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Rapid  melt  pool  formation  and  solidification  during  the metal powder  bed  process  Selective  Laser  Melting
(SLM)  generates  large  thermal  gradients  that can  in turn lead to increased  residual  stress  formation
within  a component.  Metal  anchors  or supports  are  required  to  be built  in-situ  and  forcibly  hold  SLM
structures  in  place  and  minimise  geometric  distortion/warpage  as  a result  of  this  thermal  residual  stress.
Anchors are  often  costly,  difficult  and  time  consuming  to remove  and  limit  the  geometric  freedom  of
this  Additive  Manufacturing  (AM)  process.  A novel  method  known  as  Anchorless  Selective  Laser  Melting
(ASLM)  maintains  processed  material  within  a stress  relieved  state  throughout  the  duration  of a  build.  As
a result  metal  components  formed  using  ASLM  do  not  require  support  structures  or  anchors.  ASLM  locally
melts  two  or  more  powdered  materials  that  alloy  under  the  action  of  the  laser  and  can  form  into  various
combinations  of  eutectic/hypo/hyper  eutectic  alloys  with  a new  lower  solidification  temperature.  This
new  alloy  is maintained  in a semi-solid  or  stress  reduced  state  throughout  the  build  with  the assistance
of  elevated  powder  bed  pre-heating.  In this  paper the  ASLM  methodology  is detailed  and  investigations
into  processing  of a  low  temperature  eutectic  Al-Si  binary  casting  alloy  is explored.  Two  types  of  Al

powders  were  compared;  pre-alloyed  AlSi12  and  elemental  mix  Al  + 12 wt%  Si.  The  study  established  an
understanding  of  the  laser in-situ  alloying  process  and  confirmed  successful  alloy  formation  within  the
process.  Differential  thermal  analysis,  microscopy  and  X-Ray  diffraction  were  used  to  further  understand
the  nature  of  alloying  within  the  process.  Residual  stress  reduction  was observed  within  ASLM  processed
elemental  Al  +  Si12  and  geometries  produced  without  the requirement  for  anchors.

© 2015  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
. Introduction

Technologies such as Selective Laser Melting (SLM), Electron
eam Melting (EBM), and Direct Metal Deposition (DMD) etc. utilise
etal powders as feedstock material to produce parts. SLM metal

owders such as stainless steel, aluminium, titanium, nickel based
lloys etc. are materials of interest within aerospace, medical and
utomotive industries etc. [1–4]. In recent years there has been a
otable industry uptake of SLM and EBM technologies to manufac-
ure end use parts. This is mainly a result of the processes’ geometric
reedom that is afforded to designers when manufacturing fully
ense components from a variety of alloys. However the claim that
LM or EBM offers “unlimited” design freedom is untrue due to

he requirement for supports/anchors that prevent certain geome-
ries from geometrically distorting as a result of thermal residual
tress. Further to this anchors are often costly, difficult and time

∗ Corresponding author. Tel.: +44 01142227789.
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consuming to remove. Because of the limitations anchors exert over
the process, today efforts to limit the number of supports/anchors
and minimise residual stress remains a major research priority.

2. Stress development and requirement for
anchors/supports during SLM

During SLM processing, high heat intensities are generated by
the laser source, this is required to ensure complete melting of
metal powder particles and minimise part porosity [5,6]. However
the rapid heating/melting of material is followed by a rapid solid-
ification that induces thermal variations that cause areas of the
scanned/processed layer to expand/contract at different rates, sub-
sequently generating residual stress which can cause a component
to geometrically distort/warp [5,7,8]. Anchors are metallurgically
fused to the substrate plate and various locations across the laser

melted component, forcibly holding geometries in place. Anchors
are made from the same material as the SLM component and
are also formed through the layer by layer melting of powder
from the powder bed. An example of warpage and the required

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Overhanging geometries

nchoring structure can be seen in Fig. 1. Typically large over-
anging/unsupported geometries built parallel to the powder bed
equire the most support/anchoring [9].

An example of an un-anchored zinc SLM component can be seen
n Fig. 2(a), the zinc part curls up due to it being un-anchored to
he substrate, this type of warpage can be controlled with the use
f anchors. Fig. 2(b) shows a steel (316L) SLM component made
ith and without anchors. The number and location of anchors are
ependent on the part geometry and build direction/orientation
10]. However the inclusion of anchors does not guarantee a com-
onent will be warp free, large stress prone geometries can rip
nchors from the substrate during a build causing it to fail. Once

 build is complete the task of removing anchors adds time and
ost to the build. This is particularly the case with cobalt chrome
ental copings, crowns and bridges fabricated using SLM. These
omponents require multiple support structures that later result in
ime-consuming surface finishing operations in order to preserve
he dental surface integrity. In many cases the anchors cannot be
ccessed or removed, as a result the geometric freedom of the pro-
ess is compromised as access is required to eventually remove
hese anchors. Even after anchor removal parts can still warp due
o the remaining stress, this can be prevented by relieving the stress
hrough furnace heating cycles prior to anchor removal [11].

The polymer AM process Laser Sintering (LS) uses lasers to
rocess polymers from a powder bed. LS uses the same layer
y layer fabrication method as SLM to produce parts but is able
o do so without the requirement for anchors. LS uses special
supercooling’ polymers and careful processing temperature con-
rol to enable anchorless LS parts to be made [12]. LS materials
ylon 11 and 12 (supercooling polymers) have re-freezing temper-
tures (138–143 ◦C) that are lower than their melting temperature
185–189 ◦C) [13]. During LS powder bed pre-heat temperatures

re maintained above the material’s solidification temperature but
elow its melting temperature [14], the laser scans regions of the
owder bed causing the polymer to melt, more preheated powder

s deposited and processed until the part is complete. The processed

Fig. 2. Warpage of un-anchored zinc part (a) and
 prone to warpage during SLM.

material is not given an opportunity to rapidly solidify but is instead
held in a semi-solid/stress reduced state preventing part warpage.
Materials that are not laser processed remain solid, whereas the
bed temperature ensures that the laser melted polymer remains
partially liquid throughout the build and does not transition back
into a solid. After building, the part is allowed to cool over several
hours and completely solidify. Eliminating rapid material solidifi-
cation during a build reduces a component’s tendency to warp and
eliminates the requirement for anchors leading to greater geomet-
ric freedom and reduced post-processing operations. Furthermore,
LS parts do not need to be physically attached to a substrate and
therefore parts can be stacked on top of each other, increasing build
volume within the process.

2.1. Eutectic alloy solidification characteristics

The super cooling behaviour of nylon 11 and 12 during LS
processing allows parts to remain in a semi-solid state, stress
reduced and removes the requirements for anchors. However, there
are no known ‘supercooling metals’ in existence today that have a
melt temperature that is significantly higher than the re-freezing
temperature. However there are combinations of metals that when
combined in specific proportions, form an alloy that has a lower
solidification/freezing temperature than one or more of the individ-
ual materials prior to alloying. These alloys are known as ‘eutectic
alloy systems’ with the lowest possible melting point forming the
eutectic point [15].

Due to the low solidification temperature of eutectic compo-
sitions they are extensively used as soldering and casting alloys.
Use of eutectic compositions minimise energy usage and alloy seg-
regation during the casting process [16]. Eutectic systems form
when alloying additions form a lowering of the liquidus lines from

both melting points of the pure elements. At a specific composi-
tion there is a minimum melting point. A simple binary eutectic
system is typified by the metallic alloy of bismuth and zinc. Pure
elemental bismuth exhibits an equilibrium freezing point of 270 ◦C

 un-anchored/anchored/steel geometry (b).
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Fig. 3. Binary phase diagram containing material A and B.

nd pure elemental zinc exhibits an equilibrium freezing point of
20 ◦C. When bismuth and zinc are fully alloyed in proportions of
7 wt% and 3 wt% respectively a melt point of 254 ◦C is formed,
his is 16 ◦C lower than the melting point of bismuth [17]. A sim-
le binary eutectic phase diagram is shown in Fig. 3. Alpha, beta,
olid and liquid phases are shown with respect to varying material
ompositions and temperature, TE represents the eutectic melt-
ng point. Eutectic material proportions can vary from the exact
utectic point creating hypo or hyper eutectics (alloys containing

 eutectic system) with variable solidification temperatures and
aterial properties. The range of compositions that have the poten-

ial to form eutectics is broad, ranging from aluminium alloys to
igher temperature nickels.

.2. Processing using Anchorless Selective Laser Melting

Removing or alleviating stress build up and the requirement
or anchors within SLM can be achieved by preventing parts from
ompletely solidifying during processing or maintaining in a stress

educed state. ASLM has been developed to prevent processed
etal from completely solidifying during an SLM build [18]. This is

chieved by forming a eutectic alloy or eutectic system (hyper/hypo
utectic) from two or more un-alloyed materials and maintaining

Fig. 4. Anchorless Selective 
cturing 7 (2015) 12–19

powder bed pre-heating above the newly formed eutectic melt-
ing/solidification point. The following example demonstrates this
method and is illustrated in Fig. 4; a batch of material A and B
powder is mixed in their un-alloyed eutectic proportions (e.g. com-
position for eutectic melting point shown in Fig. 3). These materials
are then deposited during the ASLM process while maintaining a
bed temperature near to the eutectic point of the alloy but less
than the melt temperature of the individual un-alloyed powder
(to prevent melting and agglomeration of un-processed feedstock).
It still may  also be possible to pre-heat the powder bed to tem-
peratures below the eutectic melt point so that stresses are not
developed or are sufficiently relieved. Stresses can be sufficiently
relaxed if the bed temperature allows diffusional relaxation of the
material [19]. Dependant on the material, these relaxation kinetics
are initiated between 40 and 60% of the solidification tempera-
ture of the material and above, this is also time dependant. When
the laser scans regions of the powder bed the individual A and
B powders will melt and form a eutectic alloy in-situ that will
now only solidify at temperatures below the eutectic solidification
point. Because the bed temperature is set near the eutectic point
the melted/alloyed regions will not rapidly solidify or if within the
diffusional temperature range will generate less stress than those
formed during conventional SLM. Other eutectic compositions such
as Al66Mg offer large processing windows of 212 ◦C (temperature
difference between eutectic melt point and lowest melting point
of individual un-alloyed material). A large processing window may
be advantageous as the bed temperature control would not need
to be regulated as precisely compared to that of a small processing
window. Further to this a large processing window may  reduce
unwanted solid state sintering of unprocessed powders due to pre-
heat temperature being far lower than the melt temperature of
the un-alloyed material. This solid state sintering or “caking” of
material causes material deposition issues due to agglomeration.
2.3. Aluminium and in situ alloying

There is a wide interest in processing aluminium alloys using
SLM to produce complex parts with improved design. Aluminium

Laser Melting process.
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s of particular interest because it has excellent strength to weight
atios, heat transfer properties and corrosion resistant with sev-
ral other benefits [20,21]. Among a wide variety of aluminium
lloys, there is an interest in processing a few specific aluminium
lloys and therefore studies have focused on improving the abil-
ty to process commercial aluminium alloy (in pre-alloyed form).
luminium alloys such as AlSi12, AlSi10Mg, Al 6061 and others
ave been processed using SLM [20,22]. Recent focus has been on
rocessing Al–Si casting alloys due to the lower difference between
elting and solidification and favourable substrate wetting char-

cteristics compared to wrought aluminium alloys such as Al 6061
t room temperature [21,23].

To improve processing of aluminium and its alloys several meth-
ds have been applied often by way of hardware modification or
pgrade. Brandl et al. [22] used AlSi10Mg powder with a heated
ed to build parts. In the study different types of build platforms
ere used such as without and without pre heating up to 300 ◦C

o analyse residual stresses and fatigue resistance using exper-
mental and computer aided simulation techniques. The heated
latform aided in reducing residual stresses in parts built result-

ng in high fatigue resistance. In addition the peak hardening heat
reatment influenced the fatigue resistance of the sample consider-
bly. Aluminium has been well known for its high reflectivity and
igh thermal conductivity properties and these have been explored

n various applications. Therefore these properties result in rel-
tively lower absorption of laser energy during the process thus
aking it one of the difficult materials to process with SLM. This

eads to imperfections in parts such as low density due to lack of
omplete melting, traces of un-melted powders in parts, balling
ue to lack of sufficient energy. Therefore to overcome some of
hese issues laser scanning speed can be reduced for low power
evices or high power lasers can be utilised. In addition, aluminium
evelops an oxide coating when in contact with oxygen in the atmo-
phere. To improve melting and breakdown of oxides, often high
ower lasers are used or laser speeds are reduced for low power

asers thus affecting build rates (approx. 4 mm3/s for a 100 W laser).
uchbinder et al. [1] used a high power laser source of 1 kW to
roduce parts with close to 100% part density and with improved
uild rate with AlSi10Mg. Densities of approx. 99.5% were achieved
t higher build rate of 21 mm3/s with 1 kW laser thus achieving
aster builds. Similar density was also achieved by 500 W laser
ource at scan speed of 1200 mm/s  resulting in lower rate of build
peed of 9 mm3/s compared to later. In SLM the cooling rate is

 difficult processing parameter to control due to the nature of
he processing arrangement however the cooling rate plays a key
ole in the microstructure formation. The cooling rate of approx.

 × 106 K/s is often considered to be achieved in SLM processing
24].

Traditionally SLM feedstock materials were pre-alloyed pow-
ers such as AlSi12, AlSi10Mg, Ti6Al4V etc. Often the powder
omposition of an alloy was adapted from well-established con-
entional manufacturing processes such as casting, welding,
orging, powder metallurgy etc. These materials performed well in
arts manufactured by conventional processes. Occasionally SLM
rocessing of such materials could be difficult. The microstructures
btained by SLM are characterised by rapid solidification and large
hermal gradients leading to formation of intermetallic phases with
ombination of large and fine grains sizes; this is generally not
he case with conventional processing. Therefore different post
rocessing techniques such as Hot Isostatic Pressing (HIP) and
eat treatments are normally applied to improve density, micro-
tructures and/or precipitates. Therefore there has been a need for

ustom feedstock material that would have suitable characteristics
or SLM. Prior to this investigation, in situ methods of develop-
ng alloys have been studied using SLM. A study undertaken by
artkowiak et al. [20] utilised custom Al–Cu and Al–Zn powders.
cturing 7 (2015) 12–19 15

The authors’ blended elemental powders and produced different
compositions for in-situ processing using SLM. The results found
that there were fine microstructures with homogenously dissolved
intermetallic phases in a metal matrix. Similar in-situ work has
been undertaken to develop Metal Matrix Composites (MMC)  using
the SLM processes [25–27]. This work reported formation of in-situ
MMC  with improved mechanical properties. However Gu et al. [27]
also reported excessive energy, leading to the disappearance of TiC
phases within the material. Processing blended powders for selec-
tive in situ alloying can allow users to develop their own custom
powders from readily available elemental compositions.

3. Materials and experimental setup

AlSi12 is a eutectic alloy that solidifies at 577 ◦C, its individual
constituents Al and Si melt at 660 ◦C and 1414 ◦C respectively, a
modified Renishaw SLM 125 was  used to conduct standard SLM
and ASLM processing of materials. A series of cubes were produced
and analysed to test in-situ alloying, followed by thermal, chem-
ical and optical analysis. A number of un-supported overhanging
flat ‘T’ shaped geometries were created and observed for geometric
distortion (warpage).

3.1. Material properties

Two  separate batches of metallic powders/mixes were used
within this investigation. First, aluminium–silicon pre-alloyed
eutectic powder (AlSi12) and second, an elemental blend of com-
mercially pure aluminium (Al) and silicon (Si) powders were used.
The AlSi12 and Al powders were gas atomised with irregularly
shaped morphology as seen in Fig. 5(a) and (b). The particle size
analysis of powders was undertaken using a Coulter 160 powder
particle size analyser; particle size distribution was shown to be
20–90 �m.  The Si powder was sourced from Fischer Scientific and
had a wide particle size range with irregular morphology due to
milling during manufacture. The powder had D10, D50, D90 val-
ues of 1 �m,  10 �m and 64 �m respectively and a bulk density of
2.3 g/cm3. A specific powder particle size distribution was obtained
by sieving. Post sieving the Si particle size distribution was sub
100 �m.  The pure Al powder had D10, D50, D90 values of 20 �m,
38 �m and 66 �m respectively and a bulk density of 2.7 g/cm3. The
AlSi12 alloy powder had D10, D50, D90 values of 18 �m, 33 �m and
59 �m respectively. Al and Si elemental powder mixes were created
by first measuring the weight of individual materials in their correct
eutectic proportions. They were then combined and placed within
a mixing drum with ceramic balls to break up agglomeration. This
mixture was  then revolved within a planetary mixer at 1000 rpm
for 6 min  with regular intervals at 2 min  to stir the powder manu-
ally. This assisted in breaking up of powder lumps that may  have
formed during mixing. After the final 2 min  of the mixing cycle the
powder was  then directly transported and placed within the SLM
material hopper for processing.

3.2. SLM/ASLM setup

For this investigation, experiments were undertaken using a
Renishaw SLM 125 equipped with a 200 W fibre laser. The laser was
a continuous wave modulated mode laser. The modulated mode
enabled additional control over the processing of materials. The lin-
ear movement of the laser was expressed as a distance of laser spots
and time for which the laser was active on a spot. The laser speed
was thus calculated from exposure time (�s, is the time that the

laser is exposed on a spot at the desired output) and point distance
(�m, distance between the successive exposures of a laser spot at
desired output). The processing chamber was fitted with a build
volume of 125 mm × 125 mm × 125 mm.  The standard diameter of
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 material; (a) AlSi12 and (b) Al + Si12.
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Fig. 6. Warp measurement of un-anchored overhanging geometry.

Fig. 7. AlSi12 powder directly tested using DTA.
Fig. 5. SEM images for powder

he laser spot was 35 �m and powder layer thickness was  50 �m.
he SLM chamber was modified to allow substrate pre-heating up
o 380 ◦C.

.3. Thermal analysis

A Differential Thermal Analysis (DTA) was performed on unpro-
essed powders and samples produced using pre-alloyed and
lemental mixes of powder to confirm alloying and phase transition
emperatures. A Perkin Elmer DTA 7 equipment was used for this
nalysis. A small weighed sample was placed in an alumina crucible
nd a controlled heat cycle was applied. The material temperature
as ramped up to 800 ◦C at 25 ◦C/min. The sample was held for

5 min  at elevated temperature and ramped down at 25 ◦C/min
ntil it reached room temperature. The complete heat cycle was
erformed under controlled argon atmosphere for all samples. This
nalysis showed melting and solidification of samples in the form
ndothermic and exothermic peaks plotted in a temperature vs.
T/T plot.

.3.1. Microstructural and phase composition analysis
Samples were cross-sectioned and mounted in the x–z plane

.e. perpendicular to build direction in order to analyse the formed
elt pools. ASTM standard E407-07 was adapted to attain opti-
um  results. A Nikon light optical microscope was used to analyse

he melt pool microstructure and melt track characteristics. Micro-
copic analysis was also used to observe traces of un-melted
aterial. Phase composition analysis was performed using Siemens
-5000 X-Ray Diffraction (XRD) equipment with Cu K� radiation

� = 1.5418 Å) at 40 kV and 30 mA,  using a continuous scan mode at
◦/min. The obtained peaks were analysed using a database from
he International Centre for Diffraction Data (PDF-4+2013).

.3.2. Warp measurement and residual stress reduction
An optical–analytical method was used to measure geomet-

ic distortion/warpage. Several images were taken of unanchored
verhanging samples using an optical microscope. These images
ere then analysed using image processing software known as

mageJ. The data obtained was then plotted and a warp profile was
tudied. Fig. 6 shows how warp height/distance was  measured on
he length of an unsupported overhanging geometry.

. Results and discussion
.1. Thermal analysis

Figs. 7–10 show the thermal analysis plots for powder and laser
elted samples produced from pre-alloyed and an elemental mix

Fig. 8. SLM processed AlSi12 sample tested in DTA.
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of this a single endothermic peak of the SLM processed sample was
ig. 9. Al + Si12 powder directly tested using DTA (solid line indicates first heat cycle,
ashed indicates second heat cycle).

f the Al–Si alloy system. As seen in Figs. 7 and 8, for pre-alloyed
aterial a single melting and solidification peak were obtained for

owder and SLM processed samples. The plot indicated the onset
emperature for melting and cooling peaks were approximately at
70 ◦C (±3 ◦C) with a heat transfer rate of 25 ◦C/min. The lower
alue of the eutectic onset temperature for solidification could be
n account of minor undercooling or DTA system lag. The overlap of
nset temperature of peaks is a characteristic behaviour of metals;
s the internal energy reduces the liquid phase begins to transform
o solid phase at the same temperature i.e. without significant super
ooling.

Fig. 9 shows thermal cycles applied to an Al + Si12 powder mixed
ample. Two thermal cycles were applied to the sample; first to
lloy Al and Si powder and second to verify success of alloying.
uring the first thermal cycle (solid line in Fig. 9) the solid to liq-
id phase transformation began at 640 ◦C. A single exothermic peak
as observed that suggested silicon dissolved into liquid phase alu-
inium in the crucible. On cooling, the onset temperature of the

olidified material was observed at 570 ◦C. The onset solidification
emperature indicated in situ alloying of aluminium and silicon at
ear eutectic proportions. On application of the second thermal
ycle (dashed line in Fig. 9), the onset temperatures of exothermic
nd endothermic peaks were found to overlap at 570 ◦C; thus con-
rming alloying of Al and Si material as a result of the first thermal
ycle. However secondary exothermic and endothermic peaks were

bserved suggesting incomplete alloying for a portion of the sample
ithin the crucible. This could be due to lack of stirring mecha-
isms in a molten state within the crucible thus resulting in a small
olume of silicon rich alloy and therefore forming a hyper-eutectic

Fig. 10. ASLM processed Al + Si12 sample tested in DTA.
Fig. 11. AlSi12 pre-alloyed microstructure – SLM processed.

alloy that had an onset melting temperature of 650 ◦C and solidifica-
tion temperature of 600 ◦C. As shown in Fig. 10 the ASLM processed
Al + Si samples show a similar plot as the pre-alloyed samples; the
endothermic and exothermic peaks overlapped at 560 ◦C, thus con-
firming a successful in situ alloying of elements during the ASLM
process.

4.2. Alloy microstructure

Fig. 11 shows the microstructure obtained by processing AlSi12
pre-alloyed powder. A microstructure in the form of a fine alu-
minium solid solution with eutectic structure was observed. This
concurred with a typical rapidly cooled Al–Si system [1]. The inter-
action duration between the laser exposure and powder particles
for a scan speed of 261 mm/s, was  120 �s. Thus the resulting fine
microstructure was  obtained.

Fig. 12 shows the microstructure observed in an in situ alloyed
Al + Si12 powder processed using ASLM. The melt track consoli-
dation showed complete melting of powders, thus suggesting the
alloying of Al–Si powders. The white structures (dendrites) are
aluminium solid solution and the darker regions are Al–Si eutec-
tics. Marangoni convection in the melt pools would have enhanced
material mixing and thus alloying with a near to homogeneous
spread of eutectic structures in the solidified melt pool. As a result
observed in Fig. 10. In addition, the directional growth of dendrites
suggested a thermal gradient between the top and bottom of the
melt pool. Also, the dendrites observed in a few areas were coarse,

Fig. 12. In-situ alloyed Al + Si12 microstructure – ASLM processed.
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powder, (b) Al + Si12 EM powder, (c) SLM-AlSi12 PA and (d) ASLM-Al + Si12 EM.
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a 10 mm unsupported overhang was produced using an Al + Si
blend. As seen in Fig. 16, this sample displayed minimal signs of
warping (1 mm warpage). Its underside showed signs of satellite
formation due to being an unsupported layer, further parameter
Fig. 13. XRD patterns of aluminium–silicon system (Al–Si). (a) AlSi12 PA 

uggesting slower cooling within the melt pool. However the eutec-
ic structure seems to be reasonably uniform, suggesting successful
n situ alloying of Al–Si powders.

.3. Phase composition analysis

For further determination of phases present, XRD was
mployed. Fig. 13 shows an XRD plot for Pre-Alloyed powder (PA),
lemental Mixed powder (EM) and SLM processed samples. The
-Al and traces of �-silicon can be observed clearly with powder
amples. Prior to SLM processing, Al and Si peaks can be clearly
bserved. The decrease in intensity of aluminium and silicon peaks
uggested dissolving of primary silicon into the aluminium melt
ool and forming a eutectic phase. Therefore the analysis further
onfirmed in-situ alloying of primary aluminium and primary sil-
con when processed under a laser. It should be noted that AlSi12
oes not form an intermetallic and hence no new identifiable phase.

t is accepted that elemental powder mixes will have less homo-
eneity of dissolved Si as compared to pre-alloyed powders, as a
esult thorough and consistent powder preparation (i.e. mixing)
ad been employed prior to SLM processing.

.4. Anchorless components – stress reduction using anchorless
elective laser melting

Samples produced using SLM (pre-alloyed powder) and ASLM
elemental powders) at room temperature and 100 ◦C powder bed
re-heating displayed similar un-anchored overhang capabilities.
oth these processes were only able to produce an un-warped over-
ang if the length of the overhang remained under 2 mm,  however
s the length of the overhang increased above 2 mm  the overhangs
ould warp to such a level that the SLM builds would fail due

o the material deposition mechanism colliding with the warped
ortion of the part (as shown in Fig. 14). As powder bed pre-heat
emperature was increased to 380 ◦C the SLM process was unable
o successfully deposit pre-alloyed AlSi12 for processing due to

aterial agglomeration. The ASLM process however was  able to
eposit elemental Al + Si12 mixes at elevated temperature without
gglomeration due to the higher melting temperatures of each of

hese individual elements (compared to pre-alloyed AlSi12). Fig. 15
isplays the measurements of warp height for ASLM samples pro-
uced at 380 ◦C pre-heating. The samples displayed minor signs of
arpage but not to the extent observed in SLM, nor did it cause
Fig. 14. ASLM overhang component built at 100 ◦C.

the ASLM build to fail due to collisions with the wiper arm. The
maximum warp height of 1 mm  was  measured when an overhang
length of 5 mm was  used. It is envisaged that this warp height can be
reduced with further tuning of powder bed pre-heat temperatures.

In an attempt to further test the capabilities of ASLM processing,
Fig. 15. ASLM geometric distortions at 380 ◦C pre-heat.
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tive laser melting behaviour and processing windows of in situ reacted Al/Fe2O3
ig. 16. Unsupported overhang components produced using the ASLM process from
lemental Al + Si12 powder.

ptimisation may  further reduce its prevalence. Fig. 16 also shows
n unsupported spring like geometry fabricated using ASLM, this
eometry possessed an unsupported horizontal overhang of 20 mm
a ×10 greater overhang capability than SLM’s 2 mm overhang).
s would be expected with this spring like geometry, it can be
ompressed and will after return to its original geometry. These
omponents demonstrate that ASLM is capable of producing com-
onents with minimal warpage as a result of reduced residual
tress from in-situ alloyed materials and elevated pre-heating. The
rocessed material may  have remained in a semi-solid state (above
77 ◦C) for a prolonged period during the build (as opposed to
apid solidification within conventional SLM) as the laser energy
ould have inputted heat into the surrounding powder bed with

he substrate pre-heating acting as a heat loss reducer. The ele-
ated pre-heating of the powder bed would have reduced thermal
radient and thus reduced residual stress formation. Alternatively,
ven with the heat input from the laser the processed material may
ave completely solidified during the build due to the pre-heat bed
emperature being 197 ◦C below the eutectic solidification temper-
ture of the newly formed alloy. If this is the case, it suggests that the
re-heating temperature was in the diffusion range of the material
acilitating a relaxing of stresses.

. Conclusion

This study presented preliminary work investigating in-situ
lloying of an Al–Si eutectic alloy system using SLM and ASLM. The
esults obtained demonstrated successful alloying of aluminium
nd silicon. On comparison between the microstructure of in-situ
lloyed material and prealloyed material; the primary aluminium
n form of dendrites and silicon in form of eutectic structure

ere observed. The DTA analysis and phase composition analysis
omplemented these findings and increased confidence in the in-
itu alloying approach. Utilisation of in-situ alloying method for
eveloping new materials could be potentially cost effective and
ncourage faster development of materials for SLM that would yield
he same properties of conventional materials.

Even when elevated pre-heating was applied to pre-alloyed
lSi12, SLM was unable to build overhangs greater than 2 mm.
his was due to solid state sintering of loose powder and subse-
uent agglomeration during deposition. However during ASLM the
eat input from the laser combined with the substrate pre-heating
ay  have allowed the processed material to be maintained in a

emi-solid state for an extended period of time within the build
hus reducing residual stresses from developing. Alternatively, the
rocessed material may  not have been held in a semi-solid state
or a prolonged period within the build, this could be a result of
he pre-heating temperature being held 197 ◦C below the eutectic
olidification point. If this was the case, it would indicate that a
rolonged semi-solid state may  not be required during a build to

educe stress and that relaxation as a result of the material being
eld within its diffusional temperature range may be sufficient. The
verhanging test samples produced demonstrated that the ASLM
rocess is capable of reducing stress within components during

[

cturing 7 (2015) 12–19 19

a build. Compared to conventional SLM, ASLM has the potential
to reduce the number of supports required to manufacture metal
components, built from materials that form eutectic systems.
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