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Abstract

Algebra extensionsA ⊆ B whereA is a leftB-module such that theB-action extends the multipli-
cation inA are ubiquitous. We encounter examples of such extensions in the study of group actions,
group gradings or more general Hopf actions as well as in the study of the bimodule structure of
an algebra. In this paper we are extending R.Wisbauer’s method of constructing the central closure
of a semiprime algebra using its multiplication algebra to those kinds of algebra extensions. More
precisely ifA is ak-algebra andBsome subalgebra of End(A) that contains the multiplication algebra
of A, then the self-injective hull̂A of A asB-module becomes ak-algebra providedA does not contain
any nilpotentB-stable ideals. We show that under certain assumptionsÂ can be identified with a
subalgebra of the Martindale quotient ring ofA. This construction is then applied to Hopf module
algebras.
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1. Introduction

Let k be a commutative ring with unit. Allk-algebras in this paper are considered to
be associative with unit. Unadorned tensor products are taken overk and End(−) resp.
Hom (−,−) refer tok-linear maps. LetA be ak-algebra. For anya ∈ A, denote byLa

thek-linear mapLa ∈ End (A) with La(x)= ax for all x ∈ A. Denote byRa ∈ End (A)

thek-linear mapRa(x)= xa for all a ∈ A. Thek-subalgebra of End(A) generated by the
mapsLa is denoted byL(A). Themultiplication algebraM(A) of A is thek-subalgebra of
End (A) generated by all mapsLa andRa ; i.e.

M(A) := 〈{La,Ra | a ∈ A}〉 ⊆ End (A).

Thek-algebraA is a cyclic leftM(A)-module whose submodules are precisely the two-sided
ideals ofA.

Definition 1.1. We say that an extensionA ⊆ B of k-algebras is anextension with addi-
tional module structure�, if there exists a ring homomorphism

� : B → End (A)

such that�(a)= La for all a ∈ A. We denote the leftB-module action onA by ·, i.e.

b · a := �(b)(a)

for all a ∈ A andb ∈ B.

Obviously,A becomes a cyclic leftB-module. We will call a left idealB-stable if it is
a B-submodule ofA. Let us denote by� the left B-linear map� : B −→ A mapping an
elementb of B to b · 1A.

Example 1.2. Let B := Ae := A ⊗ Aop be the enveloping algebra ofA and define a
ring homomorphism� from Ae to End (A) by �(a ⊗ b) := La ◦ Rb. IdentifyingA with
A⊗ 1⊆ Ae, we get thatA ⊆ Ae is an extension with additional module structure�. Note
that Im(�)=M(A).

Example 1.3. Let G be a group acting as (k-linear) automorphisms onA, i.e. there exists
a group homomorphism� : G → Autk(A). We will use the notationag := �(g)(a) for
all a ∈ A andg ∈ G. Define the skew-group ringA#G whose underlyingA-submodule
is the free leftA-module with basis{g | g ∈ G} and whose multiplication is given by
(a#g)(b#h) = abggh. We might considerA as a subring ofA#G by the mapA → A#G
sendinga �→ a#e for all a ∈ A wheree is the neutral element ofG. An action ofA#G on
A is given by the ring homomorphism� : A#G → End (A) with �(a#g) := La ◦ �(g).
ThenA ⊆ A#G is an extension with additional module structure�.

Example 1.4. Let � ∈ Derk(A) be a k-linear derivation ofA. Consider the ring of
differential operatorsB = A[X; �], i.e. as anA-module, B is equal toA[X] but the
multiplication is constrained byXa − aX = �(a). Define a ring homomorphism
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� : A[X; �] → End (A) by �(aXn) := La ◦ �n. ThenA ⊆ A[X; �] is an extension
with additional module structure�.

Example 1.5. Let H be ak-Hopf algebra acting onA. Denote the action of an element
h ∈ H onA by �h ∈ End (A). The smash productA#H of A andH is theA-moduleA⊗H

with multiplication given by(a#h)(b#g) :=∑(h) a(h1·b)#h2g where�(h)=∑(h) h1⊗h2
is the comultiplication ofh. Define� : A#H → End (A) by �(a#h) := La ◦ �h. Then
A ⊆ A#H is an extension with additional module structure�.

For a groupG we might chooseH = k[G] and recover Example 1.3. For the trivial Lie
algebrag= k and its enveloping algebraH = U(g)= k[X] we recover Example 1.4.

If A ⊆ B is an extension with additional module structure thenA∩AnnB(A)=0. Hence

A ⊆ B/AnnB(A) � Im (�) ⊆ End (A)

is again an extension with additional module structure. Thus we might replaceBby its image
in End (A) and restrict ourselves to extensions ofA inside End(A); where we identifyA
with L(A).

Example 1.6. Let C be ak-bialgebra andA a right C-comodule algebra with comodule
structure� : A→ A⊗C. For anyf ∈ C∗ define an action onA by f · a := (1⊗ f )�(a),
for anya ∈ A. If we write �(a) =∑(a) a0 ⊗ a1 thenf · a =∑(a) a0f (a1). This defines
an action ofC∗ on A, i.e. we get a ring homomorphism� : C∗ → End (A). Let B be the
subalgebra of End(A) generated byL(A) and Im(�) thenA ⊆ B is an extension with
additional module structure. All left ideals ofA which are rightC-comodules areB-stable.
On the other hand, ifC is a freek-module, then theB-stable left ideals ofA are precisely
the left ideals which are rightC-comodules.

As an application one might considerG-graded algebrasA (whereG is a monoid) as
k[G]-comodule algebras. In order to study theG-graded left ideals ofA one studies theB-
stable left ideals ofAwhereB is the subalgebra of End(A) generated byL(A) and(k[G])∗.

If we want to investigate two-sided ideals that are stable under a given action we have to
restrict to extensionsA ⊆ B with additional module structure� such thatM(A) ⊆ Im (�).
In some cases this happens automatically. For instance letA be ak-algebra with involution
∗. Let B be the subalgebra of End(A) generated byA and∗. Since for anya ∈ A:

Ra = ∗ ◦ La∗ ◦ ∗
we getM(A) ⊆ B. This means (as it is well-known) that any left ideal ofA which is stable
under∗ is a two-sided ideal. Note thatB can be seen as the factor ring of the skew-group
ringAe#G whereG={id, g} is the cyclic group of order two andg ∈ Aut(Ae) is given by

(a ⊗ b)g := b∗ ⊗ a∗.

In this case we have thatA ⊆ Ae#G is an extension with additional module structure.

LetA ⊆ B be an arbitrary extension with additional module structure. Recall theB-linear
map� : B → A with (b)� := b ·1A for all b ∈ B. Note thatb ·a=b · (a ·1A)= (ba) ·1A=
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(ba)� for anya ∈ A andb ∈ B. In particulara′ · a = a′a holds for alla, a′ ∈ A. Thus the
map	 : A→ B with (a)	 := a1B is A-linear and lets� split asA-module homomorphism.
Hence asA-modules we haveB = A1B ⊕ Ker (�).

We define the submodule ofB-invariants of a leftB-module as follows:

Definition 1.7. For any leftB-moduleM we denote

MB := {m ∈ M | ∀b ∈ B, a ∈ A : b ·m= (b)�m}.

Note that for anym ∈ MB and anya ∈ A andb ∈ B we have

b · (am)= (ba) ·m= (ba)� m= (b · a) m.

The converse holds as well, i.e. ifb ·(am)=(b ·a) m for all b ∈ B anda ∈ A thenm ∈ MB .
We can easily determine some elementary properties ofB-invariants.

Lemma 1.8. LetA ⊆ B be an extension with additional module structure. The following
properties hold:

(1) for all M ∈ B-Mod we haveMB = AnnM(Ker (�)).
(2) 
 : EndB (A) −→ A with 
(f ) := (1A)f is an injective ring homomorphism with

imageIm (
)= AB .
(3) 
M : HomB (A,M) −→ MB with 
M(f ) := (1A)f is an isomorphism of left

AB -modules.
(4) The isomorphisms
M are natural transformations between the functorsHomB (A,−)

and(−)B .

Proof. (1) If m ∈ MB , then for allb ∈ Ker (�):

bm= b(1Am)= (b · 1A)m= (b)�m= 0,

henceMB ⊆ AnnM(Ker (�)). On the other hand, ifm ∈ AnnM(Ker (�)), thenm ∈ MB ,
since fromB = A1B ⊕ Ker (�) it follows:

∀b ∈ B, a ∈ A : b(am)= (ba)m= (ba)�m= [b · (a)�]m= (b · a)m,

(2) and (3) Letf, g ∈ EndB (A), thenf andg are in particular leftA-linear and we have


(f ◦ g) := (1A)(f ◦ g) := ((1A)f )g = (1A)f (1A)g =
(f )
(g).

Thus
 is a homomorphism of rings. Moreover, for allb ∈ Ker (�):

b ·
(f )= (b · 1A)f = (b)� ◦ f = 0.

By (1) it follows that Im(
) ⊆ AB . On the other hand, for anyx ∈ AB , the right multipli-
cationRx is B-linear. To see this take anya ∈ A andb ∈ B, then

(b · a)Rx = (b · a)x = (ba)�x = (ba) · x = b · (ax)= b · (a)Rx.

HenceRx ∈ EndB (A). ThusAB becomes a subring ofA and every leftB-moduleM is also
a leftAB -module withAB -submoduleMB . It follows as above that
M is an isomorphism.
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(4) If g : M → N is a homomorphism betweenB-modules then for anyf ∈ HomB

(A,M) we have

(f )
M ◦ g|MB = (1A)f ◦ g = (f ◦ g)
N = (f )HomB (A, g) ◦
N.

Thus
M◦g|MB=HomB (A, g)◦
N , i.e. the isomorphisms
M are natural transformations

between the functors(−)B and HomB (A,−). �

The case when the functor of taking invariants is exact is interesting in many situations.

Proposition 1.9. LetA ⊆ B be an extension with additional module structure. The follow-
ing statements are equivalent:

(a) ()B : B-Mod−→ AB -Mod is an exact functor.
(b) A is a projective left B-module.
(c) there exists an elementt ∈ BB with (t)�= 1A.
(d) there exists an idempotente ∈ B with Be � A as left B-modules andeBe � AB as

rings.

Proof. (a)⇔ (b) holds by Lemma 1.8(4).
(b)⇒ (c) If BA is projective, then� splits and there exists aB-linear map	 : A −→ B

with 	�= idA. Sett := (1A)	. Thent ∈ BB by 1.8(3) and(t)�= 1A.
(c)⇒ (b) If there exists an elementt ∈ BB with (t)�=1A, then one defines	 : A −→ B

as(a)	= at . Sincet is inBB , 	 is B-linear and lets� split, i.e.BA is projective.(b)⇔ (d)

is clear. �

Example 1.10.ForB = Ae we haveMB = Z(M) := {m ∈ M | ∀a ∈ Aam = ma} and
Z(−) is exact if and only ifA is a separablek-algebra.

ForB = A#G we haveMB =MG := {m ∈ M | ∀g ∈ G mg = m} and()G is exact if
and only ifG is finite andA contains an element of trace one (property Proposition 1.9(d)).

ForB =A[X; �] we haveMB =AnnM(X)= {m ∈ M | Xm= 0}. It is impossible forA
to be a projective leftA[X; �]-module simply becauseBB = l.annA[X;�](X)= 0.

ForB =A#H we haveMB =MH := {m ∈ M | ∀h ∈ H h ·m= �(h)m}. If H is a finite
dimensional Hopf algebra over a fieldk then()H is exact inA#H -Mod if and only if there
exists a left integralt ∈ ∫

l
and an elementa ∈ A such thatt · a = 1.

If A is an algebra with involution∗ andB is the subalgebra generated byA and∗ in
End (A), thenMB = Z(M; ∗) := {m ∈ Z(M) | m∗ = m}. Moreover,Z(−; ∗) is exact if
and only ifA admits a separable idempotent�=∑n

i=1 xi ⊗ yi such that�=∑n
i=1 y

∗
i ⊗ x∗i .

2. Prime and semiprimeB-stable ideals

For the rest of the paper we assume thatA ⊆ B is an extension with additional module
structure� such thatM(A) ⊆ Im (�). Note that then everyB-submodule ofA is al-
ready a two-sided ideal. Moreover, theB-invariant elementsMB for a leftB-moduleM are
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A-centralizing. In particularMB ⊆ Z(M). This approach had been used in[1] to study
operator algebrasB acting on semiprime algebrasA.

Definition 2.1. A B-stable idealI of A is calledB-prime (resp.B-semiprime) ifKL ⊆ I

(resp.K2 ⊆ I ) impliesK ⊆ I or L ⊆ I (resp.K ⊆ I ) for all B-stable idealsK andL of
A. A is calledB-prime (resp.B-semiprime) if 0 is aB-prime (resp.B-semiprime)B-stable
ideal.

If I is aB-stable ideal ofA, then there exists a ring homomorphism�′ : B −→ End (A/I)

with M(A/I) ⊆ Im (�′). Let B/I := �′(B), thenA/I ⊆ M(A/I) ⊆ B/I is an exten-
sion with additional module structure�′. With this notation we easily prove the following
Lemma.

Lemma 2.2. Let A and B as above. Let P be a B-stable ideal of A . Then P is prime(resp.
semiprime) if and only ifA/P is B/P -prime(resp. B/P -semiprime).

Like in the classical case we have a description ofB-stable semiprime ideals:

Proposition 2.3. A B-stable ideal of A is B-semiprime if and only if it is the intersection of
B-prime B-stable ideals.

Proof. ⇒: Without loss of generality we may assume thatA is B-semiprime. Let

I :=
⋂
{P | P is a primeB-stable ideal ofA}.

AssumeI �= 0. Then there exists 0�= x1 ∈ I . LetI1 := B ·x1 then 0 �= I1 ⊆ I . SinceA isB-
semiprime, we have(I1)

2 �= 0. Hence(I1)
2 contains a non-zero elementx2. SetI2 := B ·x2.

Again(I2)
2 �= 0, i.e. we may choose a non-zero elementx3 ∈ (I2)

2. Continuing this process
we obtain a familyx1, x2, x3, . . . of non-zero elements and a descending chain of non-zero
B-stable ideals:

I ⊇ I1 ⊇ (I1)
2 ⊇ I2 ⊇ (I2)

2 ⊇ · · · ⊇ (Im−1)
2 ⊇ Im ⊇ . . .

Consider the following set ofB-stable ideals:

Z := {P ⊆ A | P is aB-stable ideal ofA and for allm : Im�P }.
Note thatZ is not empty since 0∈Z. Let {P�} be an ascending chain ofB-stable ideals
in Z. SupposeIm ⊆ ⋃

P� for somem�1, then by definition ofIm = B · xm we have
xm ∈ ⋃

P�. Thus there exists� ∈  such thatxm ∈ P� for some� ∈  and hence
Im ⊆ P�—a contradiction toP� ∈ Z. Hence

⋃
P� ∈ Z and we can apply Zorn’s

Lemma. LetP be a maximal element ofZ. We will show thatP is aB-primeB-stable ideal.
Suppose there areB-stable idealsK,L such thatKL ⊆ P . Without loss of generality we
may assumeP ⊆ K andP ⊆ L. If L �= P �= K, then by the maximality ofP in Z:
K,L /∈Z, i.e. there arem, n�1 with Im ⊆ K andIn ⊆ L. Without loss of generality let
n�m, then

Im+1 ⊆ (Im)2 ⊆ ImIn ⊆ KL ⊆ P,
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a contradiction toP ∈Z. HenceP =L orP =K, i.e.P is a primeB-stable ideal. But this
impliesI ⊆ P , and in particularIm ⊆ P for all m, a contradiction. Thus the intersectionI
of all primeB-stable ideals is equal to zero.

The converse is clear: ifI2 = 0 for someB-stable idealI thenI2 ⊆ P for any prime
B-stable idealP of A. ThusI ⊆ P and henceI ⊆⋂P = 0. �

We conclude thatA is B-semiprime if and only ifA is subdirect product ofB/I -prime
algebrasA/I .

Recall the following module theoretic notions: The self-injective hullM̂ of a moduleM
is the largestM-generated submodule of the injective hullE(M) of M, i.e. if E(M) denotes
the injective hull ofM, then

M̂ =
∑

f∈Hom (M,E(M))

Im (f )=MHom (M, M̂).

The full subcategory ofR-Mod consisting of submodules ofM-generated modules is denoted
by �[M]. The Lambek torsion theory in�[M] is the torsion category whose torsion class
consists of all modulesX such that Hom(X, M̂) = 0. A submoduleN of a moduleM
is calleddenseif M/N is a torsion module with respect to Lambek torsion theory, i.e.
Hom (M/N, M̂)=0. It is well-known thatN is dense inM if and only if Hom (L/N,M)=0
for all submodulesN ⊂ L ⊂ M (see[6, 10.8]). M is calledpolyform, if every essential
submodule ofM isdense. M is calledmonoform, if every non-zero submodule ofM is dense.
Dense submodules are also sometimes called rational (see[6, Chapter 10]).

Lemma 2.4. Let A be B-semiprime. Then the following statements are equivalent for a
B-stable ideal I of A:

(a) I is a dense B-submodule of A.
(b) I is an essential B-submodule of A.
(c) J I �= 0 �= IJ for any non-zero B-stable ideal J of A.

Proof. (a)⇒ (b) dense submodules are essential (see[6, Chapter 10]);
(b)⇒ (a) Let K be aB-stable ideal ofA that containsI andf ∈ HomB (K/I,A). Then

f (K/I) is aB-stable ideal ofA. ThusN := f (K/I) ∩ I is a nilpotentB-stable ideal ofA,
sinceN2 ⊆ f (K/I)I =f (KI/I)=0. HenceN=0, asA is B-semiprime andf (K/I)=0,
asI is an essentialB-submodule. This shows HomB (K/I,A)= 0, i.e.I is dense inA.

(b) ⇔ (c) For all B-stable idealsJ we have:(J ∩ I )2 ⊆ J I ⊆ J ∩ I . SinceA is
B-semiprime we haveJ I = 0 if and only if I ∩ J = 0. HenceI is an essentialB-stable
ideal if and only if the left annihilator ofI does not contain any non-zeroB-stable ideal.
Analogously one concludes the same statement for the right annihilator.�

As a corollary from the last Lemma we get

Corollary 2.5. Let A and B be as above.

(1) If A is B-semiprime, then A is a polyform B-module andAB is reduced.



304 C. Lomp / Journal of Pure and Applied Algebra 198 (2005) 297–316

(2) If A is B-prime, then A is a monoform B-module andAB is an integral domain.
(3) A is B-prime if and only if A is B-semiprime and a uniform B-module.

Proof. (1) It follows from Lemma 2.4[(a)⇔ (b)] thatA is polyform. Letx ∈ AB be such
thatx2= 0. Then(Ax)2=Ax2= 0 shows thatAx is a nilpotentB-stable ideal. Thusx = 0,
i.e.AB is reduced.

(2) Let A be B-prime and leftI be a non-zeroB-stable ideal ofA. Note thatJ I = 0
implies J = 0 for all B-stable ideals asA is B-prime andI �= 0. By Lemma 2.4,I is a
dense leftB-submodule ofA, i.e. A is monoform. Ifxy = 0 holds forx, y ∈ AB , then
(Ax)(Ay)= Axy = 0. SinceA is B-prime,x = 0 ory = 0, i.e.AB is an integral domain.

(3) Follows from the definitions and Lemma 2.4.�

3. The central closure

In the sequel we will extend Wisbauer’s construction of the extended centroid and of the
central closure of a semiprime algebra (see[6, Chapter 32]) to our situation of an extension
A ⊆ B with additional module structure. We will reduce ourselves to subalgebrasB of
End (A) which contain the multiplication algebraM(A).

Let Qmax(A) denote the (right) maximal quotient ring ofA.

Theorem 3.1. Let A be B-semiprime and let̂A be the self-injective hull of A as B-module.
Then the following hold:

(1) The map
 : EndB (Â) −→ ÂB with 
(f ) := (1A)f is an isomorphism ofAB -
modules and defines a ring structure on̂AB making it a commutative, self-injective and
von Neumann regular ring with subringAB .

(2) There is a bijection between the set of(essentially) closed B-stable ideals of A and of
the set of central idempotents of̂AB .

(3) ÂB is a field if and only if A is B-prime.
(4) ÂB is a finite product of n fields(n�1) if and only if A has finite Goldie dimension n

as left B-module.
(5) If AB is large in A, i.e. AB ∩ I �= 0 for all non-zero B-stable ideals I of A, then

ÂB =Qmax(A
B) and A is non-singular asAB -module

Proof. (1) We know from Corollary 2.5 thatA is a polyformB-module. Hence

EndB (Â)= HomB (A, Â)

Â−→ ÂB.

In particularf =0 if and only if(1A)f =0 for allf ∈ EndB (Â). ÂB carries a ring structure
induced by
Â where

(1) f (1)g = (1)(f ◦ g)
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for all f, g ∈ EndB (Â). Moreover, letI := (A)f−1 ∩ (A)g−1 ∩ A. Then for allx, y ∈ I

we have

(xy)(f ◦ g)= (x(y)f )g = (x)g(y)f = ((x)gy)f = (xy)(g ◦ f ),

i.e.f ◦ g − g ◦ f ∈ HomB (Â/I2, Â). As intersection of two essentialB-submodules,I is
essential and no non-zeroB-stable ideal annihilatesI on the left (see Lemma 2.4). ThusI2

is also an essentialB-submodule ofA. By Lemma 2.4 isI2 dense. And henceforth aŝA is
polyform,f ◦ g= g ◦ f , i.e. EndB (Â) � ÂB is commutative. As endomorphism ring of a
self-injective polyform module,̂AB is self-injective and von Neumann regular and contains
AB as subring (see[6, 11.2]).

(2) follows from[6, 12.7];
(3) and (4) follow from (2) and (1);
(5) By [6, 11.5(1)]ÂB=Qmax(A

B). Leta ∈ A andI an essential ideal ofAB with aI=0.
SetJ := (B · a)B = (B · a)∩AB , ThenJ I = 0 and hence(J ∩ I )2= 0. AsAB is reduced
andI is essential inAB we concludeJ =0. But sinceAB is large inA we can also conclude
(B · a)= 0, i.e.a = 0. ThusA is a non-singularAB -module. �

In the next theorem we will see that the self-injective hullÂ itself carries a ring structure.

Theorem 3.2. Let A be B-semiprime and let̂A be the self-injective hull of A as B-module.
Then

(1) Â=QD(A) is the torsion theoretic quotient module with respect to the Lambek torsion
theoryD in �[BA] and

ÂB � lim→ {HomB (I, A)|I is an essential B-submodule of A}.

(2) The map� : A⊗AB EndB (Â) → Â with �(a ⊗ f ) := (a)f is left B-linear. Its
kernel is an ideal and thus we may define a ring structure onÂ given by the following
multiplication:

∀a, b ∈ A; s, t ∈ ÂB : (as) · (bt) := (ab)st,

where A is a subring of̂A.
Let B̂ := 〈B, ÂB〉 ⊆ End (Â). ThenÂ ⊆ M(Â) ⊆ B̂ is again an extension with

additional module structure and the following hold:

(3) Â is B̂-semiprime and a self-injectivêB-module.
(4) Â is a non-singular̂AB -module.
(5) A is B-prime if and only if̂A is B̂-prime.

We callÂ thecentral closureof A with respect to B and̂AB theextended centreof A with
respect to B.

Proof. (1) From the fact thatA is a polyformB-module it follows from[6, 9.13] that
Â=QD(A). From[6, 9.17]follows the description of the endomorphism rinĝAB .

(2) By definition the self-injective hull of a moduleM is M-generated, i.e. the map
� : A⊗HomB (A, Â)→ Â with �(a⊗f ) := (a)f is an epimorphism of leftB-modules,
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whereB acting just on the first component of the tensor productA⊗HomB (A, Â). SinceA
is polyform we have HomB (A, Â)=EndB (Â). Letai ∈ A andfi ∈ End (Â) and assume
that� :=∑n

i=1 ai ⊗ fi is in the kernel of�, i.e.

0= �(�)=
n∑

i=1

(ai)fi

For anyb ⊗ g we have

�((b ⊗ g)�)= �

(
n∑

i=1

bai ⊗ gf i

)
=

n∑
i=1

(bai)g ◦ fi = b

(
n∑

i=1

(ai)fi

)
g = 0.

Hence,(b ⊗ g)� ∈ Ker (�). Moreover,

�(�(b ⊗ g))= �

(
n∑

i=1

aib ⊗ fig

)
=

n∑
i=1

(aib)fi ◦ g =
(

n∑
i=1

(ai)fi

)
gb = 0.

Thus�(b⊗ g) ∈ Ker (�) shows that Ker(�) is an ideal ofA⊗EndB (Â) as claimed. This
allows us to define an associative ring structure on theB-moduleÂ that is also compatible
with thatB-action and containsA as a subring.

(3) By definition Â is a left B-module, hence there exists a ring homomorphism�:
B −→ End (Â) that is injective aŝA is a faithfulB-module. Without loss of generality we
might identifyB with its image�(B). Let B̂ := 〈�(B), ÂB〉. By hypothesisM(A) ⊆ B

implies

M(Â)=M(A)ÂB ⊆ B̂

andÂ ⊆ B̂ is an extension with additional module structure. LetI be aB̂-stable ideal of
Â, with I2 = 0. In particular(I ∩ A)2 = 0 holds. But sinceI is B-stable,A is essential as
B-submodule of̂A andA is B-semiprime we concludeI = 0. ThusÂ is B̂-semiprime.

Every B̂-endomorphism of̂A is alsoB-linear. On the other hand, EndB (Â) � ÂB �
End̂B (Â) holds. AsÂ was self-injective asB-module, it is also self-injective aŝB-module.

(4) follows from[6, 11.11(5)].
(5) Let I, J be non-trivialB̂-stable ideals in̂A. AsB ⊆ B̂ these ideals are alsoB-stable.

SinceA is essential asB-submodule,(I ∩A) and(J ∩A) are non-trivialB-stable ideals of
A and(I ∩ A)(J ∩ A) is contained inIJ. Hence ifA is B-prime, thenÂ is B̂-prime.

On the other hand if̂A is B̂-prime andIJ = 0 for someB-stable idealsI andJ of A, then
(I ÂB)(J ÂB)= IJ ÂB = 0, i.e.I ÂB = 0 orJ ÂB = 0. AndA is B-prime. �

ForB =M(A) we recover Wisbauer’s construction of the central closure ofA (see[5]).

4. The Martindale quotient ring

Let F denote the set of ideals ofA with zero left and right annihilator. Theright
Martindale ring of quotientsof A is

Q(A) := lim→ {Hom−A (I,A) | I ∈F}.
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Alternatively, one might constructQ(A) as follows: define an equivalence relation∼ on⋃
I∈F Hom−A (I,A) by lettingf : I −→ A be equivalent tog : J −→ A if there exists

K ∈F such thatK ⊆ I ∩ J andf|K = g|K . Denote by[f ] the equivalence class of a map
f : I → A. Note that the equivalence class of the zero mapA→ A contains all mapsf that
vanish on some ideal inF.Addition is defined by[f ]+[g] := [f +g : I ∩J −→ A]while
multiplication is set to be[f ][g] := [fg : J I −→ A] wherefg denotes the composition
mapa �→ f (g(a)).

In case we have an extensionA ⊆ B with additional module structure, we are going to
construct a subring ofQ(A) related to allB-stable ideals inF. LetFB be the set ofB-stable
ideals with zero left and right annihilator.We assume from now on that A is B-semiprime
and that the left annihilator of an B-stable ideal is again B-stable.By Lemma 2.4 all ideals
in FB are essentialB-submodules ofA. Consider the following construction:

Q0(A) := lim→ {Hom−A (I,A) | I ∈FB}.

We will refer to the elements ofQ0(A) as equivalence classes in the above sense, i.e.

Q0(A)=
 ⋃

I∈FB

Hom−A (I,A)

/∼,

where

f ∼ g ⇔ f|I = g|I for someI ∈FB.

With the operations+ and· as aboveQ0(A) becomes ak-algebra and a subring ofQ(A).
Before we show that the central closurêA can be identified with a subring ofQ0(A) we

show thatÂB lies in the centre ofQ0(A).

Proposition 4.1. LetA be B-semiprime and denote byÂ the central closure ofA with respect
to B. Assume that for any essential B-stable ideal I of A the left annihilatorl.annA(I) and
right annihilator r.annA(I) are B-stable ideals. Define for anyf ∈ EndB (Â) the ideal
If := (A)f−1 ∩ A. Then the map

� : EndB (Â)→ Q0(A) with f �→ [f : If → A]
is an injective homomorphism of k-algebras whose image lies in the centre ofQ0(A) and
consists of all elements[f : I → A] where f is left B-linear.

Proof. For each endomorphismf ∈ EndB (Â)defineIf := f−1(A)∩A.Since pre-images
of essential submodules are essential,If is an essentialB-submodule ofA. By Lemma 2.4(c)
and the hypothesisIf has zero left and right annihilator, i.e.If ∈FB . We will show that
� is a ring homomorphism. Letf, g ∈ EndB (Â). Note thatIf Ig ∈ FB andIf Ig ⊆ Ifg
since for allx ∈ If , y ∈ Ig the following holds:

fg(xy)= f (xg(y))= f (x)g(y) ∈ A.
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Thus

�(f )�(g)= [f : If → A][g : Ig → A] = [fg : If Ig → A]
= [fg : Ifg → A] = �(fg).

This shows that� is a ring homomorphism.
Assume�(f )= 0 for somef ∈ EndB (Â). Then there exists anJ ∈FB with J ⊆ If

andf (J ) = 0. Hencef ∈ HomB (Â/J, Â) = 0 asJ is dense by Lemma 2.4. Thusf = 0
and� is injective.

Let [f : I → A] be such thatf is B-linear, thenf can be uniquely extended to an
endomorphismf ∈ EndB (Â) sinceÂ is self-injective and polyform asB-module. By
definition�(f )= [f : I → A] sinceI ⊆ If andf|I = f |I . Hence the image of� consists
of all elements[f : I → A] such thatf is B-linear. �

Let ™ : A → Q0(A) be the inclusion ofA into Q0(A) given by™(a) := [La : A → A].
Together with� we have a mapA × EndB (Â) → Q0(A) sending a pair(a, f ) to the
product™(a)�(f ). SinceAB � ™(AB) ⊆ Z(Q0(A)) this map isAB -balanced and induces
ak-algebra homomorphism

�∗ : A⊗AB EndB (Â)→ Q0(A).

Recall from Theorem 3.2 thek-algebra homomorphism� : A⊗AB ÂB → Â with �(a ⊗
f )= af .

Lemma 4.2. For any element� ∈ A⊗AB EndB (Â) there exists a B-stable idealI ∈ FB

such that

�∗(�)= [L�(�) : I → A],

whereL�(�)(x)= �(�)x for all x ∈ I .

Proof. Write �=∑n
i=1 ai ⊗ xi . By definition

�∗(�)=
n∑

i=1

[Lai : A→ A][Lxi : Ixi → A]

=
n∑

i=1

[Laixi : Ixi → A]

=
[

n∑
i=1

Laixi :
n⋂

i=1

Ixi → A

]
= [L∑n

i=1 aixi
: I → A],

where we setI :=⋂n
i=1Ixi ∈FB . Since�(�)=∑n

i=1 aixi our claim is proved. �
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In particular this implies that Ker(�) ⊆ Ker (�∗), i.e.�∗ extends to ak-algebra homo-
morphism� : Â→ Q0(A).

Let E : A→ Â denote the inclusion map.

Proposition 4.3. The following diagram in the category of k-algebras commutes:

A Q0(A)

A�

j

i

�
_

The imageIm (�) is the subalgebra ofQ0(A) generated by the image of A and all elements
[f : I → A] such that f is B-linear. The kernel of� is equal to

Ker (�)= �(Ker (�∗))=
⋃

I∈FB

l.ann̂A(I).

Proof. Assume that� ∈ Ker (�∗), then�∗(�)= [L�(�) : I → A] = 0 for someI ∈FB ,
i.e.�(�)I = 0. Thus�(�) is an element of the left annihilator in̂A of I. Hence Ker(�) ⊆⋃

I∈FB
l.ann̂A(I). On the other hand each elementz in l.ann̂A(I) is mapped by� to the

zero class inQ0(A). �

Under some conditions� is injective.

Theorem 4.4. Let A be B-semiprime and̂A its central closure with respect to B. Assume
that the following conditions are fulfilled:

(i) l .annA(I) andr.annA(I) are B-stable for all essential B-stable ideals I of A.
(ii) l .ann̂A(I) is B-stable for all B-submodules I of̂A.

Then� : Â→ Q0(A) is an injective k-algebra homomorphism.

Proof. It is enough to show that�(Ker (�))= 0 since then Ker(�)= Ker (�) holds, i.e.
� is injective. LetI ∈FB . Then 0= l.annA(I)=A∩ l.ann̂A(I). SinceI is an essentialB-
submodule ofAand hence of̂A, by hypothesis l.ann̂A(I) isB-stable. But then l.ann̂A(I)=0
asA is essential asB-submodule of̂A. �

5. Applications to Hopf actions

In this section we apply our construction to Hopf actions. LetH be a Hopf algebra overk
and letA be a leftH-module algebra. Then there exists a leftH-module structure onA given
by some ring homomorphism� : H → End (A). Let us denote the action of an element
h ∈ H as an endomorphism ofA by �h, i.e.�h(a) = h · a for all a ∈ A. In order forA to
be a leftH-module algebra theH-action has to satisfy the following condition in End(A)
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for h ∈ H anda ∈ A:

�h ◦ La =
∑
(h)

Lh1·a ◦ �h2,

where�(h)=∑(h) h1⊗ h2 is the Sweedler notation.
Thek-subalgebra generated by the mapsLa,Ra and�h for a ∈ A andh ∈ H is denoted

by MH(A), i.e.

MH(A) := 〈{La,Ra, �h | a ∈ A, h ∈ H }〉 ⊆ End (A).

Instead ofMH(A)-prime resp.MH(A)-semiprime one says thatA is H-prime resp.H-
semiprime. It is easy to verify thatAMH(A)=Z(A)∩AH holds. Let us denoteZ(A)∩AH

byZ(A)H . Note that in generalZ(A) is not closed under the action ofH, butZ(A) is a left
H-module algebra in caseH is cocommutative.

Let us first realizeMH(A) as the factor of some kind of smash product. IfA is commuta-
tive, thenMH(A) is generated by{La, �h|a ∈ A, h ∈ H }. Hence we might identifyMH(A)

with the image ofA#H → End (A) mappinga#h to La ◦ �h (whereA#H is the smash
product as defined in Example 1.5). In this caseMH(A) is isomorphic toA#H/AnnA#H (A).

In the following theorem we representMH(A) as a factor ring of some smash product.
For that reason we are going to recall a general construction taken from[2]:

Definition 5.1. Let A andB bek-algebras with multiplication maps�A resp.�B . Let � :
B ⊗ A −→ A⊗ B be ak-linear map and define:

� : (A⊗ B)⊗ (A⊗ B)
1⊗�⊗1−→ (A⊗ A)⊗ (B ⊗ B)

�A⊗�B−→ A⊗ B.

If A⊗B becomes through� an associativek-algebra with unit 1A⊗1B , then we will write
A#�B and call this ring thesmash-productor factorization structure ofA andB with respect
to �.

Caenepeel et al. gave a characterization of smash-products.

Theorem 5.2(Caenepeel et al.[2, Theorem 2.5]). Let A, B and� as above. Then� defines
a smash-product for A and B if and only if the following statements hold:

(i) �(b ⊗ 1A)= 1A ⊗ b and�(1B ⊗ a)= a ⊗ 1B for all a ∈ A, b ∈ B.
(ii) The following diagrams commute:

B � AB � A

A � B

B � A � A

A � B � AA � A � BA � B � BB � A � B

B � B � A

1 � �

� � 1 1 � �

� � 1 

� �

�B � 1 

�A � 1 1 � �B 

1 � �A 
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Let Ae := A⊗ Aop be the enveloping algebra ofA. We want to define a smash product
of Ae andH. If H is cocommutative, thenAe is a leftH-module algebra and we can use the
(ordinary) smash productAe#H of a module algebra and a Hopf algebra (see Example 1.5
for definition), but in generalAe will not be anH-module algebra.

Define the map� : H ⊗ Ae −→ Ae ⊗H by

�(h⊗ a ⊗ b) :=
∑
(h)

(h1 · a)⊗ (h3 · b)⊗ h2

for all a, b ∈ A andh ∈ H .
ThenAe#�H is a smash product in the above sense. To see this we have to check that the

diagrams above commute.
Property (i) of Theorem 5.2 is obviously fulfilled. Leta, b, x, y ∈ A andh, g ∈ H . Then

(1⊗ �H )(�⊗ 1)(1⊗ �)(h⊗ g ⊗ (a ⊗ b))

=
∑
(g)

(1⊗ �H )(�⊗ 1)(h⊗ (g1 · a ⊗ g3 · b)⊗ g2)

=
∑
g,h)

(1⊗ �H )((h1g1 · a)⊗ (h3g3 · b)⊗ h2⊗ g2)

=
∑
g,h)

h1g1 · a ⊗ h3g3 · b ⊗ h2g2.

= �(�H ⊗ 1)(h⊗ g ⊗ (a ⊗ b)).

Hence(1⊗�H )(�⊗1)(1⊗�)=�(�H ⊗1) holds, i.e. the left part of the diagram in Theorem
5.2(ii) commutes.

(�Ae ⊗ 1)(1⊗ �)(�⊗ 1)(h⊗ (x ⊗ y)⊗ (a ⊗ b))

=
∑
(h)

(�Ae ⊗ 1)(1⊗ �)((h1 · x ⊗ h3 · y)⊗ h2⊗ (a ⊗ b))

=
∑
(h)

(�Ae ⊗ 1)((h1 · x ⊗ h5 · y)⊗ (h2 · a ⊗ h4 · b)⊗ h3)

=
∑
(h)

(h1 · x)(h2 · a)⊗ (h4 · b)(h5 · y)⊗ h3

=
∑
(h)

((h1 · (xa))⊗ (h3 · (by))⊗ h2)

= �(1⊗ �Ae)(h⊗ (x ⊗ y)⊗ (a ⊗ b)).

Hence(�Ae ⊗ 1)(1⊗ �)(�⊗ 1)= �(1⊗ �Ae), i.e. the right part of the diagram of Theorem
5.2(ii) commutes andAe#�H is a smash product.

One could also define a smash product on thek-algebrasAop andA#H . It is not difficult
to check that the map� : Aop ⊗ A#H → A#H ⊗ Aop with

�(b ⊗ a#h) :=
∑
(h)

a#h1⊗ (S(h2) · b),
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will define a smash product(A#H)#�A
op. Moreover, one checks that the map
:

(A#H)#�A
op −→ Ae#�H with 
(a#h⊗ x) :=∑(h)(a ⊗ (h2 · x))#h1 is an isomorphism

of k-algebras.
We can now representMH(A) as the factor of the smash productAe#�H .

Theorem 5.3. The map� : Ae#�H −→ MH(A) with �((a ⊗ b)#h) := La ◦ Rb ◦ �h is
a surjective map of k-algebras. Moreover, A ⊆ Ae#�H is a ring extension with additional
module structure�.

Proof. We have the well-defined mapsLAe : Ae −→ End (A), and�H : H −→ End (A).
Let � denote the multiplication in End(A), then�= � ◦ (LAe ⊗ �H ) is well-defined. By
definition Im(�)=MH(A), i.e.� is surjective . To show that� is a ring homomorphism
note that for allh ∈ H, a, b, x ∈ A

h · (axb)=
∑
(h)

(h1 · a)(h2 · x)(h3 · b)

holds and therefore also

�h ◦ La ◦ Rb =
∑
(h)

Lh1·a ◦ Rh3·b ◦ �h2.

By definition of the multiplication in Ae#�H this implies that � is a ring
homomorphism. �

In caseH is cocommutative, we have thatAe#�H andAe#H coincide:

Proposition 5.4. If H is cocommutative, thenAe is a leftH-module algebra andAe#�H is
equal to the ordinary smash productAe#H of a module algebra and the Hopf algebra.

Proof. Ae is always a leftH-module by the diagonal module structure, i.e.

h · (a ⊗ b) :=
∑
(h)

(h1 · a)⊗ (h2 · b)

for all h ∈ H anda, b ∈ A. Suppose thatH is cocommutative. Leta ⊗ x, b ⊗ y ∈ Ae and
h ∈ H . Then

h · ((a ⊗ x)(b ⊗ y))= h · (ab ⊗ yx)

=
∑
(h)

h1 · (ab)⊗ h2 · (yx)

=
∑
(h)

(h1 · a)(h2 · b)⊗ (h3 · y)(h4 · x)
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=
∑
(h)

(h1 · a)(h3 · b)⊗ (h4 · y)(h2 · x)

=
∑
(h)

[(h1 · a)⊗ (h2 · x)][(h3 · b)⊗ (h4 · y)]

=
∑
(h)

[h1 · (a ⊗ x)][h2 · (b ⊗ y)].

Moreover,h · (1⊗ 1)= ε(h)(1⊗ 1) holds, i.e.Ae is a leftH-module algebra.Moreover, for
all h ∈ H anda, x ∈ A:

�(h⊗ (a ⊗ x))=
∑
(h)

(h1 · a)⊗ (h3 · x)⊗ h2=
∑
(h)

[h1 · (a ⊗ x)] ⊗ h2.

Thus the multiplication defined by� is equal to the multiplication in the ordinary smash
product, i.e.Ae#�H = Ae#H . �

Now we are in a position to apply our previous results to Hopf module algebras.

Theorem 5.5. Let H be a k-Hopf algebra, A be an H-semiprime left H-module algebra and
let Â be the self-injective hull of A asAe#�H -module. Then the following statements hold:

(1) A is a polyformAe#�H -module and a subdirect product of H-prime module algebras.
Furthermore, Z(A)H is reduced.

(2) Â is an H-semiprime left H-module algebra with submodule algebra A. Â is self-
injective asÂe#�H -module and a non-singular module over the self-injective and von
Neumann regular ringZ(Â)H .

(3) If Z(A)H is large in A, thenZ(Â)H =Qmax(Z(A)H ) and A is non-singular asZ(A)H -
module

Proof. Note that theAe#�H -module structure ofA coincides with that ofMH(A) since
MH(A) � Ae#�H/AnnAe#�H (A).

(1) follows from Corollary 2.5 and Proposition 2.3.
(2) follows from Theorem 3.2 and Theorem 3.1. Note that

MH(Â)= 〈MH(A),Z(Â)H 〉 = M̂H (A) ⊆ End (Â).

We still have to prove that̂A is a leftH-module algebra. TheH-module structure on̂A =
AZ(Â)H is given byh · (as)= (h · a)s. Let as, bt ∈ Â andh ∈ H , then:

h · [(as)(bt)] = (h · (ab))st =
∑
(h)

(h1 · a)(h2 · b)st =
∑
(h)

[(h1 · a)s][(h2 · b)t]

=
∑
(h)

[h1 · (as)][h2 · (bt)].

(3) follows from Theorem 3.1. �
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From 3.1(2–4) follows also

Corollary 5.6. Let H be a k-Hopf algebra, A be an H-semiprime left H-module algebra
and letÂ be the self-injective hull of A asAe#�H -module. Then the following statements
hold:

(1) There exists a bijection between the(essentially) closed H-stable ideals of A, the central
idempotents of̂A and the central idempotents ofZ(Â)H .

(2) The following statements are equivalent:

(a) Every direct sum of non-trivial H-stable ideals in A is finite.
(b) Â is a finite direct product of H-prime H-module algebras.
(c) Z(Â)H is a finite product of fields.

(3) A is H-prime if and only ifZ(Â)H is a field.

Let G be a group and consider the group ringH = k[G]. Let A be ak-algebra whereG
acts on, thenG acts also onAe and we can form the skew-group ringAe#G. TheG-central
closure constructed in[6] coincides with our construction of the central closureÂ as self-
injective hull ofAe#�H since, as mentioned before,Ae#�H coincides with the ordinary
smash product ofAe andk[G] which is in this case the skew-group ring ofAe andk[G].

Using the results of the last section we show that our central closure embeds into the
Martindale ring of quotients of a Hopf-module algebra. For a leftH-module algebraA our
Martindale ring of quotientQ0 constructed with respect toFB whereB=MH(A) coincides
with the Martindale ring of quotients constructed by Cohen in[3].

Proposition 5.7. Let H be a Hopf algebra over k and let A be a left H-semiprime module
algebra with right Martindale ring of quotientsQ0. Let Â be the self-injective hull of A as
Ae#�H -module. Assume that one of the following conditions hold:

(i) A is commutative or
(ii) A is semiprime or

(iii) H has a bijective antipode.

Then

(1) � : Z(Â)H → Z(Q0)
H with f �→ [f : If → A] is an isomorphism of k-algebras

whereIf := f−1(A) ∩ A.
(2) Z(Q0)

H is a von Neumann regular self-injective k-algebra.
(3) � : Â → Q0 with � �→ [L� : I → A] is an injective homomorphism of k-algebras

whereI =⋃n
j=1Ixj for �=∑n

j=1 ajxj .

(4) Â is isomorphic to the subalgebra ofQ0 generated by A andZ(Q0)
H .

Proof. We just have to check that any of hypotheses (i–iii) implies that the left and right
annihilator of anH-stable ideal inFH of a left H-module algebra isH-stable. First of all
note that the left annihilator inA of anH-stable (left) idealI is alwaysH-stable. Leta ∈ A
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satisfyaI = 0; then for allh ∈ H andx ∈ I one has

(h · a)x =
∑
(h)

h1 · (a(S(h2) · x))= 0.

We still have to show that the right annihilator inA of an essentialH-stable ideal isH-stable.
Case(i): If A is commutative then left and right annihilator are equal and henceH-stable.
Case(ii): Let I be an essentialH-stable ideal. Since the left annihilator l.annA(I) of I in A

is H-stable, l.annA(I)=0 follows by Lemma 2.4. IfA is semiprime, then also r.annA(I)=0
follows, i.e. the right annihilator of any essentialH-stable ideal isH-stable.

Case(iii): If H has a bijective antipode, then the right annihilator inAof anH-stable ideal
I is alwaysH-stable. Leta ∈ A satisfyIa = 0; then for allh ∈ H andx ∈ I one has:

x(h · a)=
∑
(h)

h2 · ((S−1(h1) · x)a)= 0.

Hence we can apply Theorem 4.4 and Proposition 4.1.�

In [4] Matczuk constructs the central closure of anH-prime module algebraA directly
as the subalgebra of the Martindale quotient ringQ0 of a module algebraA, generated by
A andZ(Q0)

H . We see by(4) that his construction coincides with ours.
A H-semiprime leftH-module algebraA is calledH-centrally closed, if Â = A holds.

From Theorem 3.2(4) follows that ifA is anH-semiprime leftH-module algebra, then̂A
is H-centrally closed. IsA H-prime, thenÂ is H-prime andZ(Â)H is a field. We might
considerH̄ := H ⊗ Z(Â)H as aZ(Â)H -Hopf algebra and̂A becomes aH̄ -prime left
H̄ -module algebra over the fieldk := Z(Â)H . WasH separable overk, thenH̄ is also
separable overk and hence finite dimensional and semisimple. Thus questions with respect
to H-prime module algebras over separable Hopf algebrasH over commutative rings can be
reduced toH-primeH-centrally closed module algebras over finite dimensional semisimple
Hopf algebras over fields.
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