij, and beyond this point choice j will be preferred up until p = min k Ptk, 
etc. Thus, by iteration we find that the choices are each preferable in the 
following intervals: 

choice 1: [0, min i Pli], 

choice i: [min i Pli, mint Pit], 

choice j: [min t Pit, mink Ptk], 

choice n: [ Pm~, 1]. 
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Alternatively, for  any choice j that  is preferable somewhere ,  its interval of  
preference  can be described as 

choice j: [max/ Pij, mink Pjk]. 

I f  two or  more  pij's are equal in a minimizat ion mini Pij, the next 
preferred  choice will be ambiguous.  In  this case we take the choice with 
the highest number .  If  not,  we would end up with one  or  more  choices 
preferred  under  a zero interval length of  p before  we would get this choice 
anyway. 

3. A UNIFORM PROBABILITY DISTRIBUTION FOR p 

All we know about  the value o f  p is that  it is a pa ramete r  the belongs to 
the set of  real numbers  between 0 and 1, p • [0, 1], i.e., we know that  a 
f rame of  all possible values of  p is that  same set of  numbers ,  6) = [0, 1]. 
Thus,  apar t  f rom knowing the f rame for  p, we do not  know anything at all. 
We have a vacuous  bpa where  m(6)) = 1. In order  not  to reduce the 
overall nonspecificity of  this initial state when making an assumption about  
the probabili ty distribution about  p, we might ask that any such assump- 
tion about  p should yield the same nonspecificity as what  we have now. 
We  define the nonspecificity as 

I ( m )  = Y'~ rn (A)  logzlAI, 
A ~ F  

which is a general izat ion of  Har t ley 's  informat ion [10]. 
Calculating the nonspecificity I ( m )  of  this initial state where  F = {6)} 

and m(6)) = 1, we have 

I(m)  = ~ m(A)log2lAI 
A ~ F  

= m ( ® )  log216)l = 1 • log216)l, 

and since 6) is the infinite set of  real numbers  between 0 and 1, we obtain 
an infinite nonspecificity. 

If  we make  a single-point assumption about  p where  F = {{ p}} and 
m({ p}) = 1, we obtain a nonspecificity of  

l ( m )  = ~_, m(A)log2lAI 
A ~ F  

= m({ p})log21{ p}l = l l o g  2 1 = O, 
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and for any pointwise distribution for p where F = {{ Pl} ,  { P2) ,  "'" } we get 

I ( m )  = ~_, m ( A ) l o g 2 l h l  
A ~ F  

= ~,, m ( A ) l o g  21 = 0. 
A ~ F  

Obviously, our  distribution needs a continuous part  to reach the infinite 
nonspecificity of the initial state. Any such distribution with just one 
continuous part, B, will reach infinite nonspecificity. We have 

I ( m )  = ~_, m ( A ) l o g 2 l A I  
A ~ F  

= m ( B )  log2lBI, 

where F = {B, {Pl}, {P2}, ' "}  and B is an interval of real numbers 
included in [0, 1]. If  B is of infinite size, we have an infinite nonspecificity. 

Furthermore,  we might also demand that the nonspecificity of  our new 
distribution should be equal to the original assignment for any size of the 
frame. Let  F = {B1,  B 2 , - - - , {  P l} ,  {P2} ,  "'" }, where the Bi's a r e  intervals 
included in [0, 1]. We must then have 

log2lO] = ~ m ( A ) l o g z l A [ .  
A ~ F  

Here  A _ ®, and thus we may write JA[ = aA[®[, where 

1 
- - < O t a < l  (~) - -  

and 

1 

a { P ' ) -  IO1" 

We have 

log2l®[ = Y'~ m ( A ) l o g 2 ( a A  "lOI) 
A ~ F  

= Y'~ m(A)l°g20t 'A + E 
A ~ F  A ~ F  

= ~_, m ( A ) l o g  2 a A + log210[" 
A ~ F  

From this it immediately follows that 

m ( A )  log 2 a A = O. 
A ~ F  

m ( A )  log21OI 

m ( A ) .  
A ~ F  
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Since m ( A )  > 0 for every A and log 2 a A < 0 for every o~ A, we must have 
that a A = 1 for every A. But since IAI = aAl®l and ® is the entire frame, 
it follows that A = ®, i.e., that we have only one focal element F = {®}. 

This means that we have only one continuous part  of the probability 
distribution for p, and that it covers the entire interval from 0 to 1, i.e. a 
uniform probability distribution. 

4. DECISION MAKING 

4.1. Decision Making with a Uniform Probability Distribution for p 

If we refrain from making an unwarranted assumption about the value 
of p, we might instead accept a uniform probability distribution for p, i.e. 
the assumption that all values of p are equally probable. Any of the above 
choices that are preferable somewhere might now be preferred. However,  
the probabilities for the choices to be preferred are not equal. This 
probability varies with the length of the interval over which it is preferred. 

If we are only interested in simple maximizing of utility, then adopting a 
uniform probability distribution for p yields the same result as setting 
p = 0.5. Then, for simplicity, we might as well set p = 0.5 and choose the 
alternative that yields the highest expected utility as our decision. 

However, in a situation with several different decision makers, we might 
sometimes be more interested in having the highest expected utility among 
the decision makers  rather than only trying to maximize our own expected 
utility. Thus, rather than actually making a random assumption about p in 
order to find a preferable choice, it makes sense to prefer  the choice that 
would most likely be preferred i f  the value of p were determined at 
random. Assuming the uniform probability distribution for p, this is 
obviously the choice that is preferred under the maximum interval length 
of p. This might be according to the principle "it is bet ter  to choose what 
is most likely the best alternative rather than to gamble for it." The 
interval length under  which a choice is preferred, Pref(.), is here defined as 

Pref(x j )  & max(O, m~n PjI¢- max Pij) 
i 

where min k Pnk & 1 and max i Pil & O. 
If  the number  of alternatives is equal to the number  of decision makers, 

then all we have to do is to choose the alternative that is preferred under 
the maximal interval length. That  will be the choice with the highest 
probability of giving us the highest expected utility. 

The situation becomes more complex when the number  of decision 
makers is less than the number  of choices. 
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4.2. An Example 

Let  us consider  an example  with four  choices whose  expected  utility 
intervals are o rde red  by interval inclusion: 

choice 1: [0.5, 0.6], 

choice 2: [0.4, 0.7], 

choice 3: [0.3, 0.9], 

choice 4: [0.2, 1.0]. 

Calculat ing the points  of  p re fe rence  change gives us 

E 1,  - E  2 ,  0 . 5 -  0.4 

t912 = (E~' - E 2 . )  - (E~  - E l . )  = (0.7 - 0.4) - (0.6 - 0.5) = 0.5, 

and by the same  fo rmula  t913 = 0.4, P14 = 0.43, P23 = 0.33, P24 = 0.4, 
P34 = 0.5. W e  find by i terat ion that  the choices are p re fe rab le  in the 
following intervals of  p: 

choice 1: [0, min  i Pli] = [0, P13] = [0, 0.4], 

choice 3: [0.4, mini  P3j] = [0.4, P34] = [0.4, 0.5], 

choice 4: [0.5, 1], 

and are p re fe r red  for  the following interval lengths: 

P r e f ( x  1) = 0.4, 

P r e f ( x  2) = O, 

P r e f ( x  3) = 0.1, 

P r e f ( x  4) = 0.5. 

In this case choice 2 will never  be  pre fe r red ,  regardless  of  the value of  p. 
If  an unwar ran ted  assumpt ion  is m a d e  about  p, any of  the o the r  three  
choices could be  pre fe r red .  If, on the o the r  hand,  we only assume a 
un i form probabi l i ty  distr ibution for  p, choice 4 will be cons idered  prefer -  
able, since it is p re fe r red  for  the m a x i m u m  interval length of  p. 

4.3. An Algorithm for Finding the Preferred Choice 

W e  may  now find the p re fe r r ed  choice given a un i fo rm probabi l i ty  
distr ibution by the following algori thm. 
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ALGORITHM Let S be the empty set. 
1. Order and renumber all choices by falling magnitude of upper expected 

utility. 
2. For i = 1 to n do 

2.1 Add all choices whose expected utility interval belongs to the set of 
intervals ordered by interval inclusion; if E l ,  > E i 1, then 
s := s + { [E i  , ,  E? ]}. 

3. Renumber all choices in S in order of increasing interval length 
magnitude. 

4. For all combinations of pairs in S calculate 

E l ,  - E j ,  

P i j  = ( E ] ~  _ E j , )  - ( E *  - E i , ) "  

5. Pc : :  O, i := 1, maximum_preference := O. 
6. Calculate the intervals of preference for each choice and find the most 

preferable choice: 
While i 4= n do 

A 
6.1 P'c := mini  Pij, where min k Pnk = 1. 
6.2 P re f (x i )  = p~ - Pc. 
6.3 I f  Pre f (x i )  > maximum_preference then 

6.3.1. maximum-preference := Pref (x i ) ,  preferred_choice := i. 
6.4 i : = j .  
6.5 pc := p~. 

7. Answer preferred-choice. 

4.4. Possible Refinements 

Ins t ead  of  changing  f rom the s t ronges t  poss ible  a s sumpt ion  of  a po in t  
va lue  for  p to the  weakes t  poss ible  a s sumpt ion  of  a un i fo rm probabi l i ty  
d is t r ibut ion ,  we may  occas ional ly  have a r eason  to assume some o the r  
p robabi l i ty  d i s t r ibu t ion  for  p (F igure  2). 

f(p) f(p) f(p) 

> p  ~ > p  > p  

Figure 2. A point-valued, arbitrary, and uniform probability distribution for p. 



On p in Decision-Theoretic Apparatus 197 

w e  might for instance have some knowledge regarding a lower and 
upper  bound for p. Let us call these bounds the lower ambiguity probabil- 
ity p ,  and the upper  ambiguity probability p*, respectively. These bounds 
force a simple change in the definition of preference, Pref(.): 

 ref x , max(0, man( min t - max( ,, )), 
where min k Onk ~ 1 and max i Oil ~ O. 

To incorporate the new definition of preference into the algorithm we 
make the following change in step 6.2., 

6.2 Pref ix / )  = max(0, min(O*, P')  - max( p , ,  Pc)), 

giving all choices preferred in intervals outside the bounds of lower and 
upper ambiguity probability a preference of zero. 

Obviously, we must be able to assume any probability distribution f ( P )  
for p. We can make a general definition of preference as 

( i  ) mink Pjk 
Pref(xj )  & max O, f ( p )  dp  , 

\ maxi Pij 

where min k Pnk & 1 and max i Pil ~= O. 
Finally, we change the computation of preference in step 6.2 of the 

algorithm to 

6.2. Pref(xj )  & F(p~)  - F (Pc ) ,  

where 

F ( p )  = f f(o) ao.  

4.5. Two Decis ion Makers  Searching for the Most  Preferable Choice 

When two decision makers compete for the highest utility, the prefer- 
ence of each alternative is determined by the chance of having the 
alternative that is preferred for the maximal interval length of p after our 
opponent  has also made his choice. If we assume we have the first choice, 
then our opponent  will make his choice taking into account the choice we 
made. Since our goal is to have the highest possible probability of having 
the best alternative, we must also take into account the best choice our 
opponent  can make. It is found by choosing the alternative with the 
highest preference as defined by 

Pref(xj )  & min(m~n pjk,1 - max, Pij). 
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Here  min k Pjk is the preference for choice j when our opponent  chooses 
his best alternative k where k > j, and 1 - max/ Pij is the preference for 
choice j when our opponent  chooses his best alternative i where i < j. 

If, on the other hand, we are the second of the two decision makers,  the 
situation is even simpler. We just have to find the choice with maximal 
preference as defined by 

Pref (x  i , k )  = /PJk'  J < k ,  
Pkj, J > k, 

where k is the alternative already chosen by our opponent.  

4.6. Several Decision Makers 

When the number  of decision makers is less than the number  of choices, 
the situation becomes much more  complex. We must here take into 
account not only the choices already made by other decision makers, but 
also the rational choices we can assume to be made by later decision 
makers.  That  is because the length of the preference interval for any 
alternative depends on the other choices that are made. If  I* is the set of 
all choices made by previous decision makers,  the preference of a choice 
xj may be calculated as 

Pref(xj ,  1 " ) =  max(0,  min P j k -  m a x  Pij), 
k ~ l *  + l . ( l * , j )  i ~ l *  + 1. (1", j) 

where I,(I*, j) is the set of rational choices later decision makers make 
given our choice j. For any decision maker  we want to find the alternative 
that maximizes his preference,  i.e. 

max Pref(xj ,  I* ) ,  
j ~ l  1" 

where I is the set of all possible choices. 
This problem is solved starting with the final choice made by the last of 

the n decision makers,  and for all possible sets of earlier choices I*. Here  
II*l - n - 1 and I ,  - Q. We find the earlier choices by stepping back- 
wards through all possible sequences of choices made by different decision 
makers  until we reach the first choice made by the first decision maker. 

This can be seen as going "up"  a tree with one decision maker  at each 
level until we reach the first decision maker  at the root of the tree. Each 
branch at a certain level of the tree corresponds to a different sequence of 
choices made by the earlier decision makers. The edges going "down" 
from each node at this level corresponds to the possible choices that can 
be made by the decision maker  at this level. 
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5. CONCLUSION 

We have demonstrated that it is not necessary to make a point-value 
assumption about p in Strat 's decision-theoretic apparatus of Dempster-  
Shafer theory. In fact, it is sufficient to assume a uniform probability 
distribution for p to be able to discern the most preferable choice. We 
have given an algorithm for finding the most preferable choice based on an 
iterative search of points of preference change among choices ordered by 
interval inclusion. We discuss the ability to assume any probability distri- 
bution for p. 

We also discussed the more complex problem of several decision makers 
competing for the highest expected utility. The preference for each alter- 
native to some decision makers  was shown to be the probability that the 
alternative has the highest expected utility after all decision makers have 
made their choices, where we take into account both the choices already 
made be other decision makers  and the rational choices we can assume to 
be made by later decision makers. 
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